Some applications of quasistationary distributions to random Poincaré maps

Nils Berglund

MAPMO, Université d'Orléans CNRS, UMR 7349 & Fédération Denis Poisson www.univ-orleans.fr/mapmo/membres/berglund nils.berglund@math.cnrs.fr

Collaborators: Barbara Gentz (Bielefeld), Damien Landon (Dijon) ANR project MANDy, Mathematical Analysis of Neuronal Dynamics

5th Workshop on Random Dynamical Systems Bielefeld, 5 October 2012

Stochastic differential equation (SDE)

$$d\varphi_t = f(\varphi_t, x_t) dt + \sigma F(\varphi_t, x_t) dW_t \qquad \varphi \in \mathbb{R}$$

$$dx_t = g(\varphi_t, x_t) dt + \sigma G(\varphi_t, x_t) dW_t \qquad x \in \mathbb{R} (\mathbb{R}^n)$$

▷ all functions periodic in φ (say period 1) ▷ $f \ge c > 0$ and σ small $\Rightarrow \varphi_t$ likely to increase ▷ process may be killed when x leaves (a, b)

Stochastic differential equation (SDE)

$$d\varphi_t = f(\varphi_t, x_t) dt + \sigma F(\varphi_t, x_t) dW_t \qquad \varphi \in \mathbb{R}$$

$$dx_t = g(\varphi_t, x_t) dt + \sigma G(\varphi_t, x_t) dW_t \qquad x \in \mathbb{R} (\mathbb{R}^n)$$

▷ all functions periodic in φ (say period 1) ▷ $f \ge c > 0$ and σ small $\Rightarrow \varphi_t$ likely to increase ▷ process may be killed when x leaves (a, b)

Random Poincaré map and harmonic measure

▷ τ : first-exit time of $z_t = (\varphi_t, x_t)$ from $\mathcal{D} = (-M, 1) \times (a, b)$ ▷ $\mu_z(A) = \mathbb{P}^z \{ z_\tau \in A \}$: harmonic measure (wrt generator \mathcal{L}) ▷ [Ben Arous, Kusuoka, Stroock '84]: under hypoellipticity cond, μ_z admits (smooth) density h(z, y) wrt arclength on $\partial \mathcal{D}$

Random Poincaré map and harmonic measure

▷ τ : first-exit time of $z_t = (\varphi_t, x_t)$ from $\mathcal{D} = (-M, 1) \times (a, b)$ ▷ $\mu_z(A) = \mathbb{P}^z \{ z_\tau \in A \}$: harmonic measure (wrt generator \mathcal{L}) ▷ [Ben Arous, Kusuoka, Stroock '84]: under hypoellipticity cond, μ_z admits (smooth) density h(z, y) wrt arclength on $\partial \mathcal{D}$ ▷ Remark: $\mathcal{L}_z h(z, y) = 0$ (kernel is harmonic) ▷ For $B \subset (a, b)$ Borel set

$$\mathbb{P}^{X_0}\{X_1 \in B\} = K(X_0, B) := \int_B K(X_0, dy)$$

where $K(x, dy) = h((0, x), y) dy =: k(x, y) dy$

Let E = [a, b] and consider integral operator K acting \triangleright on L^{∞} via $f \mapsto (Kf)(x) = \int_{E} k(x, y)f(y) \, dy = \mathbb{E}^{x}[f(X_{1})]$ \triangleright on L^{1} via $m \mapsto (mK)(A) = \int_{E} m(x)k(x, y) \, dx = \mathbb{P}^{\mu}\{X_{1} \in A\}$

Let E = [a, b] and consider integral operator K acting \triangleright on L^{∞} via $f \mapsto (Kf)(x) = \int_{E} k(x, y)f(y) \, dy = \mathbb{E}^{x}[f(X_{1})]$ \triangleright on L^{1} via $m \mapsto (mK)(A) = \int_{E} m(x)k(x, y) \, dx = \mathbb{P}^{\mu}\{X_{1} \in A\}$

[Fredholm 1903]:

▷ If $k \in L^2$, then K has eigenvalues λ_n of finite multiplicity ▷ Eigenfcts $Kh_n = \lambda_n h_n$, $h_n^* K = \lambda_n h_n^*$ form complete ON basis

[Jentzsch 1912]:

 \triangleright Principal eigenvalue λ_0 is real, simple, $|\lambda_n| < \lambda_0 \ \forall n \ge 1$, $h_0 > 0$

Let E = [a, b] and consider integral operator K acting \triangleright on L^{∞} via $f \mapsto (Kf)(x) = \int_{E} k(x, y)f(y) \, dy = \mathbb{E}^{x}[f(X_{1})]$ \triangleright on L^{1} via $m \mapsto (mK)(A) = \int_{E} m(x)k(x, y) \, dx = \mathbb{P}^{\mu}\{X_{1} \in A\}$

[Fredholm 1903]:

▷ If $k \in L^2$, then K has eigenvalues λ_n of finite multiplicity ▷ Eigenfcts $Kh_n = \lambda_n h_n$, $h_n^* K = \lambda_n h_n^*$ form complete ON basis

[Jentzsch 1912]:

 \triangleright Principal eigenvalue λ_0 is real, simple, $|\lambda_n| < \lambda_0 \ \forall n \ge 1$, $h_0 > 0$

