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The Navier—Stokes equations

The motivations at the basis of this lecture is to understand
problems like
U4 (u-V)u+Vp =vAu+ W,
divu = 0.

and in general the (possible?) non—uniqueness of the statistics for
a class of dissipative stochastic PDEs, which includes models with:

@ formal balance of energy (whatever it is!),

@ existence of weak solutions,

@ smoothness for short times.

For instance (in dimension d = 1),
h+ A%h + A[Vh]? = W.
[flandoli: st. flour lecture notes 2010]
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Markovian framework: the strategy

To bypass the non global well-posedness of
@ the problem we consider a special class of
solutions, which constitute a Markov

@ process.

@ Consider the set €’(x) of all solutions starting at x, for each x,
@ prove a “set” version of the Markov property,
@ find a “selection” by variational methods

@ continuity and strong mixing of each Markov process.
[krylov, stroock—varadhan, flandoli-mr]
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Short time coupling with a smooth process

The control of error for continuity follows from the existence of
local “strong” solutions.

For smooth i. c. there is a small random
time T, such that up to T4 all solutions
coincide.

Essentially, any two solutions have the same
distribution on the event {Ts > t}.

The real picture is that the “uniqueness of
strong solutions” argument is applied at the
very last moment only, thanks to the Markov
property.

0 t—e t
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Consequences
On the long time behaviour: el
@ every Markov solution is uniquely ergodic: P(t, %, ) — Heo,
@ convergence 1o [y, is exponentially fast,
[P(t, %, ) — HoollTv < c1(1 + xo|Y)e™ ",
@ all invariant measures are equivalent.
On uniqueness: [flandoli—me, me]

@ If for some initial condition there is a regular solution on a
deterministic time interval = well-posedness,

@ if for some initial condition uniqueness in law holds on a time
interval = uniqueness in law holds for all i. c.,

@ If all invariant measures coincide = uniqueness in law.

Extensions: [mr—xu]
@ A finite number of noise modes can be zero,
@ exponential decav of the noise coefficients.
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The Kolmogorov equation approach

An alternative approach allows to define a Markov semigroup and
an associated martingale solution by solving the Kolmogorov
equation of the diffusion

{%‘{ = 1T(SS*DV) + (Au+ B(w, u), DV) — K[| Au[2V
®

with an additional potential, and recover the original solution via a
Feynman-Kac formula,

Ut x) =K [(P(u(t)) e Ko lAu(s)|? dS}

L he deb k. d
[da prato—d ) dasso]
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Non—uniqueness: finite dimensional case
Peano: Additive noise restores uniqueness in most cases,

dx = /Ixe| + AW, J

This is true under rather general conditions (b € LP, 0 =1).

Tanaka: The equation

dXt = sgn (Xt) th J

has unique solution in law but no path—wise uniqueness.

Girsanov: Non-uniqueness in law happens again if the effect of
noise is weakened.

dXt = |Xt|(xth, x < % J

[krylov—r3ckner, engelbert—schmidt]
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Some stochastic PDE examples

The finite dimensional theory clearly suggests that one can cook up
examples such as

d
diu = Au+2v/[ul, % —0.

which clearly have the two solutions u =0 and u = 2. Again, the
noise restores uniqueness,

U= Au+2/|ul + W.
Similarly, one can argue that
U= Au+ u/*W

may have different distributions.
What does create non—uniqueness or blow—up?

[gydngy-krylov, burdzy-mytnik-mueller—perkins]
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A simple toy model for blow—up

We consider the formulation in Fourier variables of the surface
growth problem,
k—1
A+ ke + K ) mk—mhphe =0, k

m=1

WV
—_

on the (invariant) subspace

{hi =0for k < 0and hy >0 for k > 1}

We have

@ global solutions for “small”
initial data,

@ blow—up if the initial data is
large in a finite patch.

[me-blamker]
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The main characteristics

What does create non—uniqueness or blow—up?
We are essentially interested in the general problem

U+ vAu + B(u, u) = forcing,

@ viscous linear part,

@ quadratic nonlinearity

@ purely rotational nonlinearity (balance of energy),

@ global weak solutions,

@ local unique smooth solutions for regular initial conditions,

@ existence of an invariant state.

T —— 11/ 23
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The dyadic model

The system of differential equations

Path—wise uniqueness

Xy = —v?\flxn + Aﬁflxi,l — Aﬁxnxnﬂ
where xg = 0 and A;;, = 2™ has the following characteristics:
o formal balance of energy (whatever it is!),
@ existence of weak solutions,

@ smoothness for short times.

In fact,
dtxgl + 2V}\$1X$1 = ATl—lxglflxn - ?\EX%XTL_._]_
and
d /1 N
dt (5 Z XE‘) TV Z Naxn = _}\lfilszxN—i—l
n=1

n=1
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The dyadic model: known facts

: 2 B 2
Xn = = VAL Xn + AL (X1 — ?\Exnxnﬂ

It is also known that:
@ positive initial conditions give positive solutions.
o if B < 2, there is well-posedness (2DNS-regime)

@ if 3 > 3 there is blow—up (for large enough positive initial
conditions).

