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An Equation of Burgers type

Equation of Burgers type

du = [Lu+vu+ B(u,u)]dt + ouo dw (B)

v

v

v

v

v

v

L - non positive differential operator on Hilbert-space H
Exp. L = 92 + 1 on [0, «1] Dirichlet b.c.
Kernel N' = N(L), finite dimensional
Bilinear operator B: H x H — D((1 — L)™%), a« € [0,1)
Exp. B(u,v) = 0x(uv)
{w(t)}+>0 — standard two-sided Brownian motion in R
o — noise strength

v — distance from bifurcation
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An Equation of Burgers type

(B) generates a Random Dynamical System on H.

» How?
» Definition of RDS?
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Wiener space and Shift

Consider the probability space (g, Fo,P), where
Qo= {we COR,R) : w(0)=0}.

On Qq let IP be the the two-sided Wiener measure.
The identity on Qg is a Brownian motion.

Define the Shift 6, : Qg — Qo
Orw(t) =w(t+7)—w(T),

which is measure preserving/ergodic with respect to P.
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Random Dynamical System (RDS)

[L. Arnold, Crauel, SchmalfuB, Flandoli, Scheutzow, Chueshov,
Duan, Caraballo, Kloeden, Robinson,.... ]

A RDS on H over the shift ; on (Qq, Fo,P) is a measurable
map

0 R"xQyxH — H
(t,w,u) — @(t,w)u

with the cocycle property
p(O,w)=1Id,  o(t, Orw)p(T,w) = p(t + 7, w)
forall t,7 € R and w € Q.

Remark: Usually, ¢(t,w)u is continuous in t and in u.



Cocycle Property o(t,0,w)p(r,w) = o(t + 7,w)

Local Shape
of Random

Invariant (,Q(t + T, \.U)

Manifolds
Dirk Blomker

Introduction
SPDE

RDS

LRIM

Main Results
Flow on M
Idea of Proof

Conclusions

t+7



Ornstein-Uhlenbeck process

Local Shape
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Invariant Definition (OU-process)

Manifolds .
Dirk Blsmker Define on € ,

Introduction 0
SPDE z(w) = —0/ e’w(s)ds .
RDS >

LRIM and

Main Results
t

Fowon 1 2(t) = 2(6uw) = —o / &~ tw(s)ds + ow(t)

Idea of Proof —c0

Conclusions

t — z(0:w) is continuous and solves
dz = —zdt + odw.

Remark: z(t) is a stationary OU-process on the Wiener space.
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Transformation

The solution to (B) generates a RDS.

Using the standard transformation
v(t) = e 2B y(t)
Equation (B) becomes:
Ov = Lv+zv+vv+ eB(v,v),

The solution defines a RDS, which by the transformation
defines the RDS ¢ for (B).
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Random Invariant Manifold (RIM)

Definition (Random Invariant Manifold)

A random set M(w) is positive invariant for the RDS ¢, if

o(t,w)M(w) C M(0w) for all t > 0.

M(w) = {u + Y(w, u)|lu € N'}

is the graph of a random Lipschitz mapping
P(w,") N = N,

then M(w) is called a Lipschitz invariant manifold (RIM).
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RIM are moving in time!

M(0_w)

M(0,w)
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Lipschitz Condition

If the nonlinearity is globally Lipschitz with sufficiently small
Lipschitz-constant, then there exists a RIM.
The RIM is pull-back attracting.

See for example:

[Duan,Lu, SchmalfuB '03, '04]
[Duan, Wang '07]
[Mohammed, Zhang, Zhao, 08]

Based on Fixed-Point arguments / Ljapunov-Perron method
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Local Random Invariant Manifold (LRIM)
compare [Lu, SchmalfuB, 07]

A random set MR(w) is a LRIM with radius R > 0 of (B),
if it is graph of a random function v(w,-) : N' — N+
such that for all bounded sets B C Bg(0) C H

o(t,w)[MR(w) N Bl ¢ MR(hw)
for all t € [0, 7e(w)) with
Te(w) =inf{t >0: g@(t,w)[MR(w) N B] ¢ Br(0)}.

B C Bg(0) might also be random.

Key Idea

Take a cut-off at radius R > 0 for (B) such that the
nonlinearity is Lipschitz with small constant.
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Existence

Theorem (DB, Wang '09)

The RDS ¢ defined by (B) has a LRIM MR(w) for sufficiently
small R > 0.
It is given as the graph of a random Lipschitz map defined by

h(w,") : N — N+t

MR(w) = {(g,ez(“’)h(w, e—z(w)g)) € Br(0) : € ¢ N} .

V.

Remark: The LRIM is locally exponentially attracting in the
pullback sense. (compare [Duan, Wang '07] for RIM)
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LRIM = RIM

Is the LRIM a RIM for (B)?

The precise relation between LRIM and a RIM is not yet
settled.

Problem: Both are moving in time and parts might always
leave the ball Bg(0).
Solutions:

» If v < 0 it is straightforward to show that a small random
neighboorhood of 0 does not leave Bg(0).

