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Spatial discretization

Consider a continuous mapping f : X → X on a compact metric space

(X, d).

The difference equation

xn+1 = f(xn) (1)

generates a discrete time dynamical system on X .



Consider a finite subset Xh of X with grid fineness

∆h := sup
x∈X

inf
xh∈Xh

d (x, xh)

Examples

• X = [0, 1], Xh = 2N -bit computer numbers in [0, 1]

• X = [0, 1], Xh =

{
j

2N
: j = 0, 1, . . . , N

}
N -dyadic numbers



Consider a “ projection” Ph : X → Xh, e.g. round-off operator

The mapping fh := Ph◦f : Xh → Xh generates a discrete time dynamical

system on Xh through the difference equation

x
(h)
n+1 = fh

(
x(h)

n

)
(2)

What is the relationship between the dynamical behaviour of the original

dynamical system (1) and the spatially discretized system (2) as

∆h → 0 ?



Plan

• the effect of spatial discretization on attractors

• the effect of spatial discretization on chaos

• the approximation of Lebesgue measure preserving maps

on a torus by permutations

• approximation by Markov chains of invariant measures of

spatial discretized

i) deterministic difference equations

ii) random difference equations



Spatial discretization of attractors

P. Diamond and P. E. Kloeden,

Spatial discretization of mappings, J. Computers Math. Applns. 26

(1993), 85-94.

P. E. Kloeden and J. Lorenz,

Stable attracting sets in dynamical systems and in their one-step dis-

cretizations,

SIAM J. Numer. Analysis 23 (1986), 986-995.

Assume that

• f : X → X is Lipschitz with constant K > 0

• the projection Ph : X → Xh satisfies for a constant M > 0

d (Ph(x), x) ≤ Mh



Theorem 1

Suppose that a nonempty compact subset L of X is

uniformly asymptotically stable (UAS) for the dynamical

system f on X.

Then there exists a nonempty compact subset Lh of Xh

which is UAS for the dynamical system fh := Ph ◦ f on

Xh such that the Hausdorff distance

H(Lh, L) → 0 as h → 0+

Sketch of proof

The UAS of the set L for the system f implies that there exists a

Lyapunov function V : X → R
+,



which is Lipschitz continuous, and a constant 0 < q < 1 such that

V (f(x)) ≤ q V (x), ∀x ∈ X.

Then the discretized system satisfies the key inequality

V (fh(xh)) ≤ q V (xh) + KMh ∀xh ∈ Xh

Define

Lh :=

{
xh ∈ Xh : V (xh) ≤

2KMh

1 − q

}
,

which is a nonempty, compact subset of Xh for all h > 0.

The key inequality and other properties of the Lyapunov function V

imply that Lh is UAS for fh on Xh and satisfies the convergence asserted

in the theorem.



Fig. 1 consists of stable cycles of periods 4, 11 and 33

Fig. 3 consists of stable cycles of periods 30 and 78



Complications

• a fixed point f(x̄) = x̄ ∈ X need not belong to Xh

• if such a fixed point x̄ ∈ Xh, then it need not be a fixed point of fh.

• fh may have spurious cycles in Xh, i.e. periodic solutions which do

not correspond to periodic solutions of f .

In fact, the dynamics of fh on Xh is always eventually periodic

Moreover, the convergence H(Lh, L) → 0 as h → 0 is deceptive

• the attracting set Lh of fh may contains transients as well as limit

points and cycles



• it is better to consider the omega set of limiting values

L∗
h :=

⋂

j≥1

⋃

n≥1

f j
h(Lh),

i.e. the global attractor, which may be a proper subset of Lh.

Without additional assumptions about the dynamics of f on L such

as hyperbolicity, we only have the weaker convergence in the Hausdorff

semi-distance

H∗(L∗
h, L) := max

xh∈L∗

h

d(xh, L) → 0 as h → 0+

the effect can be extreme



Example Consider the extended tent mapping f : [0, 2] → [0, 2] defined

by

f(x) =





2x if 0 ≤ x ≤ 1
2

2(1 − x) if 1
2 ≤ x ≤ 1

0 if 1 ≤ x ≤ 2

which has the chaotic attractor L = [0, 1]. Consider the N -dyadics

Xh :=

{
j

2N
, 1 +

j

2N
: j = 0, 1, . . . , N

}
, h = 2−N .

Since f : Xh → Xh, here we take fh ≡ f .

fN
h (xh) = 0, ∀xh ∈ Xh

=⇒ L∗
h = {0}

the chaos has collapsed onto trivial behaviour



This collapsing effect is not exceptional

Theorem 2

For any continuous f : X → X and any cycle {c1, . . . , cp}

of f there exists a finite subset Xh of X which contains

{c1, . . . , cp} and a mapping fh : Xh → Xh for h → 0 such

that the dynamics of fh collapses on {c1, . . . , cp}.