By similarity (scaling properties), the three dimensional case

corresponds to B ~ 3.

[cheskidov]
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Smoothness and non—uniqueness

Xn = —VA2xn + ?\f{_lxi_l — ABxnxni1
The range between 2 and 3 is the difficult one. From the scaling

point of view neither the linear nor the nonlinear term are dominant
in magnitude.

Theorem 1/ i

Well-posedness for positive solutions if A
Be(23] R

Moreover there exists a (negative) solution, which is stationary,

> Yn

AP Y2 Ay =vA2yn, >,

and non smooth: y, ~ 7\?{72.

[barbato—morandin—mt]
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Playing with noise
Let on € R,

. 2 [3 2 .
Xn = —VARXn + AL _1Xn_1— )\ﬁxnxnﬂ + on Wi

It is known that
o if B < 2 trivial well-posedness,
o if § > 3 and {0y, # 0} is finite, then blow-up,

@ if B <2 and v =0, well posedness with a special multiplicative
noise.

Assume that o, # 0 for all n > 1. We will show that
@ path-wise uniqueness for all initial conditions if B € (2, 2),

@ blow—up with positive probability starting from each initial condition
if > 3.

[flandoli-barbato—morandin, mr]
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An example of blow—up

Consider
Xn = —v?\flxn + Aﬁ_lxﬁ_l — ?\ﬁxnxnﬂ + 0 Wn
and assume
Q B >3,

Q o, #O0foralln>1,

In analogy with Sobolev spaces, we define

Vo = {x € P(R): |x[|3 = i(M’ian < oo}

n=1

Without noise there is blow—up if ||x(0)||« = M for some « > 0.
With noise the underlying idea is that the deterministic drift
dominates and the stocasticity is only a perturbation.

Problem: the set of positive states is thin.

A 16 / 23



Motivations The noisy viscous dyadic model Path-wise uniqueness
An example of blow—up

Theorem

For every x “smooth” and every martingale solution starting at x,

Py [Too < 0] > 0.

Three ideas:

@ Solutions with positive initial condition are almost positive with
positive probability on a time interval.

@ Positivity kicks in the deterministic dynamics:

SN R Y ARy Y R v
n n n

@ the system is irreducible, hence blowing up initial conditions are
reachable.

The trick is to switch between {°~like and {*°—like topologies.

[de bouard—debussche, mr]
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Almost positivity

Let z = (zn)n>1 be the solution to

{dzTL + V?\%Zn = 0 dwp,

zn(0) =0
Lemma
If
@ T > T,
@ SUpPicioT A “2za(t )< g foralln>1,
then 1
xn(t) > zn(t) = S VAP
forallm>1 and t € [0, T]. )
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Everything fine?

There are a few reason that make the counterexample not
completely satisfactory:

@ It is a counterexample to smoothness, not to uniqueness!
@ Does the example cover all the required properties?

[OK] viscous linear part,

[OK] quadratic nonlinearity,

[OK] purely rotational nonlinearity (balance of energy),

[OK] global weak solutions,

[OK] local unique smooth solutions for regular initial conditions,
[NO!] existence of an invariant state.

The crucial assumption > 3 makes the linear part too weak.
Smooth solutions live in the “critical” space with decay (at least)

A2 |~ 0(1)
and p —2 > 1.

c ] 19 /23
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Path—wise uniqueness
Consider again

X = —VA2xn + AP 52— ABxixni1 4 on i

and assume this time that

° Be(23]

@ o, #O0foralln >1,
The idea to prove path—wise uniqueness is

© prove a qualitative regularity criterion,

@ show an almost positivity result for positive initial conditions,

© use a trapping area argument,

@ conclude using non—degeneracy of the noise.

C ] 20 /23



Let

@ x € Vy, with > 3 — 2,
@ P, a solution starting at x.
Then under Py,
{Teo > T} = { lim ( sup ?\ﬁ_zlxn(t)l) = 0}

N—=0 \te(o,T]

MR: Uniqueness and blow—up for dissipative stochastic PDEs
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Almost positivity

Let x € Vu, with o« > 3 — 2, and Py a solution starting at x.

Given 6, L 0 and e, | 0 with

dn < en <

&2

there exists an integer Ng = Ng(w) such that
@ Ng < oo, Py—a. s,
o AB- %|z] < 8 for n = Ny,

0 AP 2 = AP — e, form > Ng
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e trapping area

Scale the solutions

Xn+41

Un (t) = 5%, (5t)

where

1 _ _
un(t) = = (AR xn AL Pznten) >0
forn = No.

The quantity & depends on

@ the initial condition,

Q un,—1 and up,.

MR: Uniqueness and blow—up for dissipative stochastic PDEs
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