Random and Deterministic perturbations of dynamical

 systemsLeonid Koralov

- M. Freidlin, L. Koralov "Metastability for Nonlinear Random Perturbations of Dynamical Systems", Stochastic Processes and Applications 120 (2010), no. 7, 11941214.
- D. Dolgopyat, L. Koralov "Averaging of incompressible flows on 2-d surfaces", submitted to Journal of American Math. Society.
- D. Dolgopyat, M. Freidlin, L. Koralov "Deterministic and stochastic perturbations of areapreserving flows on a 2-d torus" (to appear in Ergodic Theory and Dynamical Systems).

Part 1. Incompressible flow:

$$
\dot{x}(t)=v(x(t)), \quad x(0)=x_{0} \in \mathbb{R}^{2} \quad \text { or } \quad x_{0} \in M .
$$

(a) Hamiltonian flows.

Perturbation:

$$
\begin{aligned}
d X_{t}^{\varepsilon} & =\frac{1}{\varepsilon} v\left(X_{t}^{\varepsilon}\right) d t+\sigma\left(X_{t}^{\varkappa, \varepsilon}\right) d W_{t} \quad \text { (random) } \\
d X_{t}^{\varepsilon} & =\frac{1}{\varepsilon} v\left(X_{t}^{\varepsilon}\right) d t+b\left(X_{t}^{\varkappa, \varepsilon}\right) d t \quad \text { (deterministic). }
\end{aligned}
$$

The dynamics consists of the fast motion (with speed of order $1 / \varepsilon$) along the unperturbed trajectories together with the slow motion (with speed of order 1) in the direction transversal to the unperturbed trajectories.

Averaging - consider $h: \mathbb{R}^{2} \rightarrow \mathbb{G}$. Then

$$
h\left(X_{t}^{\varepsilon}\right) \rightarrow Y_{t} \quad \text { as } \quad \varepsilon \downarrow 0
$$

Locally (away from the vertices of the graph):
$\frac{d Y_{t}}{d t}=\frac{\widetilde{b}\left(Y_{t}\right)}{T\left(Y_{t}\right)}, \quad$ (deterministic), where
$T(h)=\int_{\gamma(h)} \frac{d l}{|\nabla H|}, \quad \widetilde{b}(h)=\int_{\gamma(h)} \frac{\langle b, \nabla H\rangle}{|\nabla H|} d l$,
$d Y_{t}=\bar{\sigma}\left(Y_{t}\right) d W_{t}+\bar{b}\left(Y_{t}\right) d t \quad$ (random perturbations).
Behavior at the vertices. Random perturbations - Freidlin and Wentzell. Deterministic perturbations - regularization required. (Brin and Freidlin).
(b) Locally Hamiltonian flows (there are regions where the unperturbed dynamimcs is ergodic). Example: $H=H_{0}\left(x_{1}, x_{2}\right)+\alpha x_{1}+$ $\beta x_{2}, \alpha / \beta$ - irrational.

M - manifold with an area form,

 v - incompressible vector field, X_{t}^{ε} - process with generator $L^{\varepsilon}=\frac{1}{\varepsilon} L_{v}+L_{D}$.

Unperturbed dynamics:
U_{1}, \ldots, U_{m} - periodic sets
$\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}$ - 'ergodic components'
Flow on \mathcal{E}_{i} is isomorphic to a special flow over an interval exchange transformation.

Graph:

- Each edge corresponds to one of U_{k}
- Three types of vertices:
(a) Those corresponding to \mathcal{E}_{i},
(b) Those corresponding to saddle points,
(c) Those corresponding to equilibriums (but not saddles).

The flow is Hamiltonian on U_{k} with a Hamiltonian H. Denote: h_{k} - coordinate on I_{k}.

Theorem 1 The measure on on $C([0, \infty), \mathbb{G})$ induced by the process $Y_{t}^{\varepsilon}=h\left(X_{t}^{\varepsilon}\right)$ converges weakly to the measure induced by the process with the generator \mathcal{L} with the initial distribution $h\left(X_{0}^{\varepsilon}\right)$.

