Random and Deterministic perturbations of dynamical systems

Leonid Koralov

- M. Freidlin, L. Koralov "Metastability for Nonlinear Random Perturbations of Dynamical Systems", Stochastic Processes and Applications 120 (2010), no. 7, 11941214.
- D. Dolgopyat, L. Koralov "Averaging of incompressible flows on 2-d surfaces", submitted to Journal of American Math. Society.
- D. Dolgopyat, M. Freidlin, L. Koralov "Deterministic and stochastic perturbations of areapreserving flows on a 2-d torus" (to appear in Ergodic Theory and Dynamical Systems).

Part 1. Incompressible flow:

$$\dot{x}(t) = v(x(t)), \quad x(0) = x_0 \in \mathbb{R}^2 \quad \text{or} \quad x_0 \in M.$$

(a) Hamiltonian flows.

Perturbation:

$$dX_t^{\varepsilon} = \frac{1}{\varepsilon} v(X_t^{\varepsilon}) dt + \sigma(X_t^{\varkappa, \varepsilon}) dW_t \quad \text{(random)},$$

$$dX_t^{\varepsilon} = \frac{1}{\varepsilon} v(X_t^{\varepsilon}) dt + b(X_t^{\varkappa, \varepsilon}) dt \quad \text{(deterministic)}.$$

The dynamics consists of the fast motion (with speed of order $1/\varepsilon$) along the unperturbed trajectories together with the slow motion (with speed of order 1) in the direction transversal to the unperturbed trajectories.

Averaging - consider $h: \mathbb{R}^2 \to \mathbb{G}$. Then

$$h(X_t^{\varepsilon}) \to Y_t$$
 as $\varepsilon \downarrow 0$.

Locally (away from the vertices of the graph):

$$\frac{dY_t}{dt} = \frac{\tilde{b}(Y_t)}{T(Y_t)}$$
, (deterministic), where

$$T(h) = \int_{\gamma(h)} \frac{dl}{|\nabla H|}, \quad \tilde{b}(h) = \int_{\gamma(h)} \frac{\langle b, \nabla H \rangle}{|\nabla H|} dl \quad ,$$

 $dY_t = \overline{\sigma}(Y_t)dW_t + \overline{b}(Y_t)dt$ (random perturbations).

Behavior at the vertices. Random perturbations - Freidlin and Wentzell. Deterministic perturbations - regularization required. (Brin and Freidlin).

(b) Locally Hamiltonian flows (there are regions where the unperturbed dynamimcs is ergodic). Example: $H = H_0(x_1, x_2) + \alpha x_1 + \beta x_2$, α/β - irrational.

M - manifold with an area form, v - incompressible vector field, $X_t^\varepsilon \text{ - process with generator } L^\varepsilon = \frac{1}{\varepsilon} L_v + L_D.$

Unperturbed dynamics:

 $U_1,...,U_m$ - periodic sets

 $\mathcal{E}_1,...,\mathcal{E}_n$ - 'ergodic components'

Flow on \mathcal{E}_i is isomorphic to a special flow over an interval exchange transformation.

Graph:

- Each edge corresponds to one of $U_{m{k}}$
- Three types of vertices:
- (a) Those corresponding to \mathcal{E}_i ,
- (b) Those corresponding to saddle points,
- (c) Those corresponding to equilibriums (but not saddles).

The flow is Hamiltonian on U_k with a Hamiltonian H. Denote: h_k - coordinate on I_k .

Theorem 1 The measure on on $C([0,\infty),\mathbb{G})$ induced by the process $Y_t^{\varepsilon} = h(X_t^{\varepsilon})$ converges weakly to the measure induced by the process with the generator \mathcal{L} with the initial distribution $h(X_0^{\varepsilon})$.

The limiting process is described via its generator \mathcal{L} , which is defined as follows.

Let
$$L_k f(h_k) = a_k(h_k) f'' + b_k(h_k) f'$$
 be the differential operator on the interior of the edge I_k (coefficients are defined below).

For $f \in D(\mathcal{L})$, we define $\mathcal{L}f = L_k f$ in the interior of each edge, and as the limit of $L_k f$ at the endpoints of I_k .