Spectral decomp: $k(x,y) = \lambda_0 h_0(x) h_0^*(y) + \lambda_1 h_1(x) h_1^*(y) + ...$

Let E = [a, b] and consider integral operator K acting \triangleright on L^{∞} via $f \mapsto (Kf)(x) = \int_{E} k(x, y)f(y) \, dy = \mathbb{E}^{x}[f(X_{1})]$ \triangleright on L^{1} via $m \mapsto (mK)(A) = \int_{E} m(x)k(x, y) \, dx = \mathbb{P}^{\mu}\{X_{1} \in A\}$

[Fredholm 1903]:

▷ If $k \in L^2$, then K has eigenvalues λ_n of finite multiplicity ▷ Eigenfcts $Kh_n = \lambda_n h_n$, $h_n^* K = \lambda_n h_n^*$ form complete ON basis

[Jentzsch 1912]:

 \triangleright Principal eigenvalue λ_0 is real, simple, $|\lambda_n| < \lambda_0 \ \forall n \ge 1$, $h_0 > 0$

Spectral decomp: $k^{n}(x,y) = \lambda_{0}^{n}h_{0}(x)h_{0}^{*}(y) + \lambda_{1}^{n}h_{1}(x)h_{1}^{*}(y) + \dots$

Let E = [a, b] and consider integral operator K acting \triangleright on L^{∞} via $f \mapsto (Kf)(x) = \int_{E} k(x, y)f(y) \, dy = \mathbb{E}^{x}[f(X_{1})]$ \triangleright on L^{1} via $m \mapsto (mK)(A) = \int_{E} m(x)k(x, y) \, dx = \mathbb{P}^{\mu}\{X_{1} \in A\}$

[Fredholm 1903]:

▷ If $k \in L^2$, then K has eigenvalues λ_n of finite multiplicity ▷ Eigenfcts $Kh_n = \lambda_n h_n$, $h_n^* K = \lambda_n h_n^*$ form complete ON basis

[Jentzsch 1912]:

 \triangleright Principal eigenvalue λ_0 is real, simple, $|\lambda_n| < \lambda_0 \ \forall n \ge 1$, $h_0 > 0$

Spectral decomp: $k^{n}(x,y) = \lambda_{0}^{n}h_{0}(x)h_{0}^{*}(y) + \lambda_{1}^{n}h_{1}(x)h_{1}^{*}(y) + \dots$

$$\Rightarrow \mathbb{P}^{x} \{ X_{n} \in \mathrm{d}y | X_{n} \in E \} = \pi_{0}(\mathrm{d}x) + \mathcal{O}((|\lambda_{1}|/\lambda_{0})^{n})$$

where $\pi_0 = h_0^* / \int_E h_0^*$ is quasistationary distribution (QSD) [Yaglom '47, Bartlett '57, Vere-Jones '62, ...]

▷ "Trivial" bounds: $\forall A \subset E \text{ with Lebesgue}(A) > 0,$ $\begin{bmatrix} \inf_{x \in A} K \ (x, A) \end{bmatrix} \quad \leqslant \lambda_0 \leqslant \begin{bmatrix} \sup_{x \in E} K \ (x, E) \end{bmatrix}$

▷ "Trivial" bounds: $\forall n \ge 1$, $\forall A \subset E$ with Lebesgue(A) > 0,

$$\left[\inf_{x\in A} K^n(x,A)\right]^{1/n} \leq \lambda_0 \leq \left[\sup_{x\in E} K^n(x,E)\right]^{1/n}$$

▷ "Trivial" bounds:
$$\forall n \ge 1$$
, $\forall A \subset E$ with Lebesgue(A) > 0,

$$\left[\inf_{x \in A} K^n(x, A)\right]^{1/n} \le \lambda_0 \le \left[\sup_{x \in E} K^n(x, E)\right]^{1/n}$$
Proof: $x^* = \operatorname{argmax} h_0 \Rightarrow \lambda_0 = \int_E k(x^*, y) \frac{h_0(y)}{h_0(x^*)} \, \mathrm{d}y \le K(x^*, E)$
 $\lambda_0 \int_A h_0^*(y) \, \mathrm{d}y = \int_E h_0^*(x) K(x, A) \, \mathrm{d}x \ge \inf_{x \in A} K(x, A) \int_A h_0^*(y) \, \mathrm{d}y$

▷ "Trivial" bounds:
$$\forall n \ge 1$$
, $\forall A \subset E$ with Lebesgue(A) > 0,

$$\left[\inf_{x \in A} K^n(x, A)\right]^{1/n} \le \lambda_0 \le \left[\sup_{x \in E} K^n(x, E)\right]^{1/n}$$
Proof: $x^* = \operatorname{argmax} h_0 \Rightarrow \lambda_0 = \int_E k(x^*, y) \frac{h_0(y)}{h_0(x^*)} \, \mathrm{d}y \le K(x^*, E)$
 $\lambda_0 \int_A h_0^*(y) \, \mathrm{d}y = \int_E h_0^*(x) K(x, A) \, \mathrm{d}x \ge \inf_{x \in A} K(x, A) \int_A h_0^*(y) \, \mathrm{d}y$

Donsker–Varadhan-type bound:

 $\lambda_0 \leq 1 - \frac{1}{\sup_{x \in E} \mathbb{E}^x[\tau_\Delta]}$ where $\tau_\Delta = \inf\{n > 0 \colon X_n \notin E\}$

▷ "Trivial" bounds:
$$\forall n \ge 1$$
, $\forall A \subset E$ with Lebesgue $(A) > 0$,

$$\left[\inf_{x \in A} K^n(x, A)\right]^{1/n} \le \lambda_0 \le \left[\sup_{x \in E} K^n(x, E)\right]^{1/n}$$
Proof: $x^* = \operatorname{argmax} h_0 \Rightarrow \lambda_0 = \int_E k(x^*, y) \frac{h_0(y)}{h_0(x^*)} dy \le K(x^*, E)$
 $\lambda_0 \int_A h_0^*(y) dy = \int_E h_0^*(x) K(x, A) dx \ge \inf_{x \in A} K(x, A) \int_A h_0^*(y) dy$
▷ Donsker–Varadhan-type bound:

 $\lambda_0 \leq 1 - \frac{1}{\sup_{x \in E} \mathbb{E}^x[\tau_\Delta]}$ where $\tau_\Delta = \inf\{n > 0 \colon X_n \notin E\}$

Bounds using Laplace transforms

Given $A \subset E$, $x \in E$ and $u \in \mathbb{C}$, define $\tau_A = \inf\{n \ge 1 \colon X_n \in A\}$ $G^u_A(x) = \mathbb{E}^x[e^{u\tau_A} \mathbb{1}_{\{\tau_A < \infty\}}]$ $\sigma_A = \inf\{n \ge 0 \colon X_n \in A\}$ $H^u_A(x) = \mathbb{E}^x[e^{u\sigma_A} \mathbb{1}_{\{\sigma_A < \infty\}}]$

Given $A \subset E$, $x \in E$ and $u \in \mathbb{C}$, define $\tau_A = \inf\{n \ge 1 \colon X_n \in A\}$ $G_A^u(x) = \mathbb{E}^x[e^{u\tau_A} \mathbf{1}_{\{\tau_A < \infty\}}]$ $\sigma_A = \inf\{n \ge 0 \colon X_n \in A\}$ $H_A^u(x) = \mathbb{E}^x[e^{u\sigma_A} \mathbf{1}_{\{\sigma_A < \infty\}}]$ $\triangleright G_A^u(x)$ is analytic for $|e^u| < [\sup_{x \in E \setminus A} K(x, E \setminus A)]^{-1}$ $\triangleright G_A^u = H_A^u$ in $E \setminus A$ and $H_A^u = 1$ in A \triangleright Feynman–Kac-type relation

 $KH^u_A = \mathrm{e}^{-u} \, G^u_A$

Given $A \subset E$, $x \in E$ and $u \in \mathbb{C}$, define $\tau_A = \inf\{n \ge 1 \colon X_n \in A\}$ $G_A^u(x) = \mathbb{E}^x[e^{u\tau_A} \mathbf{1}_{\{\tau_A < \infty\}}]$ $\sigma_A = \inf\{n \ge 0 \colon X_n \in A\}$ $H_A^u(x) = \mathbb{E}^x[e^{u\sigma_A} \mathbf{1}_{\{\sigma_A < \infty\}}]$ $\triangleright G_A^u(x)$ is analytic for $|e^u| < [\sup_{x \in E \setminus A} K(x, E \setminus A)]^{-1}$ $\triangleright G_A^u = H_A^u$ in $E \setminus A$ and $H_A^u = 1$ in A \triangleright Feynman–Kac-type relation

$$KH^u_A = \mathrm{e}^{-u} \, G^u_A$$

Proof:

$$\begin{split} (KH_A^u)(x) &= \mathbb{E}^x \Big[\mathbb{E}^{X_1} \big[\mathrm{e}^{u\sigma_A} \, \mathbf{1}_{\{\sigma_A < \infty\}} \big] \Big] \\ &= \mathbb{E}^x \Big[\mathbf{1}_{\{X_1 \in A\}} \mathbb{E}^{X_1} \big[\mathrm{e}^{u\sigma_A} \, \mathbf{1}_{\{\sigma_A < \infty\}} \big] \Big] + \mathbb{E}^x \Big[\mathbf{1}_{\{X_1 \in E \setminus A\}} \mathbb{E}^{X_1} \big[\mathrm{e}^{u\sigma_A} \, \mathbf{1}_{\{\sigma_A < \infty\}} \big] \Big] \\ &= \mathbb{E}^x \big[\mathbf{1}_{\{\tau_A = 1\}} \big] + \mathbb{E}^x \big[\mathrm{e}^{u(\tau_A - 1)} \, \mathbf{1}_{\{1 < \tau_A < \infty\}} \big] \\ &= \mathbb{E}^x \big[\mathrm{e}^{u(\tau_A - 1)} \, \mathbf{1}_{\{\tau_A < \infty\}} \big] = \mathrm{e}^{-u} \, G_A^u(x) \; . \end{split}$$