» Take random radius R?
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Local Shape

Denote by Ps the projection onto N
and define B = PsB and Ls = Psl.

Theorem (DB, Wang '09)

Suppose 0 >0, |v| <o and R <1, and let h be the LRIM
given by the previous theorem.
Then

lex) h(w, e72g) — L71B(€, &)l < C(lIE] + R+ Vo) - [|€]2

holds for all ||€]| < iR
with probability larger than 1 — C exp{—1//c}.

Remark: It is possible to extend the bound for MR(w) to
bounds for MR (#.w) on some time-intervals.
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Flow along the Manifold

N

Uc

MR (w) With high probability:
U= uc+ us uc €N, us LN
with us = e?h(e~?uc) ~ L7 Bs(uc, uc) J

Thus projecting (B)

Us

duc = [vuc+Bc(uc+us, uc—i-us)]dt—i—gucode

For our example asin = u. and

da = [va— £2a%dt + gao dw J
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Flow along the Manifold

The equation for the flow on M(w) holds true at
a single time t with high probability.

If one has bounds on MR (.w) on time-intervals,
then it is possible to extend this result.



Local Shape
of Random
Invariant
Manifolds

Dirk Blomker

Introduction
SPDE

RDS

LRIM

Main Results
Flow on M
Idea of Proof

Conclusions

Amplitude Equations

The flow along the manifold
has a relation to amplitude equations.

Consider the special scaling:

du = [Lu + vpe®u + B(u, u)]dt + eu o dw

For simplicity only the example:
» L =02+ 1 and Dirichlet b.c on [0, 7]
> B(u,v) = 0x(uv)
» N = span(sin)
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Amplitude Equations

Theorem [DB '07]

Under the previous assumptions,
suppose that P.u(0) = O(e), Psu(0) = O(e?).

Then with high probability

u(t) = eA(t)sin +O(c?) for all t € [0, Toc™]
where A solves

dA = [vA— 5Aldt + Ao d

where &(T) = ew(te2) is a rescaled Brownian motion.
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Cut Off
7/ compare [Caraballo, Langa, Robinson '01], [Lu, SchmalfuB, 07]

Local Shape
of Random

ez Let x : H — R be a bounded smooth function such that

Manifolds

Dirk Blémker x(u) =1if Jull <1 and x(u) = 0if [Ju]| > 2.
For all R > 0 define

Introduction

ZZE xr(u) = x(u/R) forall ue H

o BR)(u) = xr(u)B(u, u).

';’l':'v:::s:ts Now B(R) is globally Lipschitz-continuous with constant
mf f Lip(BR)) = CgC,R — 0 for R — 0.

Consider the following cut-off equation

du = [Lu+ vu + BR)(u)]dt + ouo dw, u(0) =up.
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Cut off

Transformation v = ue™% yields
Orv = Lv+zv+yv+e_zB(R)(ezv), v(0) = qu—Z(O).

In order to obtain a RIM for the RDS ¢®(t,w) of the cut-off
equation, we consider the RIM of the transformed equation
above.

We use the Ljapunov-Perron Method.
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The fixed point space

Let —A. < 0 be the largest non-zero eigenvalue of L.

For —v <

with norm

1 < Ay — v define the Banach space

¢, = {ve C(~o0,0 H) : vlle; < oo}

Ivllc; = sup { "= (2)] } < oo
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Ljapunov-Perron Operator

Define the evolution operator:

5(1__77_) _ e(L+1/)(t77')+f: z(r)dr )
The nonlinearity: B(7) = e=#(7) . B(R) (V(T)ez(T))
Given £ € N, define the nonlinear operator 7 on C, by
t t
T(v)(t) = S(¢,0)é+ / S(t,7)P.B(r)dT+ / S(t,7)P.B(7)dr
0 —00

with veC{,wEQo,and t <O0.
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Fixed Point

The operator 7 has a unique fixed point v* = v¥(w,§) € C.
Define h(w, &) = Psv*(0,w; &), then

M(w) ={(§, h(w,8)) : £ e N'}

is a RIM for the transformed cut-off equation.
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Manifold

Define a Lipschitz mapping ¢ by

P(w,): N — Nt
¢ = P(w,§) = e h(w,e =),

Then
MEp(w) = {(&P(w,€)) - £ e N}

is a RIM for the RDS ¢ of the cut-off equation, and
MR(w) = ME,(w) N Br(0)

defines a LRIM of the RDS ¢(t,w).
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Local Shape

By Definition of 7 and h, as v* = 7 (v*)

h(€) = Psv(0)
= PsT(v7)(0)

0
_ / 5(0,7)e=# P, BRI (v*(7, €)%Y dr.

This allows for estimates on h and thus on 1,
where estimates on v* in C,~ are necessary.
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Conclusions

Results:
» Existence of LRIM using a cut-off
» LRIM is locally a parabola

» Flow on the manifold (cf. Amplitude equations)

To do:
> Relation of RIM of (B) to LRIM?
» Is MR a RIM in a small (random) neighboorhood of 07
» Formulation of LRIM without cut-off?
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