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Gene Regulation
Simulation Is not a good approach;

It regisires. much inforrmation
It is Fundamantally inefficient
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Bringing cartoons to life

Tounderstand cells as dynamic systems, mathematical tools are needed to fill the gap between
molecular interactions and physiological consequences.

John L Tyson

Open any ssue of Natwre and you will
find a diagram illustrating the molecular
interactions purported to underie some
behaviour of a living cell. The accompany-
ing text explains how the link between
maolecules and behaviour is thought to
be made. For the simplest connections,
such stories may be convincing, but as
the mechanisms become more complex,
intuitive explanations become more error
prone and harder to believe.

A better way to build bridges from
molecular biology to cell physiology is to
recognize that a network of interacting
genes and proteins is a dynamic system
evolving in space and time according to
fundamental laws of reaction, diffusion
and t rt. These laws m howa
regulatory network, confronted by any
set of stimuli, determines the appropri-
ate response of a cell. This information-
processing system can be described in
precise mathematical terms, and the
resulting equations can be analysed and

1« 11

possibilities in the programmed-cell-death
network. For instance, small amounts of
caspase in the cell are neutralized by bind-
ingto an inhibitory protein XIAP — whose
function is to preventaccdental firng of
the saicide inadvertent activa-
tion of a Eﬁmmdmﬂa Bt if
enough caspase is activated
to saturate the XIAP
pool. then the excess
caspase triggers release
of a protein whose job ||
is to eliminate XIAP
and free upevenmore ||
caspase. These sorts |
of interactions might |
generate the kind of
dynamic responses so |
|

characteristic of pro-
cell death.

But can we be sure

our intuition g

I= correct?

Under what

conditions is

the off state stable to small signals but

notions: for example, ‘bifurcation points’
correspond to thresholds. Bifurcation
analysis is a powerful tool for deducing
qualitative dyn amical features of complex
reaction networks. In this fashion, dynam-
ical systemsth forges a rigorous chain

of dedal::?triuns frumqulecular

=T \interactions to kinetic equations 3

to vector flelds to physio-

logical consequences.
This dynamical perspec-

tive” has proven its merits

in many areas of molecu-

lar cell biology. Cakium
signalling shows a variety
of fascinating behaviours,
none of which can be
understood in quantitative
detail without mathemati-
cal models. The molecular
basis of circadian
o in which mathe-
matical model-
ling is essential
to understanding such physiologically
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Source:
http://esapubs.org/bulletin/backissues/087-4/web_images_oct/urban/urban_foodwebs_3.jpg




T
dL¥ A% dilY

r

¥

=]
. Fyuwyisgd

i &

ST

Hperyd

=
- dapi i g
g Y " it \R” SRR

m.-.tEJ g
s ir
I¥H BI¥H e - IR, ] L W

ik ﬁ [ pp—— it
-4 o e .._\. E.._m_ u_..

]

T ﬂﬁiuﬁ arcred- g0 #eaanl-

4y iﬁmﬁin an |
av- s saemmil w @ Resz
ELE

syl |-kl - safnaif

http://www.cptc.ctc.edu/library/Bio%20118%20Lecture%20Notes%20Rev%200105_files/image191.jpg
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Gene Regulation
Simulation is not a good approach:

It requires much information

It is fundamentally inefficient



Conventional Models

Input:
Network topology
Specific functional forms of interactions

Output:
Mainly: Trajectories
Steady States
Stability
Bifurcations




Generalized Models

Input:
Network topology
Parameters describing the steady states

Output:
Local stability of steady states

Local Bifurcations
Some insights on global dyamics




The Dynastic Cycle
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The Dynastic Cycle
FF = P(F)-C(F B)—-T(F,R)

B = C(F,B)-L(R,B)—- M(B)
R = C(F,B)—- E(R)

A generalized model of the dynastic cycle

o




The Dynastic Cycle
FF = P(F)-C(F B)—-T(F,R)
B = C(F,B)-L(R,B)—- M(B)
R = C(F,B)-E(R)

Assume that there is a steady state, then
we can define

F ~ P(F)
f-—ﬁ; p(f) = P(F*)' *




The W C)ﬁlb

fo= aplf) = Gelfsb) = Ft(f)
. - M*

b = gC(f,b) A(r,b) — i m(b)
r = b) — i* e(r)

Assume that there is a steady state, then

we can define
_F . PO *
f=Z p(f) = PlFY)"




The D}ﬁmﬂi Cycle

f as(p — Be — (1 = PB)t)
b = ap(c—~l—(1—~)m)
r = a(c—e)

We have defined the scale parameters

F*

1 L* fraction of bandits that
ap B* geteventually caught

Qf = inverse life expectancy of farmers

’}/:




The Dynastic Cycle

Suppose we knew a steady state ...

...what do we need to know to decide if it is stable?




The Dynastic Cycle

Suppose we knew a steady state ...

...what do we need to know to decide if it is stable?

Scale Parameters
Life expectancy of farmers, bandits and rulers?

What fraction of bandits is eventually caught?

What fraction of the farmer’s losses
is caused by crime?




The Dynastic Cycle

Suppose we knew a steady state ...

...what do we need to know to decide if it is stable?

Exponent Parameters

How strongly is production limited by the
number of farmers?

= How much productive land is
still available?




The Dynastic Cycle

Limitation by Farmers







1 1 1 'I i I I |' I I I '| 1 T T

Hopf Bifurcation-

0.62}

0.60- Double Hopf
- Bifurcation

0.58 :

0.64

Periodic

0.62

0.60
Chaos

0.58
Periodic

1.6 1.7 1.8 19 2.0
P










~0=-0

0.0







000 002 0.04 006 008 0.10 00
V2




....u. :—w..x,w.uu Cq.

% ﬂﬂﬁ u.: v#...f

) nn. //«

i

;,4 =




d..
" triple-point

e

L]
-

e D-_-"_L ______
triple-point




hondrial TCA-Cycle

CO- Assimilation
Glycolysis
OAA - PEP
MADH ADP
MALD ATP
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MWN TCA-Cycle
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Calvin Cycle
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Calvin Cycle
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Summary

Some (non trivial) insights can be extracted
from very general models:

Important parameters Local bifurcations
Certain features of global dynamics
Interesting parameter regions

GSK Modeling should be used for screening
large classes of plausible models before detailed
modeling is attempted.
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