Invariant measures of the stochastic
 Allen-Cahn Equation: The regime of small noise and large system size

Felix Otto Hendrik Weber Maria Westdickenberg

Mathematics Institute
University of Warwick

Bielefeld, 05.10.2012

Stochastic Allen-Cahn equation

$$
\partial_{t} u(t, x)=\partial_{x}^{2} u(t, x)-V^{\prime}(u(t, x))+\sqrt{2 \varepsilon} \dot{W}(t, x)
$$

$x \in[-L, L]$ one-dimensional.
V symmetric double-well potential.

\dot{W} space-time white noise.

Stochastic Allen-Cahn equation

$$
\partial_{t} u(t, x)=\partial_{x}^{2} u(t, x)-V^{\prime}(u(t, x))+\sqrt{2 \varepsilon} \dot{W}(t, x)
$$

Parameters:

$■ \varepsilon \ll 1$ noise strength.

- $O(1)$ typical lengths of an interface.

■ system size: $L \gg 1$.

Stochastic Allen-Cahn equation

$$
\partial_{t} u(t, x)=\partial_{x}^{2} u(t, x)-V^{\prime}(u(t, x))+\sqrt{2 \varepsilon} \dot{W}(t, x)
$$

Questions:

Depending on L, ε
■ Do we see nucleation (noise induced creation of new interfaces)?

■ What is the influence of the boundary conditions
$u(\pm L)=u_{ \pm}$?

Invariant measures for (SAC)

Dirichlet boundary conditions: $u(\pm L)=u_{ \pm}$

Auxiliary measure:

$\mathcal{W}_{\varepsilon,(-L, L)}^{u_{-}, u_{+}}$Brownian bridge from $\left(-L, u_{-}\right)$to $\left(L, u_{+}\right)$. Variance ε.

Invariant measures for (SAC)

Dirichlet boundary conditions: $u(\pm L)=u_{ \pm}$

Invariant measure:

$$
\mu(d u)=\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{\varepsilon} \int_{-L}^{L} V(u(x)) d x\right) \mathcal{W}(d u)
$$

Invariant measures for (SAC)

Dirichlet boundary conditions: $u(\pm L)=u_{ \pm}$

Invariant measure:

$$
\mu(d u)=\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{\varepsilon} \int_{-L}^{L} V(u(x)) d x\right) \mathcal{W}(d u)
$$

Question: How does the behaviour depend on ε and L (and

$$
\left.u_{ \pm}\right) ?
$$

Gibbs measure

Energy functional:

$$
E(u):=\int_{-L}^{L} \frac{1}{2}\left(\partial_{x} u(x)\right)^{2}+V(u(x)) d x
$$

Gibbs measure

Energy functional:

$$
E(u):=\int_{-L}^{L} \frac{1}{2}\left(\partial_{x} u(x)\right)^{2}+V(u(x)) d x
$$

$$
\begin{gathered}
\text { Formally: } \\
\mu \sim \exp \left(-\frac{1}{\varepsilon} E(u)\right) \text { "du(-L,L)" }
\end{gathered}
$$

Gibbs measure with respect to energy E.

Gibbs measure

Energy functional:

$$
E(u):=\int_{-L}^{L} \frac{1}{2}\left(\partial_{x} u(x)\right)^{2}+V(u(x)) d x
$$

$$
\begin{gathered}
\text { Formally: } \\
\mu \sim \exp \left(-\frac{1}{\varepsilon} E(u)\right) \text { "du(-L,L)" }
\end{gathered}
$$

Gibbs measure with respect to energy E.

Invariant measure of stochastic Allen-Cahn equation

$$
\begin{aligned}
\dot{u}(t, x) & =\partial_{x}^{2} u(t, x)-V^{\prime}(u(t, x))+\sqrt{2 \varepsilon} \dot{W}(t, x) \\
& =-\nabla_{L^{2}} E(u)+\sqrt{2 \varepsilon} \dot{W}(t, x) .
\end{aligned}
$$

Energy functional on the full line

$$
E(u):=\int_{-\infty}^{\infty} \frac{1}{2}\left(\partial_{x} u(x)\right)^{2}+V(u(x)) d x
$$

Optimal profiles constant ± 1.

