
Weak noise and non hyperbolic unstable fixed points

Giambattista Giacomin
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Origin of the question

Consider the SDE

dX ε
t = −U ′ (X ε

t ) dt + εdWt

where ε ≥ 0, {Wt}t≥0 is a standard Brownian motion, and

U(x) = sin(x)− x

0 is a saddle point if ε = 0

can go through 0 if ε > 0
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t ) dt + εdWt

where ε ≥ 0, {Wt}t≥0 is a standard Brownian motion, and

U(x) = sin(x)− x

0 is a saddle point if ε = 0

can go through 0 if ε > 0

For ε > 0 (small) much of the time is spent at 0 =⇒ relation to case

U(x) = −x3

6
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Origin of the question

Easy to guess time scale:

X ε
t = X ε

0 +

∫ t

0
(1− cos (X ε

s )) ds + εWt

so if we set Yt = ε−2/3Xε−2/3t (think of ε−2/3X0 = O(1))

Yt = ε−2/3X0 + ε−4/3

∫ t

0

(
1− cos

(
ε2/3Ys

))
ds + ε1/3Wε−2/3t
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Transit time X0 = −π and

inf{t > 0 : X ε
t = π and there exists s < t s.t. X ε

s = 0}
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(1− cos (X ε
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so if we set Yt = ε−2/3Xε−2/3t (think of ε−2/3X0 = O(1))

Yt = ε−2/3X0 + ε−4/3

∫ t

0

(
1− cos

(
ε2/3Ys

))
ds + ε1/3Wε−2/3t

≈ ε−2/3X0 +

∫ t

0

1

2
Y 2
s ds + Bt

Transit time X0 = −π and

inf{t > 0 : X ε
t = π and there exists s < t s.t. X ε

s = 0}

so we expect

ε2/3τε
εց0
=⇒ T3 non degenerate r.v.

G.G. (Paris Diderot and LPMA) 8th Random Dyn. Sys. Workshop (2015) 3 / 25



About T3

Universal character of T3: for example [Sigeti, Horsthemke JSP 1989]

Pseudo-regular oscillations induced by external noise

They compute in particular:

E[T3] = 6

(
1

3

)4/3

Γ2(1/3) = 9.952 . . .

var(T3) =
1

3
E[T3]

2
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Universal character of T3: for example [Sigeti, Horsthemke JSP 1989]

Pseudo-regular oscillations induced by external noise

They compute in particular:

E[T3] = 6

(
1

3

)4/3

Γ2(1/3) = 9.952 . . .

var(T3) =
1

3
E[T3]

2

elementary but deep point

noise generates a time length (ε−2/3
E[T3])
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From Sigeti and Horsthemke 89

Pseudo-regular oscillations induced by external noise:
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From Sigeti and Horsthemke 89

Law of T3: There is an effective cutoff time before which passage through
the saddle node is highly improbable. A theoretical analysis indicates that
this cutoff occurs at 0.3058 times the mean time.
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Same, in modern times
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Other, more general, motivation: U(x) ≈ −xd/(2d)

Escape/Transit from unstable points:

a

a

−a

−a

U(x)

U(x)

x

x

d even

d odd
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Other, more general, motivation

In the hyperbolic case (d = 2), U ′′(0) < 0 (i.e. top of a hill), the natural
problem is X ε

0 = 0 and by solving the linearized equation one easily proves
that the escape time τε = inf{t > 0 : |X ε

t | = const.} is (in probability)

τε =
1

|U ′′(0)| log
(
1

ε

)
+ O(1)
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t | = const.} is (in probability)

τε =
1

|U ′′(0)| log
(
1

ε

)
+ O(1)

Non hyperbolic cases:

saddle points (U(x) = − 1
2d x

d + . . ., d = 3, 5, . . .)

subcritical pitchfork bifurcations (U(x) = − 1
d
xd + . . ., d = 4, 6, . . .)

Transit/escape from flat unstable points −→ nonlinear fluctuations
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Results in the literature?

Several papers in physics (above all in the 90’s).

They

1 capture the scaling
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Results in the literature?

Several papers in physics (above all in the 90’s).

They

1 capture the scaling

2 give analytical approximations (?) to the distribution of rescaled
escape/transit times

However

1 everything is very heuristical (often guesswork)

2 completely fail to capture tail behaviors
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General set up

We consider the strong solution X to the stochastic differential equation

X0 = x
(ε)
0 , dXt = −U ′(Xt)dt + ε dWt
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General set up

We consider the strong solution X to the stochastic differential equation

X0 = x
(ε)
0 , dXt = −U ′(Xt)dt + ε dWt

We are after U(x)
x→0∼ − xd

2d (+ . . . see previous figure!)

