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Skew product, deterministic representation

We consider random maps of the form

{T1,T2,p1,p2}

where the maps Ti are chosen iid with probability pi . Classical
setting: constant probabilities and skew product representation

T (x , ω) = (Tω0(x), σ(ω)).

We will consider (will need!) pi = pi(x) spatially dependent
probabilities where the associated Markov process is

P(x ,A) = p1(x)1A(T1(x)) + p2(x)1A(T2(x)).

To realize this as a ‘skew product’ we use the following
geometric idea
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Constant probabilities: X : (x , ω) ∈ [0,1]× [0,1].
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Spatially dependent probabilities
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x

S(x , ω) = (Tω0 , ϕ(x , ω))U. Victoria: Bose CLT for random maps



Limit theorems for random expanding

Assume Ti ∈ expanding Lasota-Yorke maps.
[0,1] = ∪[aj ,aj+1] = ∪I(i)

j

Ti : I(i)
j → [0,1], C2 and expanding

|T ′i | ≥ λi > 1
Assuming inf pi(x) > 0 the representation leads to a piecewise
expanding, 2D-map of the unit square into itself.

T_3 I_j

p_2

P_3

p_1

I_j

Works best if the pi are also locally smooth with respect to Ij ;
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Correlation decay and Central Limit Theorem

With S as above, BV = 2D bounded variation functions, the
transfer operator PS is quasicompact. Then

1 There is an ACIPM for S, dν = h d(m×m) (m= Lebesgue).
2 There is a ρ < 1 such that f ∈ BV , g ∈ L∞ and

∫
f dx = 0

then ∣∣∣∣∫ f · g ◦ Sndν
∣∣∣∣ ≤ C‖f‖BV‖g‖∞ρn

3 Assume S weakly mixing and f ∈ BV with
∫

fdν = A.
There exists σ2 ≥ 0 such that

Snf − nA√
n

→ N(0, σ)

Convergence is in distribution and σ2 > 0 iff f is not a
coboundary for S.
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A few remarks on CLT

Quasicompactness and correlation decay:
See Liverani (2011): Multidimensional . . . pedestrian
approach.
Spectral approach to CLT (and other limit theorems):
See Gouëzel (2015?, expository)
Why is f ∈ BV natural: Consider the perturbed transfer
operator

Pt (h) = PS(eitf h), t ∈ R

and study spectral stability as t → 0.
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Embedding the Σnf =
∑n−1

k=0 f ◦ Sk

∫
P2

t ϕ · ψ dm =

∫
PSeitfPSeitfϕ · ψ dm

=

∫
eitfPSeitfϕ · ψ ◦ S dm

=

∫
eitf◦Seitfϕ · ψ ◦ S2 dm

=

∫
eitΣ2fϕ · ψ ◦ S2 dm

get ∫
Pn

t ϕ ·Ψ dm =

∫
eitΣnfϕ · ψ ◦ Sn dm

Setting ϕ = ψ = 1 leads to characteristic function

E(eitΣnf ) =

∫
Pn

t ϕ ·Ψ dm =

∫
Pn

t 1 dm
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Variance and correlation decay

In theorem above, we identify:

σ2 =

∫
f̃ 2dm + 2

∑
k

∫
f̃ · f̃ ◦ Skdm,

where f̃ = f − A. Key condition to obtain CLT via spectral
argument is the summability of correlations:∑

k

∫
f̃ · f̃ ◦ Skdm <∞

as expected.

Other decay rates like stretched exponential or even polynomial
are known for maps with indifferent fixed points. These are the
so-called intermittent maps.
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Intermittent maps of the interval

An example.
Fix 0 < α <∞. Set

Tα(x) :=

{
x + 2αx1+α x ∈ [0,1/2)
2x − 1 x ∈ [1/2,1)
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Orbits are mostly spread chaotically throughout [0,1)
interspersed with short periods getting ‘stuck’ near the neutral
fixed point at x = 0.

The periods of getting stuck are the intermittencies.
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An orbit histogram gives a picture of an invariant density for the
map Tα:

It is known that the density has an order O(x−α) singularity
near x = 0.
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History for single map 1

Liverani, Saussol, Vaienti (ETDS 1999) established
regularity properties of the invariant density for Tα and
proved sub-exponential decay of correlation in the case of
regular fixed point (i.e. 0 < α < 1 ) and finite ACIM:

Corn(g, f ) :=

∫
(g ◦ T n) f dµ−

∫
g dµ

∫
f dµ

|Corn(g, f )| ≤ C(f )||g||∞(log n)
1
α n1− 1

α

for f ∈ C1 and g ∈ L∞. µ is the ACIM
The maps Tα above are known as LSV-maps. Related:
Pomeau-Manneville maps.
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History for single map 2

LS Young (Israel J. Math 1999) induced away from the fixed
point and studied return time asymptotices on ∆ = [1/2,1].
Led to a systematic approach for many non-uniformly
hyperbolic systems known as Young Towers or Markov
extensions.
Links invariant measures, mixing and correlation decay
rates to a single intuitive estimate.
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Young Towers

If R(x) = n + 1 then F (x) := T n+1
α (x) ∈ [1/2,1]
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ACIM ν ∼ m (m= Lebesgue) for T depends on∑
k

m(∆k ) <∞

For f ∈ Cβ, g ∈ L∞

|Corn(g, f )| ≤ C(f )||g||∞
∑
k>n

m(∆k )

For LSV, careful calculus estimate gives

m(∆k ) =
1
2

xk = O
(

n−
1
α

)
Distortion control required:∣∣∣∣DF (x)

DF (y)
− 1
∣∣∣∣ ≤ Cθd(F (x),F (y))
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Summary for LSV maps