Energy functional on the full line

$$
E(u):=\int_{-\infty}^{\infty} \frac{1}{2}\left(\partial_{x} u(x)\right)^{2}+V(u(x)) d x
$$

Optimal profiles constant ± 1.
Modica-Mortola trick: Cost of transitions $u(\pm \infty)= \pm 1$

$$
\begin{aligned}
E(u) & =\int_{-\infty}^{\infty} \frac{1}{2}\left(\partial_{x} u(x) \pm \sqrt{2 V(u(x))}\right)^{2} \mp \partial_{x} u(x) \sqrt{2 V(u(x))} \\
& \geq \int_{-1}^{1} \sqrt{2 V(\tilde{u})} d \tilde{u}=: c_{0}
\end{aligned}
$$

Energy functional on the full line

$$
E(u):=\int_{-\infty}^{\infty} \frac{1}{2}\left(\partial_{x} u(x)\right)^{2}+V(u(x)) d x
$$

Optimal profiles constant ± 1.
Modica-Mortola trick: Cost of transitions $u(\pm \infty)= \pm 1$

$$
\begin{aligned}
E(u) & =\int_{-\infty}^{\infty} \frac{1}{2}\left(\partial_{x} u(x) \pm \sqrt{2 V(u(x))}\right)^{2} \mp \partial_{x} u(x) \sqrt{2 V(u(x))} \\
& \geq \int_{-1}^{1} \sqrt{2 V(\tilde{u})} d \tilde{u}=: c_{0}
\end{aligned}
$$

Optimal profiles Translation invariant $\mathcal{M}=\left\{m_{\xi}: \xi \in \mathbb{R}\right\}$.

Order one systems

System $L \approx 1$ fixed, noise strength $\varepsilon \ll 1$: Large deviation estimates!

Order one systems

System $L \approx 1$ fixed, noise strength $\varepsilon \ll 1$: Large deviation estimates!

Concentration around E minimiser with given boundary conditions.

Order one systems

System $L \approx 1$ fixed, noise strength $\varepsilon \ll 1$: Large deviation estimates!
Concentration around E minimiser with given boundary conditions.

Extra transitions are exponentially unlikely
$\mu_{\varepsilon,(L, L)}^{-1,1}(2$ transitions $) \sim \exp \left(-\frac{1}{\varepsilon}\left(2 c_{0} \pm \gamma\right)\right)$.

Large systems:

What happens when $\varepsilon \ll 1$ and $L \gg 1$?

Large systems:

What happens when $\varepsilon \ll 1$ and $L \gg 1$?

Heuristic: Cut $(-L, L)$ into $N \sim L$ boxes of size $\ell=O(1)$.

Large systems:

What happens when $\varepsilon \ll 1$ and $L \gg 1$?

Heuristic: Cut $(-L, L)$ into $N \sim L$ boxes of size $\ell=O(1)$.

Entropic term:

$$
\mu_{\varepsilon,(-L, L)}^{-1,1}(2 n+1 \text { transitions }) \sim L^{2 n} \exp \left(-\frac{1}{\varepsilon} 2 n c_{0}\right) .
$$

Probability of transitions

Transition Layer: u has a transition layer on $\left(x_{-}, x_{+}\right)$if

$$
u\left(x_{ \pm}\right)= \pm 1 \text { or } \mp 1 \quad \text { and } \quad|u(x)|<1 \quad \text { for all } x \in\left(x_{-}, x_{+}\right) .
$$

Probability of transitions

Transition Layer: u has a transition layer on $\left(x_{-}, x_{+}\right)$if

$$
u\left(x_{ \pm}\right)= \pm 1 \text { or } \mp 1 \quad \text { and } \quad|u(x)|<1 \quad \text { for all } x \in\left(x_{-}, x_{+}\right) .
$$