The limiting process is described via its generator \mathcal{L}, which is defined as follows.
Let $\quad L_{k} f\left(h_{k}\right)=a_{k}\left(h_{k}\right) f^{\prime \prime}+b_{k}\left(h_{k}\right) f^{\prime}$
be the differential operator on the interior of the edge I_{k} (coefficients are defined below).

For $f \in D(\mathcal{L})$, we define $\mathcal{L} f=L_{k} f$ in the interior of each edge, and as the limit of $L_{k} f$ at the endpoints of I_{k}.
$D(\mathcal{L})$ consists of $f \in C(\mathbb{G}) \cap C^{2}\left(I_{k}\right)$ such that (a) $\lim _{h_{k} \rightarrow 0} L_{k} f\left(h_{k}\right)=q^{V}$ exist and are the same for all edges entering the same vertex V. (b) At vertices corresponding to \mathcal{E}_{i} :

$$
\sum_{k=1}^{n} p_{k}^{V} \lim _{h_{k} \rightarrow 0} f^{\prime}\left(h_{k}\right)=\lim _{h_{k} \rightarrow 0} L_{k} f\left(h_{k}\right)
$$

(the same with 0 instead of q^{V} for vertices corresponding to saddles).

Coefficients:
In local coordinates in $U_{k}(\omega=d x d y)$:

$$
d X_{t}^{\varepsilon}=\frac{1}{\varepsilon} v\left(X_{t}^{\varepsilon}\right) d t+u\left(X_{t}^{\varepsilon}\right) d t+\sigma\left(X_{t}^{\varepsilon}\right) d W_{t} .
$$

Then,

$$
\begin{aligned}
& a_{k}\left(h_{k}\right)=\frac{1}{2} T^{-1}\left(h_{k}\right) \int_{\gamma_{k}\left(h_{k}\right)} \frac{\langle\alpha \nabla H, \nabla H\rangle}{|\nabla H|} d l \text { and } \\
& b_{k}\left(h_{k}\right)=\frac{1}{2} T^{-1}\left(h_{k}\right) \int_{\gamma_{k}\left(h_{k}\right)} \frac{2\langle u, \nabla H\rangle+\alpha \cdot H^{\prime \prime}}{|\nabla H|} d l, \\
& \text { where } \alpha=\sigma \sigma^{*} .
\end{aligned}
$$

$$
p_{k}^{V}= \pm \frac{1}{2} \int_{\gamma_{k}} \frac{\langle\alpha \nabla H, \nabla H\rangle}{|\nabla H|} d l .
$$

Ingredients of the proof.
(1) Assume (temporarily) that the area measure λ is invariant for the process for each ε.

For the limit Y_{t} of $Y_{t}^{\varepsilon}=h\left(X_{t}^{\varepsilon}\right)$, we should have

$$
\mathbb{E}\left[f\left(Y_{T}\right)-f\left(Y_{0}\right)-\int_{0}^{T} \mathcal{L} f\left(Y_{s}\right) d s\right]=0
$$

Need to prove the following lemma.
Lemma1 For each function $f \in D(\mathcal{L})$ and each $T>0$ we have
$\mathbb{E}_{x}\left[f\left(h\left(X_{T}^{\varepsilon}\right)\right)-f\left(h\left(X_{0}^{\varepsilon}\right)\right)-\int_{0}^{T} \mathcal{L} f\left(h\left(X_{s}^{\varepsilon}\right)\right) d s\right] \rightarrow 0$ uniformly in $x \in \mathbb{T}^{2}$ as $\varepsilon \rightarrow 0$.
(2) Localization (can deal with a star-shaped graph with one accessible vertex)

(3) Need:
$\mathbb{E}_{x}\left[f\left(h\left(X_{T}^{\varepsilon}\right)\right)-f\left(h\left(X_{0}^{\varepsilon}\right)\right)-\int_{0}^{T} \mathcal{L} f\left(h\left(X_{s}^{\varepsilon}\right)\right) d s\right] \rightarrow 0$

Split $[0, T]$ into intervals:
$\left[0, \sigma_{0}\right],\left[\sigma_{0}, \tau_{1}\right],\left[\tau_{1}, \sigma_{1}\right],\left[\sigma_{1}, \tau_{2}\right], \ldots$
On intervals $\left[\tau_{n}, \sigma_{n}\right]$ (inside periodic component) - averaging (Freidlin-Wentzell) with small modifications.