Given $A \subset E$, $x \in E$ and $u \in \mathbb{C}$, define $\tau_A = \inf\{n \ge 1 \colon X_n \in A\}$ $G_A^u(x) = \mathbb{E}^x[e^{u\tau_A} \mathbf{1}_{\{\tau_A < \infty\}}]$ $\sigma_A = \inf\{n \ge 0 \colon X_n \in A\}$ $H_A^u(x) = \mathbb{E}^x[e^{u\sigma_A} \mathbf{1}_{\{\sigma_A < \infty\}}]$ $\triangleright G_A^u(x)$ is analytic for $|e^u| < [\sup_{x \in E \setminus A} K(x, E \setminus A)]^{-1}$ $\triangleright G_A^u = H_A^u$ in $E \setminus A$ and $H_A^u = 1$ in A \triangleright Feynman–Kac-type relation

$$KH^u_A = \mathrm{e}^{-u} \, G^u_A$$

Consequences:

 \triangleright If G_A^u varies little in A, it is close to an eigenfunction

Given $A \subset E$, $x \in E$ and $u \in \mathbb{C}$, define $\tau_A = \inf\{n \ge 1 \colon X_n \in A\}$ $G_A^u(x) = \mathbb{E}^x[e^{u\tau_A} \mathbf{1}_{\{\tau_A < \infty\}}]$ $\sigma_A = \inf\{n \ge 0 \colon X_n \in A\}$ $H_A^u(x) = \mathbb{E}^x[e^{u\sigma_A} \mathbf{1}_{\{\sigma_A < \infty\}}]$ $\triangleright G_A^u(x)$ is analytic for $|e^u| < [\sup_{x \in E \setminus A} K(x, E \setminus A)]^{-1}$ $\triangleright G_A^u = H_A^u$ in $E \setminus A$ and $H_A^u = 1$ in A \triangleright Feynman–Kac-type relation

$$KH^u_A = \mathrm{e}^{-u} \, G^u_A$$

Consequences:

▷ If G_A^u varies little in A, it is close to an eigenfunction ▷ If $Kh = e^{-u}h$ and $|e^u| < \left[\sup_{x \in E \setminus A} K(x, E \setminus A)\right]^{-1}$ then

$$h(x) = \mathbb{E}^{x} \Big[e^{u\tau_{A}} h(X_{\tau_{A}}) \mathbf{1}_{\{\tau_{A} < \infty\}} \Big] \qquad \forall x \in E$$

 $\Rightarrow h|_A$ determines $h|_{E \setminus A}$

 \triangleright If $u \in \mathbb{R}$, h > 0 in closed connected A then $\exists x^* \in A$: $G^u_A(x^*) = 1$

How to estimate the spectral gap

Various approaches: coupling, Poincaré/log-Sobolev inequalities, Lyapunov functions, Laplace transform + Donsker-Varadhan, ...

[Birkhoff '57] Under uniform positivity condition

 $s(x)\nu(A) \leqslant K(x,A) \leqslant Ls(x)\nu(A)$ $\forall x \in E, \forall A \subset E$ one has $|\lambda_1|/\lambda_0 \leqslant 1 - L^{-2}$

How to estimate the spectral gap

Various approaches: coupling, Poincaré/log-Sobolev inequalities, Lyapunov functions, Laplace transform + Donsker-Varadhan, ...

[Birkhoff '57] Under uniform positivity condition

 $s(x)\nu(A) \leqslant K(x,A) \leqslant Ls(x)\nu(A)$ $\forall x \in E, \forall A \subset E$ one has $|\lambda_1|/\lambda_0 \leqslant 1 - L^{-2}$

Localised version: assume $\exists A \subset E$ and $m : A \to \mathbb{R}^*_+$ such that $m(y) \leq k(x, y) \leq Lm(y) \quad \forall x, y \in A$ (1)

Then

$$|\lambda_1| \leq L - 1 + \mathcal{O}\left(\sup_{x \in E} K(x, E \setminus A)\right) + \mathcal{O}\left(\sup_{x \in A} [1 - K(x, E)]\right)$$

How to estimate the spectral gap

Various approaches: coupling, Poincaré/log-Sobolev inequalities, Lyapunov functions, Laplace transform + Donsker–Varadhan, ...

[Birkhoff '57] Under uniform positivity condition

 $s(x)\nu(A) \leqslant K(x,A) \leqslant Ls(x)\nu(A)$ $\forall x \in E, \forall A \subset E$ one has $|\lambda_1|/\lambda_0 \leqslant 1 - L^{-2}$

Localised version: assume $\exists A \subset E$ and $m : A \to \mathbb{R}^*_+$ such that

$$m(y) \leqslant k(x,y) \leqslant Lm(y) \qquad \forall x, y \in A$$
 (1)

Then

$$|\lambda_1| \leq L - 1 + \mathcal{O}\left(\sup_{x \in E} K(x, E \setminus A)\right) + \mathcal{O}\left(\sup_{x \in A} [1 - K(x, E)]\right)$$

To prove the restricted positivity condition (1): \triangleright Show that $|Y_n - X_n|$ likely to decrease exp for $X_0, Y_0 \in A$ \triangleright Use Harnack inequalities once $|Y_n - X_n| = \mathcal{O}(\sigma^2)$

Application 1: Exit through an unstable periodic orbit

Planar SDE $dx_t = f(x_t) dt + \sigma g(x_t) dW_t$

 $\mathcal{D} \subset \mathbb{R}^2$: int of unstable periodic orbit First-exit time: $\tau_{\mathcal{D}} = \inf\{t > 0 \colon x_t \notin \mathcal{D}\}$ Law of first-exit location $x_{\tau_{\mathcal{D}}} \in \partial \mathcal{D}$?