 $D(\mathcal{L})$ consists of $f \in C(\mathbb{G}) \cap C^2(I_k)$ such that (a) $\lim_{h_k \to 0} L_k f(h_k) = q^V$ exist and are the same for all edges entering the same vertex V. (b) At vertices corresponding to \mathcal{E}_i :

$$\sum_{k=1}^{n} p_k^V \lim_{h_k \to 0} f'(h_k) = \lim_{h_k \to 0} L_k f(h_k).$$

(the same with 0 instead of q^V for vertices corresponding to saddles).

Coefficients:

In local coordinates in U_k ($\omega = dxdy$):

$$dX_t^{\varepsilon} = \frac{1}{\varepsilon}v(X_t^{\varepsilon})dt + u(X_t^{\varepsilon})dt + \sigma(X_t^{\varepsilon})dW_t.$$

Then,

$$a_k(h_k) = \frac{1}{2}T^{-1}(h_k)\int_{\gamma_k(h_k)} \frac{\langle \alpha \nabla H, \nabla H \rangle}{|\nabla H|} dl$$
 and

$$b_k(h_k) = \frac{1}{2} T^{-1}(h_k) \int_{\gamma_k(h_k)} \frac{2\langle u, \nabla H \rangle + \alpha \cdot H''}{|\nabla H|} dl,$$

where $\alpha = \sigma \sigma^*$.

$$p_k^V = \pm \frac{1}{2} \int_{\gamma_k} \frac{\langle \alpha \nabla H, \nabla H \rangle}{|\nabla H|} dl.$$

Ingredients of the proof.

(1) Assume (temporarily) that the area measure λ is invariant for the process for each ε .

For the limit Y_t of $Y_t^{\varepsilon} = h(X_t^{\varepsilon})$, we should have

$$\mathbb{E}[f(Y_T) - f(Y_0) - \int_0^T \mathcal{L}f(Y_s)ds] = 0.$$

Need to prove the following lemma.

Lemma1 For each function $f \in D(\mathcal{L})$ and each T > 0 we have

$$\mathbb{E}_x[f(h(X_T^\varepsilon)) - f(h(X_0^\varepsilon)) - \int_0^T \mathcal{L}f(h(X_s^\varepsilon))ds] \to 0$$
 uniformly in $x \in \mathbb{T}^2$ as $\varepsilon \to 0$.

(2) Localization (can deal with a star-shaped graph with one accessible vertex)

(3) Need:

$$\mathbb{E}_x[f(h(X_T^{\varepsilon})) - f(h(X_0^{\varepsilon})) - \int_0^T \mathcal{L}f(h(X_s^{\varepsilon}))ds] \to 0$$

Split [0,T] into intervals: $[0,\sigma_0]$, $[\sigma_0,\tau_1]$, $[\tau_1,\sigma_1]$, $[\sigma_1,\tau_2]$, ...

On intervals $[\tau_n, \sigma_n]$ (inside periodic component) - averaging (Freidlin-Wentzell) with small modifications.

On intervals $[\sigma_n, \tau_{n+1}]$ (getting from the ergodic component into the periodic component):

$$\mathbb{E}_{x}[f(h(X_{\tau_{n+1}}^{\varepsilon})) - f(h(X_{\sigma_{n}}^{\varepsilon})) - \int_{\sigma_{n}}^{\tau_{n+1}} \mathcal{L}f(h(X_{s}^{\varepsilon}))ds] \approx$$

$$\mathbb{E}_{\nu}[f(h(X_{\tau}^{\varepsilon})) - f(h(X_{0}^{\varepsilon})) - \int_{0}^{\tau} \mathcal{L}f(h(X_{s}^{\varepsilon}))ds] \approx$$

$$f'(0)\varepsilon^{\alpha} - \mathbb{E}_{\nu}\tau \cdot \mathcal{L}f(0).$$

- How can we calculate $\mathbb{E}_{\nu}\tau$?
- Why can we assume that we start with the invariant measure ν ?

If λ is invariant: $\frac{\mathbb{E}_{\nu}\tau}{\lambda(\mathcal{E})} \approx \frac{\mathbb{E}_{\mu}\sigma}{\lambda(U)}$, so

$$\mathbb{E}_{\nu} \tau pprox rac{\lambda(\mathcal{E})}{\lambda(U)} \cdot \mathbb{E}_{\mu} \sigma pprox \mathsf{const} \cdot \varepsilon^{\alpha}.$$

If λ is not invariant: consider

$$d\widetilde{X}_{t}^{\varepsilon} = \frac{1}{\varepsilon}v(\widetilde{X}_{t}^{\varepsilon})dt + \widetilde{u}(\widetilde{X}_{t}^{\varepsilon})dt + \sigma(\widetilde{X}_{t}^{\varepsilon})dW_{t},$$

(replace u by some \tilde{u} so that λ is invariant for the new process).