On intervals $\left[\sigma_{n}, \tau_{n+1}\right]$ (getting from the ergodic component into the periodic component):

$$
\begin{gathered}
\mathbb{E}_{x}\left[f\left(h\left(X_{\tau_{n+1}}^{\varepsilon}\right)\right)-f\left(h\left(X_{\sigma_{n}}^{\varepsilon}\right)\right)-\int_{\sigma_{n}}^{\tau_{n+1}} \mathcal{L} f\left(h\left(X_{s}^{\varepsilon}\right)\right) d s\right] \approx \\
\mathbb{E}_{\nu}\left[f\left(h\left(X_{\tau}^{\varepsilon}\right)\right)-f\left(h\left(X_{0}^{\varepsilon}\right)\right)-\int_{0}^{\tau} \mathcal{L} f\left(h\left(X_{s}^{\varepsilon}\right)\right) d s\right] \approx \\
f^{\prime}(0) \varepsilon^{\alpha}-\mathbb{E}_{\nu} \tau \cdot \mathcal{L} f(0) .
\end{gathered}
$$

- How can we calculate $\mathbb{E}_{\nu} \tau$?
- Why can we assume that we start with the invariant measure ν ?

If λ is invariant: $\frac{\mathbb{E}_{\nu} \tau}{\lambda(\mathcal{E})} \approx \frac{\mathbb{E}_{\mu} \sigma}{\lambda(U)}$, so

$$
\mathbb{E}_{\nu} \tau \approx \frac{\lambda(\mathcal{E})}{\lambda(U)} \cdot \mathbb{E}_{\mu} \sigma \approx \mathrm{const} \cdot \varepsilon^{\alpha}
$$

If λ is not invariant: consider

$$
d \widetilde{X}_{t}^{\varepsilon}=\frac{1}{\varepsilon} v\left(\widetilde{X}_{t}^{\varepsilon}\right) d t+\widetilde{u}\left(\widetilde{X}_{t}^{\varepsilon}\right) d t+\sigma\left(\widetilde{X}_{t}^{\varepsilon}\right) d W_{t},
$$

(replace u by some \widetilde{u} so that λ is invariant for the new process).

By the Girsanov Theorem:

$$
\widetilde{\nu} \approx \nu, \quad \mathbb{E}_{\widetilde{\nu}} \widetilde{\tau} \approx \mathbb{E}_{\nu} \tau
$$

So, $\mathbb{E}_{\nu} \tau \approx \frac{\lambda(\mathcal{E})}{\lambda(U)} \cdot \mathbb{E}_{\widetilde{\mu}} \widetilde{\sigma}$ (the gluing conditions are the same as for the measure-preserving process).

(4) Why does $\mathbb{E}_{x} \sigma^{k} \rightarrow 0$ as $\varepsilon \downarrow 0$? (time to reach U^{k})
Let $u^{\varepsilon}(t, y), y \in M \backslash U_{k}$, be the probability that the process starting at y does not reach U_{k} before time t.

$$
\frac{\partial u^{\varepsilon}(t, y)}{\partial t}=\left(L_{D}+\frac{1}{\varepsilon} L_{v}\right) u^{\varepsilon}
$$

$u^{\varepsilon}(0, y)=1, y \in M \backslash U_{k}, \quad u^{\varepsilon}(t, y)=0, \quad t>0$.
(a) Lemma (Zlatos): All $H_{0}^{1}\left(M \backslash U_{k}\right)$-eigenvalues for $v \nabla$ are zero on \mathcal{E} implies that the $L^{2}(\mathcal{E})$ norm (and so $L^{1}(\mathcal{E})$-norm) of $u^{\varepsilon}(t, \cdot)$ tends to zero as $\varepsilon \downarrow 0$ for each $t>0$.
(b) A uniform bound on fundamental solution doesn't get affected by adding an incompressible drift term.
(a) and (b) imply that $\mathbb{E}_{x} \sigma \rightarrow 0$. With some effort possible to show that $\mathbb{E}_{x} \sigma^{k} \rightarrow 0$.