Application 1: Exit through an unstable periodic orbit

Planar SDE $dx_t = f(x_t) dt + \sigma g(x_t) dW_t$

 $\mathcal{D} \subset \mathbb{R}^2$: int of unstable periodic orbit First-exit time: $\tau_{\mathcal{D}} = \inf\{t > 0 : x_t \notin \mathcal{D}\}$ Law of first-exit location $x_{\tau_{\mathcal{D}}} \in \partial \mathcal{D}$?

Large-deviation principle with rate function $I(\gamma) = \frac{1}{2} \int_0^T (\dot{\gamma}_t - f(\gamma_t))^T D(\gamma_t)^{-1} (\dot{\gamma}_t - f(\gamma_t)) dt \qquad D = gg^T$ Quasipotential:

 $V(y) = \inf\{I(\gamma) \colon \gamma \colon \text{stable orbit} \to y \in \partial \mathcal{D} \text{ in arbitrary time}\}$

Theorem [Freidlin, Wentzell '69]: If V reaches its min at a unique $y^* \in \partial \mathcal{D}$, then $x_{\tau_{\mathcal{D}}}$ concentrates in y^* as $\sigma \to 0$

Application 1: Exit through an unstable periodic orbit

Planar SDE $dx_t = f(x_t) dt + \sigma g(x_t) dW_t$

 $\mathcal{D} \subset \mathbb{R}^2$: int of unstable periodic orbit First-exit time: $\tau_{\mathcal{D}} = \inf\{t > 0 : x_t \notin \mathcal{D}\}$ Law of first-exit location $x_{\tau_{\mathcal{D}}} \in \partial \mathcal{D}$?

Large-deviation principle with rate function $I(\gamma) = \frac{1}{2} \int_0^T (\dot{\gamma}_t - f(\gamma_t))^T D(\gamma_t)^{-1} (\dot{\gamma}_t - f(\gamma_t)) dt \qquad D = gg^T$ Quasipotential:

 $V(y) = \inf\{I(\gamma) \colon \gamma \colon \text{stable orbit} \to y \in \partial \mathcal{D} \text{ in arbitrary time}\}$

Theorem [Freidlin, Wentzell '69]: If V reaches its min at a unique $y^* \in \partial \mathcal{D}$, then $x_{\tau_{\mathcal{D}}}$ concentrates in y^* as $\sigma \to 0$

Problem: V is constant on $\partial \mathcal{D}!$

Most probable exit paths

Minimisers of I obey Hamilton equations with Hamiltonian $H(\gamma,\psi) = \frac{1}{2}\psi^T D(\gamma)\psi + f(\gamma)^T \psi$ where $\psi = D(\gamma)^{-1}(\dot{\gamma} - f(\gamma))$

Most probable exit paths

Minimisers of I obey Hamilton equations with Hamiltonian $H(\gamma,\psi) = \frac{1}{2}\psi^T D(\gamma)\psi + f(\gamma)^T \psi$ where $\psi = D(\gamma)^{-1}(\dot{\gamma} - f(\gamma))$

Generically optimal path (for infinite time) is isolated

In polar-type coordinates (r, φ) :

In polar-type coordinates (r, φ) :

Periodically modulated exponential distribution

Split into two Markov chains:

 \triangleright Chain killed upon r reaching $1-\delta$ in $\varphi=\varphi_{\tau_-}$

 $\mathbb{P}^{0}\{\varphi_{\tau_{-}} \in [\varphi_{1}, \varphi_{1} + \Delta]\} \simeq (\lambda_{0}^{\mathsf{s}})_{1}^{\varphi} \operatorname{e}^{-J(\varphi_{1})/\sigma^{2}}$

Split into two Markov chains:

 \triangleright Chain killed upon r reaching $1 - \delta$ in $\varphi = \varphi_{\tau_{-}}$

$$\mathbb{P}^{0}\{\varphi_{\tau_{-}} \in [\varphi_{1}, \varphi_{1} + \Delta]\} \simeq (\lambda_{0}^{s})_{1}^{\varphi} e^{-J(\varphi_{1})/\sigma^{2}}$$

 \triangleright Chain killed at $r=1-2\delta$ and on unstable orbit r=1

- Principal eigenvalue: $\lambda_0^{\text{U}} = e^{-2\lambda + T} + (1 + \mathcal{O}(\delta))$
 - $\lambda_{+} =$ Lyapunov exponent, $T_{+} =$ period of unstable orbit
- Using LDP:

 $\mathbb{P}^{\varphi_1}\{\varphi_{\tau} \in [\varphi, \varphi + \Delta]\} \simeq (\lambda_0^{\mathsf{u}})^{\varphi - \varphi_1} \,\mathrm{e}^{-[I_{\infty} + c(\mathrm{e}^{-2\lambda} + T_+(\varphi - \varphi_1))]/\sigma^2}$

Theorem [B & Gentz, 2012]