By the Girsanov Theorem:

$$\widetilde{\nu} \approx \nu, \quad \mathbb{E}_{\widetilde{\nu}} \widetilde{\tau} \approx \mathbb{E}_{\nu} \tau.$$

So, $\mathbb{E}_{\nu}\tau \approx \frac{\lambda(\mathcal{E})}{\lambda(U)} \cdot \mathbb{E}_{\widetilde{\mu}}\widetilde{\sigma}$ (the gluing conditions are the same as for the measure-preserving process).

(4) Why does $\mathbb{E}_x\sigma^k \to 0$ as $\varepsilon \downarrow 0$? (time to reach U^k)

Let $u^{\varepsilon}(t,y)$, $y \in M \setminus U_k$, be the probability that the process starting at y does not reach U_k before time t.

$$\frac{\partial u^{\varepsilon}(t,y)}{\partial t} = \left(L_D + \frac{1}{\varepsilon}L_v\right)u^{\varepsilon}$$

 $u^{\varepsilon}(0,y) = 1, y \in M \setminus U_k, \quad u^{\varepsilon}(t,y) = 0, t > 0.$

- (a) **Lemma** (Zlatos): All $H_0^1(M \setminus U_k)$ -eigenvalues for $v \nabla$ are zero on \mathcal{E} implies that the $L^2(\mathcal{E})$ -norm (and so $L^1(\mathcal{E})$ -norm) of $u^{\varepsilon}(t,\cdot)$ tends to zero as $\varepsilon \downarrow 0$ for each t > 0.
- (b) A uniform bound on fundamental solution doesn't get affected by adding an incompressible drift term.
- (a) and (b) imply that $\mathbb{E}_x \sigma \to 0$. With some effort possible to show that $\mathbb{E}_x \sigma^k \to 0$.

Part 2: Averaging of deterministic perturbations

Recall

$$dX_t^{\varkappa,\varepsilon} = \frac{1}{\varepsilon} v(X_t^{\varkappa,\varepsilon}) dt + b(X_t^{\varkappa,\varepsilon}) dt +$$

$$\varkappa u(X_t^{\varkappa,\varepsilon}) dt + \sqrt{\varkappa} \sigma(X_t^{\varkappa,\varepsilon}) dW_t.$$

Let $Y_t^{\varkappa,\varepsilon}=h(X_t^{\varkappa,\varepsilon})$ be the corresponding process on the graph $\mathbb G$. We demonstrated that the distribution of $Y_t^{\varkappa,\varepsilon}$ converges, as $\varepsilon\downarrow 0$, to the distribution of a limiting process, which will be denoted by Z_t^{\varkappa} . Z_t^{\varkappa} , in turn, converges to the distribution of a limiting Markov process on $\mathbb G$ when $\varkappa\downarrow 0$.

The limiting process Z_t can be described as follows. It is a Markov process with continuous trajectories which moves deterministically along an edge I_k of the graph with the speed

$$\overline{b}_k(h_k) = \frac{1}{2} (T_k(h_k))^{-1} \int_{\gamma_k(h_k)} \frac{2\langle b, \nabla H \rangle}{|\nabla H|} dl.$$

If the process reaches V corresponding to an ergodic component, then it either remains at V forever or spends exponential time in V and then continues with deterministic motion away from V along a randomly selected edge (with probabilities which can be specified). The same if V corresponds to a saddle point, but no exponential delay.

Theorem 2 The measure on on $C([0,\infty),\mathbb{G})$ induced by the process Z_t^{\varkappa} converges weakly to the measure induced by the process Z_t with the initial distribution $h(X_0^{\varepsilon})$.

The process Z_t is defined by the deterministic system. The stochastic perturbations are used just for regularization purposes.