Theorem

Boundary conditions: $u_{ \pm}= \pm 1$.
System size: $1 \ll L \ll \exp \left(\frac{c_{0}^{\prime}}{\varepsilon}\right)$ for a $c_{0}^{\prime}<c_{0}$,

Probability of transitions

Transition Layer: u has a transition layer on $\left(x_{-}, x_{+}\right)$if

$$
u\left(x_{ \pm}\right)= \pm 1 \text { or } \mp 1 \quad \text { and } \quad|u(x)|<1 \quad \text { for all } x \in\left(x_{-}, x_{+}\right)
$$

Theorem

Boundary conditions: $u_{ \pm}= \pm 1$.
System size: $1 \ll L \ll \exp \left(\frac{c_{0}^{\prime}}{\varepsilon}\right)$ for a $c_{0}^{\prime}<c_{0}$,
Then

$$
\mu_{\varepsilon,(-1,1)}^{-L, L}((2 n+1) \text { transition layers }) \approx L^{2 n} \exp \left(-\frac{1}{\varepsilon}\left(2 n c_{0} \pm \gamma\right)\right)
$$

Probability of transitions

Transition Layer: u has a transition layer on $\left(x_{-}, x_{+}\right)$if

$$
u\left(x_{ \pm}\right)= \pm 1 \text { or } \mp 1 \quad \text { and } \quad|u(x)|<1 \quad \text { for all } x \in\left(x_{-}, x_{+}\right) .
$$

Theorem

Boundary conditions: $u_{ \pm}= \pm 1$.
System size: $1 \ll L \ll \exp \left(\frac{c_{0}^{\prime}}{\varepsilon}\right)$ for a $c_{0}^{\prime}<c_{0}$,
Then

$$
\mu_{\varepsilon,(-1,1)}^{-L, L}((2 n+1) \text { transition layers }) \approx L^{2 n} \exp \left(-\frac{1}{\varepsilon}\left(2 n c_{0} \pm \gamma\right)\right)
$$

Similar result for different boundary conditions (e.g. periodic, homogeneuous,...).

Location of jump

Theorem
Boundary conditions: $u_{ \pm}= \pm 1$.
System size: $|\log \varepsilon| \ll L \ll \exp \left(\frac{c_{0}^{\prime}}{\varepsilon}\right)$ for a $c_{0}^{\prime}<c_{0}$,

Location of jump

Theorem

Boundary conditions: $u_{ \pm}= \pm 1$.
System size: $|\log \varepsilon| \ll L \ll \exp \left(\frac{c_{0}^{\prime}}{\varepsilon}\right)$ for a $c_{0}^{\prime}<c_{0}$,
Consider intervals of the type

$$
J_{x}:=[x-d, x+d]
$$

for $d \gg|\log \varepsilon|$.

Location of jump

Theorem

Boundary conditions: $u_{ \pm}= \pm 1$.
System size: $|\log \varepsilon| \ll L \ll \exp \left(\frac{c_{0}^{\prime}}{\varepsilon}\right)$ for a $c_{0}^{\prime}<c_{0}$,
Consider intervals of the type

$$
J_{x}:=[x-d, x+d]
$$

for $d \gg|\log \varepsilon|$.
Then

$$
\left.\sup _{x} \left\lvert\, \mu_{\varepsilon,(-L, L)}^{-1,1}\left(\text { transition in } I_{x}\right) \frac{L}{d}-1\right. \right\rvert\, \ll 1 \text {. }
$$