 $\mathbb{P}^{r_0,0}\{\varphi_{\tau} \in [\varphi,\varphi+\Delta]\} = C(\sigma)(\lambda_0)^{\varphi}\chi_{\Delta}(\varphi)Q_{\lambda_+T_+}\left(\frac{|\log\sigma| - \theta(\varphi) + \mathcal{O}(\delta)}{\lambda_+T_+}\right) \times \left[1 + \mathcal{O}(e^{-c\varphi/|\log\sigma|}) + \mathcal{O}(\delta|\log\delta|)\right]$

Theorem [B & Gentz, 2012]

$$\mathbb{P}^{r_0,0}\{\varphi_{\tau} \in [\varphi,\varphi+\Delta]\} = C(\sigma)(\lambda_0)^{\varphi}\chi_{\Delta}(\varphi)Q_{\lambda_+T_+}\left(\frac{|\log\sigma| - \theta(\varphi) + \mathcal{O}(\delta)}{\lambda_+T_+}\right) \times \left[1 + \mathcal{O}(e^{-c\varphi/|\log\sigma|}) + \mathcal{O}(\delta|\log\delta|)\right]$$

 $\triangleright Q_{\lambda T}(x) = \sum_{n=-\infty}^{\infty} A(\lambda T(n-x)) \text{ with } A(x) = \frac{1}{2} \exp\{-2x - \frac{1}{2}e^{-2x}\}$ Cycling profile, periodicised Gumbel distribution

Theorem [B & Gentz, 2012]

 $\mathbb{P}^{r_0,0}\{\varphi_{\tau} \in [\varphi,\varphi+\Delta]\} = C(\sigma)(\lambda_0)^{\varphi}\chi_{\Delta}(\varphi)Q_{\lambda_+T_+}\left(\frac{|\log\sigma| - \theta(\varphi) + \mathcal{O}(\delta)}{\lambda_+T_+}\right) \times \left[1 + \mathcal{O}(e^{-c\varphi/|\log\sigma|}) + \mathcal{O}(\delta|\log\delta|)\right]$

 $\triangleright Q_{\lambda T}(x) = \sum_{n=-\infty}^{\infty} A(\lambda T(n-x)) \text{ with } A(x) = \frac{1}{2} \exp\{-2x - \frac{1}{2}e^{-2x}\}$ Cycling profile, periodicised Gumbel distribution $\triangleright \theta(\varphi): \text{ explicit function of } D_{rr}(1,\varphi), \ \theta(\varphi+1) = \theta(\varphi) + \lambda_{+}T_{+}$

Theorem [B & Gentz, 2012]

 $\mathbb{P}^{r_{0},0}\{\varphi_{\tau}\in[\varphi,\varphi+\Delta]\}=C(\sigma)(\lambda_{0})^{\varphi}\chi_{\Delta}(\varphi)Q_{\lambda_{+}T_{+}}\left(\frac{|\log\sigma|-\theta(\varphi)+\mathcal{O}(\delta)}{\lambda_{+}T_{+}}\right)\times\left[1+\mathcal{O}(\mathrm{e}^{-c\varphi/|\log\sigma|})+\mathcal{O}(\delta|\log\delta|)\right]$

 $\triangleright Q_{\lambda T}(x) = \sum_{n=-\infty}^{\infty} A(\lambda T(n-x)) \text{ with } A(x) = \frac{1}{2} \exp\{-2x - \frac{1}{2}e^{-2x}\}$ Cycling profile, periodicised Gumbel distribution $\triangleright \theta(\varphi): \text{ explicit function of } D_{rr}(1,\varphi), \ \theta(\varphi+1) = \theta(\varphi) + \lambda_{+}T_{+}$ $\triangleright \lambda_{0}: \text{ principal eigenvalue, } \lambda_{0} = 1 - e^{-V/\sigma^{2}}$

Theorem [B & Gentz, 2012]

 $\mathbb{P}^{r_{0},0}\{\varphi_{\tau}\in[\varphi,\varphi+\Delta]\}=C(\sigma)(\lambda_{0})^{\varphi}\chi_{\Delta}(\varphi)Q_{\lambda_{+}T_{+}}\left(\frac{|\log\sigma|-\theta(\varphi)+\mathcal{O}(\delta)}{\lambda_{+}T_{+}}\right)\times\left[1+\mathcal{O}(\mathrm{e}^{-c\varphi/|\log\sigma|})+\mathcal{O}(\delta|\log\delta|)\right]$

 $\triangleright Q_{\lambda T}(x) = \sum_{n=-\infty}^{\infty} A(\lambda T(n-x)) \text{ with } A(x) = \frac{1}{2} \exp\{-2x - \frac{1}{2}e^{-2x}\}$ Cycling profile, periodicised Gumbel distribution $\triangleright \theta(\varphi): \text{ explicit function of } D_{rr}(1,\varphi), \ \theta(\varphi+1) = \theta(\varphi) + \lambda_{+}T_{+}$ $\triangleright \lambda_{0}: \text{ principal eigenvalue, } \lambda_{0} = 1 - e^{-V/\sigma^{2}}$ $\triangleright C(\sigma) = \mathcal{O}(e^{-V/\sigma^{2}})$

Theorem [B & Gentz, 2012]