Part 3.

$$\dot{X}_t^x = b(X_t^x), \quad X_0^x = x \in \mathbb{R}^d;$$

$$dX_t^{x,\varepsilon} = b(X_t^{x,\varepsilon})dt + \varepsilon\sigma(X_t^{x,\varepsilon})dW_t, \quad X_0^{x,\varepsilon} = x.$$

in terms of PDEs:

$$\frac{\partial u^{\varepsilon}}{\partial t} = \frac{\varepsilon^2}{2} \sum_{i,j=1}^d a_{ij}(x) \frac{\partial^2 u^{\varepsilon}}{\partial x_i \partial x_j} + b(x) \cdot \nabla_x u^{\varepsilon},$$
$$u^{\varepsilon}(0,x) = g(x), \ x \in \mathbb{R}^d.$$

$$u^{\varepsilon}(t,x) = \mathsf{E}g(X_t^{x,\varepsilon}).$$

Action functional:

$$S_{0,T}(\varphi) = \frac{1}{2} \int_0^T \sum_{i,j=1}^d a^{ij}(\varphi_t) (\dot{\varphi}_t^i - b_i(\varphi_t)) (\dot{\varphi}_t^j - b_j(\varphi_t)) dt,$$

if φ - absolutely continuous,

$$S_{0,T}(\varphi) = +\infty$$
, otherwise.

$$a^{ij} = (a^{-1})_{ij}$$
.

Quasi-potential:

$$V_{mn} = V(O_m, O_n) =$$

$$\inf_{T} \{ S_{0,T}(\varphi) : \varphi(0) = O_m, \varphi(T) = O_n \}.$$

 $au_{mn}^{arepsilon}$ - the time it takes the process to go from O_m to a small neighborhood of O_n .

$$au_{mn}^{\varepsilon} \sim \exp(V_{mn}/\varepsilon^2),$$

Consider the process (and solution of PDE) at times $t(\varepsilon)$ with $\ln(t(\varepsilon)) \sim \lambda/\varepsilon^2$. Suppose, for example, that $x \in D_1$ and $V_{12} < V_{21}$.

If
$$\lambda < V_{12}$$
, then $u^{\varepsilon}(t(\varepsilon), x) \to g(O_1)$.
 If $\lambda > V_{12}$, then $u^{\varepsilon}(t(\varepsilon), x) \to g(O_2)$.

Nonlinear problem:

$$\frac{\partial u^{\varepsilon}}{\partial t} = \frac{\varepsilon^2}{2} \sum_{i,j=1}^d a_{ij}(x, u^{\varepsilon}) \frac{\partial^2 u^{\varepsilon}}{\partial x_i \partial x_j} + b(x) \cdot \nabla_x u^{\varepsilon},$$
$$u^{\varepsilon}(0, x) = g.$$

equivalent to the system

$$dX_s^{t,x,\varepsilon} = b(X_s^{t,x,\varepsilon})dt + \varepsilon\sigma(X_s^{t,x,\varepsilon}, u^{\varepsilon}(t-s, X_s^{t,x,\varepsilon}))dW_s,$$
$$u^{\varepsilon}(t,x) = \mathsf{E}g(X_t^{t,x,\varepsilon}).$$

Construct \widetilde{V}_{12} using $a(t,g(x_0))$. If $\lambda < \widetilde{V}_{12}$, then still $u^{\varepsilon}(t(\varepsilon),x) \to g(O_1)$. If $\lambda > \widetilde{V}_{12}$, then new effects appear for u^{ε} and the processes. Result in the non-linear case (2 equilibriums):

Theorem:

$$\lim_{\varepsilon \downarrow 0} u^{\varepsilon}(\exp(\lambda/\varepsilon^2), x) = c_n(\lambda), \quad x \in D_n.$$

Corollary: If $x \in D_1$, then the distribution of $X_{\exp(\lambda/\varepsilon^2),x,\varepsilon}^{\exp(\lambda/\varepsilon^2),x,\varepsilon}$ converges to the measure $\mu_1^{\lambda} = a_1 \delta_{O_1} + a_2 \delta_{O_2}$, where the coefficients a_1 and a_2 can be found from the equations $c_1(\lambda) = a_1 g(O_1) + a_2 g(O_2)$, $a_1 + a_2 = 1$.

Multiple equilibriums.

- Need to look at $V_{mn}^{a(x,c)} = V^{a(x,c)}(O_m,O_n)$, which determine the hierarchy of cycles;
- The hierarchy of cycles may evolve in time (i.e., depends on λ).