Related results

Bertini, Brassesco, Buttà '08: Same system $L=\frac{1}{4}|\log (\varepsilon)|$:
\rightarrow Concentration around \mathcal{M}.
\rightarrow Due to influence of the boundary the interface stays localized. In the limit interface location

$$
\xi \sim \exp (-A(\cosh (\alpha z)-1)) d z
$$

Related results

Bertini, Brassesco, Buttà '08: Same system $L=\frac{1}{4}|\log (\varepsilon)|$:
\rightarrow Concentration around \mathcal{M}.
\rightarrow Due to influence of the boundary the interface stays localized. In the limit interface location

$$
\xi \sim \exp (-A(\cosh (\alpha z)-1)) d z
$$

W. '10: Same system for $L=\varepsilon^{-\gamma}, \gamma<\frac{2}{3}$:
\rightarrow Concentration near energy minimisers.

Strategies

[BBB'08] use approach: u can be realized as

$$
\begin{aligned}
d u(x) & =a_{\varepsilon}(u(x)) d x+\sqrt{\varepsilon} d w(x) \\
u(-L) & =-1 \quad \text { conditioned on } u(L)=1
\end{aligned}
$$

Difficulty:

$\rightarrow a_{\varepsilon}$ is not known explicitly.
\rightarrow Conditioning on final condition.

Strategies

[BBB'08] use approach: u can be realized as

$$
\begin{aligned}
& d u(x)=a_{\varepsilon}(u(x)) d x+\sqrt{\varepsilon} d w(x) \\
& u(-L)=-1 \quad \text { conditioned on } u(L)=1 .
\end{aligned}
$$

Difficulty:

$\rightarrow a_{\varepsilon}$ is not known explicitly.
\rightarrow Conditioning on final condition.
[W'10] use approach: Discretized measure

$$
\mu^{N, \varepsilon}=\frac{1}{\mathcal{Z}^{N, \varepsilon}} \exp \left(-\frac{1}{\varepsilon} E(u)\right) d \mathcal{L}^{N} .
$$

Use explicit bounds on the energy landscape of E.
Difficulty:
\rightarrow Error terms to large for $L>\varepsilon^{-\gamma}$.

Ingredients of proof

Two sided strong Markov property:
\rightarrow Left/right stopping points $x_{-} \leq \chi_{-}<\chi_{+} \leq x_{+}$.
$\rightarrow \Phi$ nice test function

$$
\mathbb{E}^{\mu_{\varepsilon}}\left(\Phi \mid \mathcal{F}_{\left[x_{-}, \chi_{-}\right]} \vee \mathcal{F}_{\left[\chi_{+}, x_{+}\right]}\right)=\mathbb{E}_{\left(\chi-, \chi_{+}\right)}^{\mu_{\varepsilon}, \mathbf{u}}(\Phi)
$$

Ingredients of proof

Two sided strong Markov property:
\rightarrow Left/right stopping points $x_{-} \leq \chi_{-}<\chi_{+} \leq x_{+}$.
$\rightarrow \Phi$ nice test function

$$
\mathbb{E}^{\mu_{\varepsilon}}\left(\Phi \mid \mathcal{F}_{\left[x_{-}, \chi_{-}\right]} \vee \mathcal{F}_{\left[\chi_{+}, x_{+}\right]}\right)=\mathbb{E}_{\left(\chi_{-}, \chi_{+}\right)}^{\mu_{\varepsilon}, \mathbf{u}}(\Phi)
$$

(Uniform) Large deviation bounds:
$\rightarrow \mathcal{A}$ ("nice") set of functions.
$\rightarrow \Delta E(\mathcal{A}):=\inf _{u \in \mathcal{A}} E(u)-\inf _{\text {b.c. }} E(u)$

$$
\mu_{\varepsilon,\left(x_{-}, x_{+}\right)}^{u_{-}, u_{+}}(\mathcal{A}) \sim \exp \left(-\frac{1}{\varepsilon}(\Delta E(\mathcal{A}) \pm \gamma)\right)
$$

Freidlin-Wentzel argument does not work directly!

Freidlin-Wentzel argument does not work directly!