 $\mathbb{P}^{r_{0},0}\{\varphi_{\tau}\in[\varphi,\varphi+\Delta]\}=C(\sigma)(\lambda_{0})^{\varphi}\chi_{\Delta}(\varphi)Q_{\lambda_{+}T_{+}}\left(\frac{|\log\sigma|-\theta(\varphi)+\mathcal{O}(\delta)}{\lambda_{+}T_{+}}\right)\times\left[1+\mathcal{O}(\mathrm{e}^{-c\varphi/|\log\sigma|})+\mathcal{O}(\delta|\log\delta|)\right]$

 $\triangleright Q_{\lambda T}(x) = \sum_{n=-\infty}^{\infty} A(\lambda T(n-x)) \text{ with } A(x) = \frac{1}{2} \exp\{-2x - \frac{1}{2}e^{-2x}\}$ Cycling profile, periodicised Gumbel distribution $\triangleright \theta(\varphi): \text{ explicit function of } D_{rr}(1,\varphi), \ \theta(\varphi+1) = \theta(\varphi) + \lambda_{+}T_{+}$ $\triangleright \lambda_{0}: \text{ principal eigenvalue, } \lambda_{0} = 1 - e^{-V/\sigma^{2}}$ $\triangleright C(\sigma) = \mathcal{O}(e^{-V/\sigma^{2}})$ $\triangleright \chi_{\Delta}(\varphi): \sim \mathbb{P}^{\pi_{0}^{\mathsf{u}}}\{\varphi_{\tau} \in [\varphi, \varphi + \Delta]\}, \text{ period 1}$ in linear case $\chi_{\Delta}(\varphi) \simeq \theta'(\varphi)\Delta$

Theorem [B & Gentz, 2012]

 $\mathbb{P}^{r_0,0}\{\varphi_{\tau} \in [\varphi,\varphi+\Delta]\} = C(\sigma)(\lambda_0)^{\varphi}\chi_{\Delta}(\varphi)Q_{\lambda_+T_+}\left(\frac{|\log\sigma| - \theta(\varphi) + \mathcal{O}(\delta)}{\lambda_+T_+}\right) \times \left[1 + \mathcal{O}(\mathrm{e}^{-c\varphi/|\log\sigma|}) + \mathcal{O}(\delta|\log\delta|)\right]$

 $\triangleright Q_{\lambda T}(x) = \sum_{\substack{n = -\infty \\ n = -\infty \\ \text{Cycling profile, periodicised Gumbel distribution}} \\ \triangleright \theta(\varphi): \text{ explicit function of } D_{rr}(1,\varphi), \ \theta(\varphi+1) = \theta(\varphi) + \lambda_{+}T_{+} \\ \triangleright \lambda_{0}: \text{ principal eigenvalue, } \lambda_{0} = 1 - e^{-V/\sigma^{2}} \\ \triangleright C(\sigma) = \mathcal{O}(e^{-V/\sigma^{2}}) \\ \triangleright \chi_{\Delta}(\varphi): \sim \mathbb{P}^{\pi_{0}^{\mathsf{u}}}\{\varphi_{\tau} \in [\varphi, \varphi + \Delta]\}, \text{ period 1} \\ \text{ in linear case } \chi_{\Delta}(\varphi) \simeq \theta'(\varphi)\Delta \end{aligned}$

Cycling: periodic dependence on $|\log \sigma|$ [Day'90, Maier & Stein '96, Getfert & Reimann '09]

$V = 0.5, \ \lambda_{+} = 1$

Application 2: Stochastic FitzHugh–Nagumo equations

$$dx_t = \frac{1}{\varepsilon} [x_t - x_t^3 + y_t] dt + \frac{\sigma_1}{\sqrt{\varepsilon}} dW_t^{(1)}$$
$$dy_t = [a - x_t] dt + \sigma_2 dW_t^{(2)}$$

▷ $x \propto$ membrane potential of neuron ▷ $y \propto$ proportion of open ion channels (recovery variable) ▷ $W_t^{(1)}, W_t^{(2)}$: independent Wiener processes ▷ $0 < \sigma_1, \sigma_2 \ll 1, \ \sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$ **Application 2: Stochastic FitzHugh–Nagumo equations**

$$dx_t = \frac{1}{\varepsilon} [x_t - x_t^3 + y_t] dt + \frac{\sigma_1}{\sqrt{\varepsilon}} dW_t^{(1)}$$
$$dy_t = [a - x_t] dt + \sigma_2 dW_t^{(2)}$$

▷ $x \propto$ membrane potential of neuron ▷ $y \propto$ proportion of open ion channels (recovery variable) ▷ $W_t^{(1)}, W_t^{(2)}$: independent Wiener processes ▷ $0 < \sigma_1, \sigma_2 \ll 1, \ \sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$

13-a

Application 2: Stochastic FitzHugh–Nagumo equations

$$dx_t = \frac{1}{\varepsilon} [x_t - x_t^3 + y_t] dt + \frac{\sigma_1}{\sqrt{\varepsilon}} dW_t^{(1)}$$
$$dy_t = [a - x_t] dt + \sigma_2 dW_t^{(2)}$$

▷ $x \propto$ membrane potential of neuron ▷ $y \propto$ proportion of open ion channels (recovery variable) ▷ $W_t^{(1)}, W_t^{(2)}$: independent Wiener processes ▷ $0 < \sigma_1, \sigma_2 \ll 1, \ \sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$