P. Diamond, P.E. Kloeden und A. Pokrovskii,

Cycles of spatial discretizations of shadowing dynamical systems,

Mathematische Nachrichten 171 (1995), 95–110.



Invariant measures

• allow us to circumvent some of the above difficulties with attractors

and cycles

• are robuster for approximation and comparison

A measure µ on X is called f -invariant if

µ(B) = µ
(
f−1(B)

)
, ∀B ∈ B(X),

for the Borel subsets B(X) of X , where

f−1(B) := {x ∈ X : f(x) ∈ B}

Can we always approximate an invariant measure µ of f on X by an

invariant measure µh of fh on Xh? how?



SPECIAL CASE: mappings on a torus

Consider

• a d-dimensional torus T
d, where d ≥ 1,

• a measurable mapping f : T
d → T

d;

• a uniform 1
N partition T

d
N of T

d.

How should we construct a mapping fN on T
d
N to approximate f?

P.E. Kloeden and J. Mustard,

Construction of permutations approximating Lebesgue measure preserv-

ing dynamical systems under spatial discretization.

J. Bifurcation & Chaos 7 (1997), 401–406.



Theorem 3

Suppose that the Lebesgue measure on T
d is f -invariant.

Then there exists a permutation PN (f) on T
d
N with

H∗ (Gr(PN (f)), Gr(f)) ≤
1

N

where H∗ is the Hausdorff semi-distance on T
d × T

d and Gr(f) is the

graph of f defined by

Gr(f) :=
{
(x, y) ∈ T

d × T
d : y = f(x)

}

Comments

• f can be non-injective here, i.e. not 1 to 1



• the inverse of the theorem holds if f is continuous

• Peter Lax has an theorem about permutations approximating area-

preserving diffeomorphisms

Outline of proof

• enumerate T
d
N = {x1, . . . , xM}, where M = Nd

• define the 1
N -band about the graph Gr(f) of f , i.e.

SN (f) :=

{
(x, y) ∈ T

d
N × T

d
N : dist ((x, y), Gr(f)) ≤

1

N

}



The following problems are equivalent by the f -invariance of the Lebesgue

measure and a combinatorial theorem of Frobenius and König,

(1) construct a permutation PN (f) on T
d
N with Gr (PN (f)) ⊆ SN (f).

(2) choose a diagonal (possibly permuted) without zeros of the M ×M

matrix AN (f) = [ai,j ] defined by

ai,j =





1 if (xi, xj) ∈ SN (f)

0 otherwise

reformulate the problem as an optimal assignment LP problem



GENERAL CASE: using Markov chains

Consider a finite subset XN = {x
(N)
1 , . . . , x

(N)
N } of a compact metric

space (X, d) with fineness parameter

hN := ∆N := sup
x∈X

inf
x
(N)
j

∈XN

d
(
x, x

(N)
j

)
→ 0 as N → ∞

How do we construct an approximation fN on XN

of a function f : X → X?

The choice is usually not unique: there may be several nearest grid points

to an f(x
(N)
j ) /∈ XN .



There are two ways to handle the problem:

1) setvalued: use a setvalued mapping

FN (x
(N)
j ) :=

{
nearests points in XN to f(x

(N)
j )

}

and then consider the setvalued dynamical system xn+1 ∈ FN (xn) on

XN .

2) stochastic: use a Markov chain PN on XN with transition probabilities

p
(N)
i,j =





> 0 if x
(N)
i in a neighbourhod of f(x

(N)
j )

0 otherwise



Distances

1) between a Markov chain PN on XN ⊂ X and a mapping f : X → X

D(PN , f) := max
1≤i≤N

N∑

j=1

p
(N)
i,j dist

((
x

(N)
i , x

(N)
j

)
, Gr(f)

)

2) between a probability vector pN on XN and a probability measure

µ on X

Prokhorov metric ρ(µN , µ)

where µN is the extension of pN to a measure on X .



Let f : X → X be Borel measurable and consider the generalized inverse

f̃−1(B) :=
{
x ∈ X : ∃ y ∈ B with (x, y) ∈ Gr(f)

}

A Borel measure µ on X is called f -semi-invariant if

µ(B) ≤ µ
(
f̃−1(B)

)
, ∀B ∈ B(X)

f continuous =⇒ f -semi-invariant ≡ f -invariant



Theorem 4

A probability measure µ on X is f -semi-invariant if and only

if it is stochastically approachable, i.e. for each N there exist

1) a grid XN with fineness ∆N → 0 as N → ∞

2) a Markov chain PN on XN

3) probability measure µN on X corresponding to an

equilibrium probability vector p̄N of PN on XN , such that

D(PN , f) → 0, ρ(µ̄N , µ) → 0 as N → ∞

P. Diamond, P.E. Kloeden and A. Pokrovskii,

Interval stochastic matrices, a combinatorial lemma, and the computa-

tion of invariant measures, J. Dynamics & Diff. Eqns. 7 (1995), 341–364.