$\mu_{\varepsilon}\left(\operatorname{transition}\right.$ in $\left.\left[x_{i}, x_{i+1}\right]\right)$

$$
=\int \nu_{x_{i-1}, x_{i+2}}\left(d u_{i-1}, d u_{i+2}\right) \mu_{\varepsilon}^{u_{i-1}, u_{i+2}}\left(\text { transition in }\left[x_{i}, x_{i+1}\right]\right) .
$$

Freidlin-Wentzel argument does not work directly!

$\mu_{\varepsilon}\left(\right.$ transition in $\left.\left[x_{i}, x_{i+1}\right]\right)$
$=\int \nu_{x_{i-1}, x_{i+2}}\left(d u_{i-1}, d u_{i+2}\right) \mu_{\varepsilon}^{u_{i-1}, u_{i+2}}$ (transition in $\left.\left[x_{i}, x_{i+1}\right]\right)$.
Large deviation estimate gives information on $\mu_{\varepsilon}^{u_{i-1}, u_{i+2}}$.
But information about transition is contained in $\nu_{x_{i-1}, x_{i+2}}$.

Symmetry helps

Idea: Transform the event into something we can estimate!

Symmetry helps

Idea: Transform the event into something we can estimate!

Symmetry helps

Idea: Transform the event into something we can estimate!

Reflection operator R preserves the measure!

Symmetry helps

Idea: Transform the event into something we can estimate!

Reflection operator R preserves the measure!
$\mu_{\varepsilon}\left(\right.$ transition in intervals $\left.l_{i}\right)$

$$
\begin{aligned}
& =\mu_{\varepsilon}\left(\text { wasted excursions in intervals } l_{i}\right) \\
& =\int \nu_{x_{i-1}, x_{i+2}}\left(d u_{i-1}, d u_{i+2}\right) \mu_{\varepsilon}^{u_{i-1}, u_{i+2}}\left(\text { wast. exc. in }\left[x_{i}, x_{i+1}\right]\right) .
\end{aligned}
$$

Uniform distribution

Idea: Use symmetry again!

Uniform distribution

Idea: Use symmetry again!

$\chi_{ \pm}$hitting points of ± 1 in auxilary intervals $J_{y,-}$ and $J_{z,+}$.

Uniform distribution

Idea: Use symmetry again!

$\chi_{ \pm}$hitting points of ± 1 in auxilary intervals $J_{y,-}$ and $J_{z,+}$.
Point reflection operator

$$
\operatorname{Ru} u(x):= \begin{cases}u(x) & \text { for } x \leq x_{-}, \\ -u\left(\chi_{-}+x_{+}-x\right) & \text { for } x_{-}<x<\chi_{+}, \\ u(x) & \text { for } x \geq x_{+},\end{cases}
$$

leaves μ_{ε} invariant and moves the transition in J_{y} close to J_{z}.

Choice of auxiliary intervals

$$
\mathcal{J}_{y}:=\left\{u: u \text { has a } \delta^{-} \text {up layer in } J_{y}(+ \text { extra conditions) }\} .\right.
$$

Lemma ("Hitting Lemma")

Auxiliary intervals $\left|J_{y}^{-}\right|,\left|J_{z}^{+}\right| \approx \bar{K}|\log (\varepsilon)|$.

- Then

$$
\begin{gathered}
\mu_{\varepsilon,(-L, L)}^{-1,1}\left(u \in \mathcal{J}_{y}: \text { no hitting of }-1 \text { in } J_{y,-}\right) \\
\leq E_{1}(\varepsilon) \mu_{\varepsilon,(-L, L)}^{-1,1}\left(\mathcal{J}_{y}\right)
\end{gathered}
$$

- Error term

$$
E_{1}(\varepsilon) \leq \lambda^{\bar{K}}+L \exp \left(-\frac{c_{0}-\gamma}{\varepsilon}\right)+2 \exp \left(-\frac{c_{1}}{2 \varepsilon}\right)
$$

- Same for $J_{z,+}$.