Small-amplitude oscillations (SAOs)

Definition of random number of SAOs N:

Small-amplitude oscillations (SAOs)

Definition of random number of SAOs N:

 $(R_0, R_1, \ldots, R_{N-1})$ substochastic Markov chain with kernel

$$K(R_0, A) = \mathbb{P}^{R_0} \{ R_\tau \in A \}$$

 $R \in \mathcal{F}, A \subset \mathcal{F}, \tau =$ first-hitting time of \mathcal{F} (after turning around P) N = number of turns around P until leaving \mathcal{D}

Main results

Theorem 1: [B & Landon, 2012]

If $\sigma_1, \sigma_2 > 0$, then $\lambda_0 < 1$ and N is asymptotically geometric:

$$\lim_{n \to \infty} \mathbb{P}\{N = n + 1 | N > n\} = 1 - \lambda_0$$

Main results

Theorem 1: [B & Landon, 2012] If $\sigma_1, \sigma_2 > 0$, then $\lambda_0 < 1$ and N is asymptotically geometric:

 $\lim_{n\to\infty} \mathbb{P}\{N=n+1|N>n\} = 1-\lambda_0$

Theorem 2: [B & Landon 2012] Assume ε and $\delta/\sqrt{\varepsilon}$ sufficiently small There exists $\kappa > 0$ s.t. for $\sigma^2 \leq (\varepsilon^{1/4}\delta)^2/\log(\sqrt{\varepsilon}/\delta)$

▷ Principal eigenvalue:

$$1 - \lambda_0 \leqslant \exp\left\{-\kappa \frac{(\varepsilon^{1/4}\delta)^2}{\sigma^2}\right\}$$

▷ Expected number of SAOs:

$$\mathbb{E}^{\mu_0}[N] \ge C(\mu_0) \exp\left\{\kappa \frac{(\varepsilon^{1/4}\delta)^2}{\sigma^2}\right\}$$

where $C(\mu_0)$ = probability of starting on \mathcal{F} above separatrix

Transition from weak to strong noise

Linear approximation near separatrix:

$$dz_t^0 = \left(\frac{\delta - \sigma_1^2/\varepsilon}{\varepsilon^{1/2}} + tz_t^0\right) dt - \frac{\sigma_1}{\varepsilon^{3/4}} t \, dW_t^{(1)} + \frac{\sigma_2}{\varepsilon^{3/4}} \, dW_t^{(2)}$$
$$\Rightarrow \quad \mathbb{P}\{N = 1\} \simeq \Phi\left(-\pi^{1/4} \frac{\varepsilon^{1/4} (\delta - \sigma_1^2/\varepsilon)}{\sqrt{\sigma_1^2 + \sigma_2^2}}\right) \qquad \Phi(x) = \int_{-\infty}^x \frac{e^{-y^2/2}}{\sqrt{2\pi}} \, dy$$

Transition from weak to strong noise

Linear approximation near separatrix:

$$dz_t^0 = \left(\frac{\delta - \sigma_1^2/\varepsilon}{\varepsilon^{1/2}} + tz_t^0\right) dt - \frac{\sigma_1}{\varepsilon^{3/4}} t \, dW_t^{(1)} + \frac{\sigma_2}{\varepsilon^{3/4}} \, dW_t^{(2)}$$
$$\Rightarrow \quad \mathbb{P}\{N = 1\} \simeq \Phi\left(-\pi^{1/4} \frac{\varepsilon^{1/4} (\delta - \sigma_1^2/\varepsilon)}{\sqrt{\sigma_1^2 + \sigma_2^2}}\right) \qquad \Phi(x) = \int_{-\infty}^x \frac{e^{-y^2/2}}{\sqrt{2\pi}} \, dy$$

N.B. and Barbara Gentz, *On the noise-induced passage through an unstable periodic orbit I: Two-level model*, J. Stat. Phys. **114**:1577–1618 (2004).

N.B. and Barbara Gentz, *On the noise-induced passage through an unstable periodic orbit II: General case*, preprint arXiv:1208.2557

N.B. and Damien Landon, *Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh–Nagumo model*, Nonlinearity **25**:2303–2335 (2012). arXiv:1105.1278

Gérard Ben Arous, Shigeo Kusuoka, and Daniel W. Stroock, *The Poisson kernel for certain degenerate elliptic operators*, J. Funct. Anal. **56**:171–209 (1984).

Garrett Birkhoff, *Extensions of Jentzsch's theorem*, Trans. Amer. Math. Soc. **85**:219–227 (1957).

Martin V. Day, *Cycling and skewing of exit measures for planar systems*, Stoch. Stoch. Rep. **48**:227–247 (1994).

Ivar Fredholm, *Sur une classe d'équations fonctionnelles*, Acta Math., **27**:365–390 (1903).

Robert Jentzsch, *Über Integralgleichungen mit positivem Kern*, J. f. d. reine und angew. Math., **141**:235–244 (1912).

Cyrill B. Muratov and Eric Vanden-Eijnden, *Noise-induced mixed-mode oscillations in a relaxation oscillator near the onset of a limit cycle*, Chaos **18**:015111 (2008).

Esa Nummelin, *General irreducible Markov chains and nonnegative operators*, Cambridge University Press, Cambridge, 1984.