Key idea in the proof : interval stochastic matrices

An N × N matrix C = [ci,j ] with nonnegative components is called

substochastic

stochastic

superstochastic





if
N∑

j=1

ci,j





≤ 1

= 1

≥ 1

for i = 1, . . . , N.

Let A = [ai,j ] be substochastic and B = [bi,j ] be superstochastic. Then

ÂB := {P stochastic : ai,j ≤ pi,j ≤ bi,j , ∀ i, j = 1, . . . , N}

is called an interval stochastic matrix with boundaries A and B.



• The (j, I)-flow of an interval stochastic matrix ÂB is defined by

Hj

(
I, ÂB

)
:= min

{∑

i∈I

bi,j , 1 −
∑

i/∈I

ai,j

}
,

where j ∈ ⊂ {1, . . . , N} ⊂ {1, . . . , N}, I ⊂ {1, . . . , N}

• A probability vector pN on XN is called ÂB-semi-invariant if the

inequalities
N∑

j=1

pjHj

(
I, ÂB

)
≥

N∑

j=1

pj

for every subset I ⊂ {1, . . . , N}.

Lemma

A probability vector pN on XN is ÂB-semi-invariant if and only

pN = pNPN for some PN ∈ ÂB



In the proof of Theorem 4 we use

ai,j ≡ 0, bi,j =





1 if dist ((x, y), Gr(f)) ≤ 1
N

0 otherwise

i.e. we consider only those
(
x

(N)
i , x

(N)
j

)
∈ SN (f), a 1

N -neighbourhood

of Gr(f).

=⇒ Hj

(
I, ÂB

)
=





1 if bi,j = 1 for some i ∈ I

0 otherwise



Moreover, a probability vector pN on XN is ÂB-semi-invariant if and

only

N∑

j∈J(I)

pj ≥

N∑

j∈I

pj

for all I ⊂ {1, . . . , N}, where

J(I) := {j : bi,j = 1 for some i ∈ I}

Convergence follows from this choice of matrix components

Other technical details include weak convergence of measures, etc



Random difference equations

• probability space (Ω,F , P), ergodic process θ : Ω → Ω

• compact metric space (X, d), measurable mapping f : X × Ω → X

random difference equation xn+1 = f(xn, θn(ω))

=⇒ skew product (x, ω) 7→ F (x, ω) :=

(
f(x, ω)

θ(ω)

)

=⇒ invariant measure µ on X×Ω µ = F ∗µ



BUT we can only discretize the state space X , i.e. use a grid

XN = {x
(N)
1 , . . . , x

(N)
N } with hN → 0 as N → ∞

We can decompose the invariant measure µ = F ∗µ as

µ(B, ω) = µω(B) P(dω) ∀B ∈ B(X)

where the measures µω on X are θ-invariant w.r.t. f , i.e.

µθ(ω)(B) = µω

(
f−1(B, ω)

)
, ∀B ∈ B(X), ω ∈ Ω



On the deterministic grid XN we now consider

• random Markov chains {PN (ω), ω ∈ Ω}

• random probability vectors {pN (ω), ω ∈ Ω}

pN,n+1(θ
n+1(ω)) = pN,n(θn(ω))PN (θn(ω)) ∀ n ∈ Z, ω ∈ Ω

equilibrium probability vector p̄N (θ(ω)) = p̄N (ω)PN (ω)

=⇒ random measure µN,ω on X



Theorem 5

A random probability measure {µω, ω ∈ Ω} is θ-semi-invariant w.r.t. f on X

if and only if it is randomly stochastically approachable, i.e. for each N there exist

1) a grid XN with fineness ∆N → 0 as N → ∞

2) a random Markov chain {PN (ω), ω ∈ Ω} on XN

3) random probability measure {µN,ω, ω ∈ Ω} on X corresponding to a random

equilibrium probability vectors {p̄N (ω), ω ∈ Ω} of the {PN (ω), ω ∈ Ω} on XN with

the expected convergences.

ED (PN (ω), f(·, ω)) → 0 Eρ (µN,ω, µ) → 0

P. Imkeller and P.E. Kloeden,

On the computation of invariant measures in random dynamical systems,

Stochastics & Dynamics 3 (2003), 247–265.