Crucial step for "Hitting Lemma"

Lemma ("Close to 1")

■ For $\varepsilon \leq \varepsilon_{0}$, small.
■ $K_{\varepsilon} \sim \log \left(\sqrt{\frac{\varepsilon_{0}}{\varepsilon}}\right)$ and $\ell_{\varepsilon}:=\left(2 K_{\varepsilon}+1\right) \ell_{0}$.

Crucial step for "Hitting Lemma"

Lemma ("Close to 1")

- For $\varepsilon \leq \varepsilon_{0}$, small.
- $K_{\varepsilon} \sim \log \left(\sqrt{\frac{\varepsilon_{0}}{\varepsilon}}\right)$ and $\ell_{\varepsilon}:=\left(2 K_{\varepsilon}+1\right) \ell_{0}$.

Then and all $u_{ \pm} \in[1 / 2,3 / 2]$, we have

$$
\begin{aligned}
& \mu_{\varepsilon,\left(-\ell_{\varepsilon}, \ell_{\varepsilon}\right)}^{u_{-}, u_{+}}\left(\left.\sup _{x \in\left[-\ell_{0}, \ell_{0}\right]}|u(x)-1| \geq \sqrt{\frac{\varepsilon}{\varepsilon_{0}}} \right\rvert\,\right. \\
& \left.\quad\left|u\left(\pm(2 k-1) \ell_{0}\right)-1\right| \leq \frac{1}{2}, k=1,2, \ldots, K_{\varepsilon}\right) \\
& \leq 4 \exp \left(-\frac{1}{C \varepsilon_{0}}\right)
\end{aligned}
$$

Proof of "Close to 1" Lemma

$1 / 2$

Proof of "Close to 1" Lemma

$1 / 2$

$$
\begin{gathered}
\mu_{\varepsilon,\left(x_{-(K+1)}, x_{K+1}\right)}^{u_{-}, u_{+}}\left(\left.\sup _{x \in\left[x_{-K}, x_{K}\right]}|u(x)-1| \geq \frac{1}{4} \right\rvert\, u \in \mathcal{A}\right) \\
\leq 2 K \exp \left(-\frac{1}{C \varepsilon}\right)
\end{gathered}
$$

Proof of "Close to 1" Lemma

Rescaling: $\hat{u}(x)=2(u(x)-1)+1$.
Rescaled energy

$$
\frac{1}{\varepsilon} \hat{E}(\hat{u})=\frac{1}{4 \varepsilon} \int \frac{1}{2}\left|\partial_{x} \hat{u}\right|^{2}+4 V\left(\frac{1}{2}(\hat{u}-1)+1\right) d x .
$$

Proof of "Close to 1" Lemma

$1 / 2$

$$
\begin{gathered}
\mu_{\varepsilon,\left(x_{-(K+1)}, x_{K+1}\right)}^{u_{-}, u_{+}}\left(\left.\sup _{x \in\left[x_{-K+1}, x_{K-1}\right]}|u(x)-1| \geq \frac{1}{8} \right\rvert\, u \in \hat{\mathcal{A}}\right) \\
\leq 2(K-1) \exp \left(-\frac{1}{C 4 \varepsilon}\right) .
\end{gathered}
$$

Proof of "Close to 1" Lemma

$1 / 2$

Rescaling: $\hat{u}(x)=2^{K_{\varepsilon}}(u(x)-1)+1$.
Rescaled energy

$$
\frac{1}{\varepsilon} \hat{E}(\hat{u})=\frac{1}{4^{K_{\varepsilon}} \varepsilon} \int \frac{1}{2}\left|\partial_{x} \hat{u}\right|^{2}+4^{K_{\varepsilon}} V\left(\frac{1}{2^{K_{\varepsilon}}}(\hat{u}-1)+1\right) d x
$$

Proof of "Close to 1" Lemma

$1 / 2$

$$
\begin{aligned}
& \mu_{\varepsilon,\left(x_{-(K+1)}, x_{K+1}\right)}^{u_{-}, u_{+}}\left(\left.\sup _{x \in\left[-\ell_{0}, \ell_{0}\right]}|u(x)-1| \geq \frac{1}{2^{K_{\varepsilon}}} \right\rvert\, u \in \hat{\mathcal{A}}_{k}\right) \\
& \leq 2\left(-\frac{1}{C 4^{K_{\varepsilon}} \varepsilon}\right) .
\end{aligned}
$$