Part 2: Averaging of deterministic perturbations

Recall

$$
\begin{gathered}
d X_{t}^{\varkappa, \varepsilon}=\frac{1}{\varepsilon} v\left(X_{t}^{\varkappa, \varepsilon}\right) d t+b\left(X_{t}^{\varkappa, \varepsilon}\right) d t+ \\
\varkappa u\left(X_{t}^{\varkappa, \varepsilon}\right) d t+\sqrt{\varkappa} \sigma\left(X_{t}^{\varkappa, \varepsilon}\right) d W_{t} .
\end{gathered}
$$

Let $Y_{t}^{\varkappa, \varepsilon}=h\left(X_{t}^{\varkappa, \varepsilon}\right)$ be the corresponding process on the graph \mathbb{G}. We demonstrated that the distribution of $Y_{t}^{\varkappa, \varepsilon}$ converges, as $\varepsilon \downarrow 0$, to the distribution of a limiting process, which will be denoted by Z_{t}^{χ}. Z_{t}^{χ}, in turn, converges to the distribution of a limiting Markov process on \mathbb{G} when $\varkappa \downarrow 0$.

The limiting process Z_{t} can be described as follows. It is a Markov process with continuous trajectories which moves deterministically along an edge I_{k} of the graph with the speed

$$
\bar{b}_{k}\left(h_{k}\right)=\frac{1}{2}\left(T_{k}\left(h_{k}\right)\right)^{-1} \int_{\gamma_{k}\left(h_{k}\right)} \frac{2\langle b, \nabla H\rangle}{|\nabla H|} d l .
$$

If the process reaches V corresponding to an ergodic component, then it either remains at V forever or spends exponential time in V and then continues with deterministic motion away from V along a randomly selected edge (with probabilities which can be specified). The same if V corresponds to a saddle point, but no exponential delay.

Theorem 2 The measure on on $C([0, \infty), \mathbb{G})$ induced by the process Z_{t}^{\varkappa} converges weakly to the measure induced by the process Z_{t} with the initial distribution $h\left(X_{0}^{\varepsilon}\right)$.

The process Z_{t} is defined by the deterministic system. The stochastic perturbations are used just for regularization purposes.

Part 3.

$$
\begin{gathered}
\dot{X}_{t}^{x}=b\left(X_{t}^{x}\right), \quad X_{0}^{x}=x \in \mathbb{R}^{d} \\
d X_{t}^{x, \varepsilon}=b\left(X_{t}^{x, \varepsilon}\right) d t+\varepsilon \sigma\left(X_{t}^{x, \varepsilon}\right) d W_{t}, \quad X_{0}^{x, \varepsilon}=x
\end{gathered}
$$

in terms of PDEs:

$$
\begin{gathered}
\frac{\partial u^{\varepsilon}}{\partial t}=\frac{\varepsilon^{2}}{2} \sum_{i, j=1}^{d} a_{i j}(x) \frac{\partial^{2} u^{\varepsilon}}{\partial x_{i} \partial x_{j}}+b(x) \cdot \nabla_{x} u^{\varepsilon}, \\
u^{\varepsilon}(0, x)=g(x), x \in \mathbb{R}^{d} .
\end{gathered}
$$

$$
u^{\varepsilon}(t, x)=\mathrm{E} g\left(X_{t}^{x, \varepsilon}\right) .
$$

Action functional:

$S_{0, T}(\varphi)=\frac{1}{2} \int_{0}^{T} \sum_{i, j=1}^{d} a^{i j}\left(\varphi_{t}\right)\left(\dot{\varphi}_{t}^{i}-b_{i}\left(\varphi_{t}\right)\right)\left(\dot{\varphi}_{t}^{j}-b_{j}\left(\varphi_{t}\right)\right) d t$,
if φ - absolutely continuous,

$$
\begin{aligned}
& \quad S_{0, T}(\varphi)=+\infty, \quad \text { otherwise. } \\
& a^{i j}=\left(a^{-1}\right)_{i j} .
\end{aligned}
$$

Quasi-potential:

$$
\begin{gathered}
V_{m n}=V\left(O_{m}, O_{n}\right)= \\
\inf _{T}\left\{S_{0, T}(\varphi): \varphi(0)=O_{m}, \varphi(T)=O_{n}\right\} .
\end{gathered}
$$

$\tau_{m n}^{\varepsilon}$ - the time it takes the process to go from O_{m} to a small neighborhood of O_{n}.

$$
\tau_{m n}^{\varepsilon} \sim \exp \left(V_{m n} / \varepsilon^{2}\right)
$$

Consider the process (and solution of PDE) at times $t(\varepsilon)$ with $\ln (t(\varepsilon)) \sim \lambda / \varepsilon^{2}$. Suppose, for example, that $x \in D_{1}$ and $V_{12}<V_{21}$.

If $\lambda<V_{12}$, then $u^{\varepsilon}(t(\varepsilon), x) \rightarrow g\left(O_{1}\right)$.
If $\lambda>V_{12}$, then $u^{\varepsilon}(t(\varepsilon), x) \rightarrow g\left(O_{2}\right)$.

Nonlinear problem:

$$
\begin{gathered}
\frac{\partial u^{\varepsilon}}{\partial t}=\frac{\varepsilon^{2}}{2} \sum_{i, j=1}^{d} a_{i j}\left(x, u^{\varepsilon}\right) \frac{\partial^{2} u^{\varepsilon}}{\partial x_{i} \partial x_{j}}+b(x) \cdot \nabla_{x} u^{\varepsilon}, \\
u^{\varepsilon}(0, x)=g .
\end{gathered}
$$

equivalent to the system

$$
\begin{gathered}
d X_{s}^{t, x, \varepsilon}=b\left(X_{s}^{t, x, \varepsilon}\right) d t+\varepsilon \sigma\left(X_{s}^{t, x, \varepsilon}, u^{\varepsilon}\left(t-s, X_{s}^{t, x, \varepsilon}\right)\right) d W_{s}, \\
u^{\varepsilon}(t, x)=\mathrm{E} g\left(X_{t}^{t, x, \varepsilon}\right) .
\end{gathered}
$$

Construct \tilde{V}_{12} using $a\left(t, g\left(x_{0}\right)\right)$.
If $\lambda<\tilde{V}_{12}$, then still $u^{\varepsilon}(t(\varepsilon), x) \rightarrow g\left(O_{1}\right)$.
If $\lambda>\tilde{V}_{12}$, then new effects appear for u^{ε} and the processes.

Result in the non-linear case (2 equilibriums):

Theorem:

$$
\lim _{\varepsilon \downarrow 0} u^{\varepsilon}\left(\exp \left(\lambda / \varepsilon^{2}\right), x\right)=c_{n}(\lambda), \quad x \in D_{n} .
$$

Corollary: If $x \in D_{1}$, then the distribution of $X_{\exp \left(\lambda / \varepsilon^{2}\right), x, \varepsilon}^{\exp (\lambda / 2)}$ converges to the measure $\mu_{1}^{\lambda}=$ $a_{1} \delta_{O_{1}}+a_{2} \delta_{O_{2}}$, where the coefficients a_{1} and a_{2} can be found from the equations $c_{1}(\lambda)=$ $a_{1} g\left(O_{1}\right)+a_{2} g\left(O_{2}\right), a_{1}+a_{2}=1$.

Multiple equilibriums.

- Need to look at $V_{m n}^{a(x, c)}=V^{a(x, c)}\left(O_{m}, O_{n}\right)$, which determine the hierarchy of cycles;
- The hierarchy of cycles may evolve in time (i.e., depends on λ).