For T = Tα, invariant ν = hdm, and Corn(f ,g) = O(n1− 1
α )

H. Hu, 0. Sarig and S. Gouëzel (2002-2004) showed the
correlation rate is sharp when 0 < α < 1.
Central limit theorems hold when
ν = 1

α − 1 > 1⇔ 0 < α < 1
2

When α ≥ 1 the ACIM is σ− finite. Melbourne &Terhesiu
(Invent. 2012) established mixing and correlation decay
estimates for suitably normalized correlation.
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Random intermittent maps

Let 0 < α < β <∞ and Tα,Tβ two intermittent LSV maps
and consider

T := (Tα,Tβ,p1,p2)

the associated random dynamical system.
We can represent T as a deterministic skew product on
[0,1]× [0,1) by

S(x , y) = (Tα(ω)(x), σ(ω))

Here

σ(ω) =

{
ω
p1

if ω ∈ [0,p1)
ω−p1

p2
if ω ∈ [p1,1)

;α(ω) =

{
α if ω ∈ [0,p1)
β if ω ∈ [p1,1)

This is just the independent (p1,p2)− shift
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In order to apply Young’s construction, we need analogues of
the intervals In and Jn from the single map case. Since the
position xn = xn(ω) (similarly x ′n(ω)), instead of intervals we see
the following picture:

∆0 = [1/2,1)× [0,1) and the return sets In and Jn are unions
of 2n rectangles stacked ’vertically’
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The key estimates are again∑
k>n

∑
j≤2k

m ×m (Jj) =
∑
k>n

∑
j

Eω(x ′j (ω)− x ′j+1(ω))

=
1
2

∑
k>n

∑
j

Eω(xj(σω)− xj+1(σω))

=
∑
k>n

∑
j

Eω(xj(ω))− Eω(xj+1(ω))

=
∑
k>n

Eω(xk (ω))

So we need to calculate the expected position of xk (ω) over the
randomizing variable ω.
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The only completely obvious bounds are

xn(α) ≤ xn(ω) ≤ xn(β)

where xn(α) is the non-random point under parameter α and
similar for xn(β).
With a little care, we can derive the following exact asymptotics:

Proposition
For 0 < α ≤ β <∞, for a.e. ω:

lim
n

n
1
α xn(ω)

1
2α
− 1

α p
− 1

α
1

= 1

So xn(ω) ∼ 1/2α−
1
α p
− 1

α
1 n−

1
α . We can see this is the ’right’

result by setting p1 = 1 where we recover the same sharp
estimate due to LS Young for a single map at parameter α.
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The heuristic:
For large n, most strings ωn

0 see about p1 · n occurrences of α,
pushing the position strongly toward xn(α). The fast escape
process therefore dominates the asymtpotics.
To make this precise, we need a large deviations result.

Theorem (Hoeffding, 1963)

Let Xk be an independent sequence of RV, with

0 ≤ Xk ≤ 1 ∀k

Set X̄n = 1
n
∑n

k=1 Xk and En = E(X̄n) Then for each
0 < t < 1− p1

P{X̄n − En > t} ≤ exp(−2nt2)

With exponentially decaying deviations, a simple Borel-Cantelli
argument suffices to get pointwise convergence, almost surely.
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At any rate, it follows that Eω(xn(ω)) = O(n−
1
α ). Therefore

Theorem
Let 0 < α < β ≤ 1. Then

there is an ACIPM dν = hdm ×m for the random skew S.
S is mixing with respect to ν.

|Corn(g, f )| ≤ C(f )||g||∞n1− 1
α for f Hölder and g ∈ L∞

the CLT holds for Hölder observables when 0 < α < 1/2.

β ≤ 1⇐ bounded distortion of the return map F .

We have not really used the exact asymptotics. These allow the
following extended limit theorems. Here we lean heavily on
machinery developed by Gouëzel (ETDS 2007 and earlier
partial results).
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Theorem
0 < α < β ≤ 1 and c :=

∫
f (0, ω)dω. The following (extended)

limit theorems hold:
1 If 1

2 ≤ α < 1 and c = 0, suppose there exists a
γ > β

α(α− 1
2) such that |f (x , ω)− f (0, ω)| ≤ Cf xγ . Then

there exists σ2 ≥ 0 such that

1√
n

Snf → N (0, σ2).

2 If α = 1
2 and c 6= 0 then Snf/

√
c2An ln n→ N (0,1).

3 If 1
2 < α < 1 and c 6= 0 then Snf/nα → Z where the

random variable Z has characteristic function given by

E(exp(itZ )) = exp{−A|c|
1
α Γ(1− 1

α
) cos(π/2α)

· |t |
1
α (1− i sgn(ct) tan(π/2α))}

.
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Results for the Markov process

Most of the above is framed in terms of the deterministic skew
S. What can be factored down to the random map (say, as a
Markov process on [0,1])?

Stationary measure It turns out that the invariant density
h for S must be almost surely independent of ω. The
probability density ĥ(x) = Eω(h(x , α) is the density of a
stationary measure for T . This follows from: PS preserves
x−measurable functions on the square and if g ∈ L1

depends only on the x−coordinate, then x− almost surely:

Eω(PSg(x , ω)) = PT g(x)

Correlation decay Same observation allows one to factor
the correlation decay down to T :∫

g · Pn
T fdm ≤ C(f )‖g‖∞n1− 1

α

Since h ≥ δ > 0 can replace dm by dν = h dm.
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CLT There is no satisfactory interpretation of the CLT
factoring down from the skew. Instead, the natural question
is the quenched CLT: For almost every fixed ω, setting
Snf = Snf (ω) as the sequence of RV, look for a central limit
theorem. See, eg: Aimino, Nicol and Vaienti 2014 and
references for sample results in the expanding on
average case.

Thanks!
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