Along the way: Tails of the one point distribution

Lemma ("One point distribution")

■ M large, ε small (depending on M).

$$
\mu_{\varepsilon,(-L, L)}^{-1,1}\left(\left|u\left(x_{0}\right)\right| \geq M\right) \leq \exp \left(-\frac{M}{\varepsilon C}\right)
$$

Along the way: Tails of the one point distribution

Lemma ("One point distribution")

■ M large, ε small (depending on M).

$$
\mu_{\varepsilon,(-L, L)}^{-1,1}\left(\left|u\left(x_{0}\right)\right| \geq M\right) \leq \exp \left(-\frac{M}{\varepsilon C}\right)
$$

Comment:

- True decay rate $\exp \left(-\frac{M^{p / 2+1}}{\varepsilon C}\right)$, where u^{p} growth of V at ∞.

Along the way: Tails of the one point distribution

Lemma ("One point distribution")

■ M large, ε small (depending on M).

$$
\mu_{\varepsilon,(-L, L)}^{-1,1}\left(\left|u\left(x_{0}\right)\right| \geq M\right) \leq \exp \left(-\frac{M}{\varepsilon C}\right)
$$

Comment:

- True decay rate $\exp \left(-\frac{M^{p / 2+1}}{\varepsilon C}\right)$, where u^{p} growth of V at ∞.
- Closely related to decay of the ground state of the Schrödinger operator

$$
\varepsilon \partial_{x}^{2}+V
$$

in semiclassical limit.

Argument for "one point distribution" Lemma

(a) Case 1: Treated with another reflection argument.

(b) Case 2: Treated with Large deviation estimates.

Outlook

Alternative arguments for "close to 1" Lemma and "One point distribution" Lemma based on tricks from Statistical Mechanics (FKG inequality, Brascamp Lieb inequality).

Outlook

Alternative arguments for "close to 1" Lemma and "One point distribution" Lemma based on tricks from Statistical Mechanics (FKG inequality, Brascamp Lieb inequality).

Slightly more tricky reflection argument allows to cover situations where u takes values in a higher dimensional space.

Outlook

Alternative arguments for "close to 1" Lemma and "One point distribution" Lemma based on tricks from Statistical Mechanics (FKG inequality, Brascamp Lieb inequality).

Slightly more tricky reflection argument allows to cover situations where u takes values in a higher dimensional space.

Case of asymmetric V appears to be completely different.

Outlook

Alternative arguments for "close to 1" Lemma and "One point distribution" Lemma based on tricks from Statistical Mechanics (FKG inequality, Brascamp Lieb inequality).

Slightly more tricky reflection argument allows to cover situations where u takes values in a higher dimensional space.

Case of asymmetric V appears to be completely different.
Relation to diffusion bridges (in higher dimensional asymmetric potentials)?

Conclusion

Study the invariant measure of stochastic Allen-Cahn equation in with small noise on large systems.

Conclusion

Study the invariant measure of stochastic Allen-Cahn equation in with small noise on large systems.

Obtain matching upper and lower bound for the probabilities of extra transitions.

Conclusion

Study the invariant measure of stochastic Allen-Cahn equation in with small noise on large systems.

Obtain matching upper and lower bound for the probabilities of extra transitions.

If system grows more quickly than logarithmically the jump is uniformly distributed in the system.

Conclusion

Study the invariant measure of stochastic Allen-Cahn equation in with small noise on large systems.

Obtain matching upper and lower bound for the probabilities of extra transitions.

If system grows more quickly than logarithmically the jump is uniformly distributed in the system.

Key ideas of proof: Local large deviation bounds, global symmetries, detailed properties of energy landscape.