τa,ε(X ) :=

{
inf {t : Xt = a} , if d is odd (X0 = −a),

inf {t : |Xt | = a} , if d is even (X0 = 0).
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At last, the results

Theorem

We have
L − lim

εց0
ε2(d−2)/d τa,ε(X ) =: Td
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For a random variable Z ≥ 0, we write

ΦZ (λ) := E[exp(λZ )]

We set
λ0 = λ0(Z ) := sup{λ : ΦZ (λ) < ∞}

so ΦZ (·) is well defined and analytic in {λ ∈ C : ℜ(λ) < λ0}.
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ΦZ (λ) := E[exp(λZ )]

We set
λ0 = λ0(Z ) := sup{λ : ΦZ (λ) < ∞}

so ΦZ (·) is well defined and analytic in {λ ∈ C : ℜ(λ) < λ0}.
The Theorem is of course equivalent to

lim
εց0

E

[
exp

(
λε2(d−2)/d τa(X )

)]
= ΦTd

(λ) for every λ < 0

Is ΦTd
(λ) < ∞ for some λ > 0?
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Tail behavior (d odd)

We introduce the Schrödinger operator L with domain C 2(R;R):

Lu(x) = −1

2
u′′(x) + qd (x)u(x) .

where

qd(x) :=
1

2
(V ′(x))

2 − 1

2
V ′′(x) so q3(x) =

1

2
x +

1

8
x4

Classical deep results ensure that the equation Lu = λu has a solution
that is in L

2(R;R) if and only if λ = λ̃j = λ̃j ,d , with λ̃0 < λ̃1 < . . .
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qd(x) :=
1

2
(V ′(x))

2 − 1

2
V ′′(x) so q3(x) =

1

2
x +

1

8
x4

Classical deep results ensure that the equation Lu = λu has a solution
that is in L

2(R;R) if and only if λ = λ̃j = λ̃j ,d , with λ̃0 < λ̃1 < . . .

Theorem

λ0 := λ0(Td ) is (strictly) positive and it coincides with λ̃0.Moreover there
exists a positive constant Cd such that

ΦTd
(λ)

λրλ0∼ Cd

λ0 − λ

ΦTd
(·) extends to the whole of C as a meromorphic function.
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The results (d = 3 at times)

Theorem

For λ → −∞ we have

ΦT3
(λ) =

(
1 + O(|λ|−1/4)

)
exp

(
−C3/4|λ|3/4

)

where C3/4 = 3Γ (−(3/4))
2
/(29/4

√
2π).
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The results (d = 3 at times)

Theorem

For λ → −∞ we have

ΦT3
(λ) =

(
1 + O(|λ|−1/4)

)
exp

(
−C3/4|λ|3/4

)

where C3/4 = 3Γ (−(3/4))
2
/(29/4

√
2π).

Corollary (via Tauberian argument)

lim
t→∞

1

t
logP (Td > t) = −λ0(Td )

lim
tց0

td/(d−2) logP (Td < t) = −cd < 0 and explicit

i.e. P (T3 < t) = exp

(
−c3 + o(1)

t3

)
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The results

By studying the characteristic function ϕX (s) := E exp(isX ):

Proposition

fTd
(·) is real analytic except at 0 and it can be extended to an analytic

function in a cone containing the positive real axis. Moreover for t → ∞

fTd
(t) = Cd exp (−λ0(Td )t) + O (exp(−bt)) ,

for any choice of b ∈ (λ̃0, λ̃1) = (λ0(Td ), λ̃1).
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Some ideas of the proofs (d odd)

Proofs can be separated into two (entangled!) blocks:

1 Convergence of ε2(d−2)/d τa,ε(X ) to a limit variable called Td :
probability arguments (martingale/stochastic analysis tools)

2 Analysis of the law of Td : analytic arguments (WKB)
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2 Analysis of the law of Td : analytic arguments (WKB)

We start with a sloppy argument. . . Scaling

Yt := ε−2/dXε−2(d−2)/d t Bt := ε(d−2)/dWε−2(d−2)/d t

so Vε(y) = ε−2Uε(ε
2/dy), Y0 = ε−2/dy

(ε)
0 and

dYt = −(Vε)
′(Yt)dt + dBt

Itô formula: exp(λt)fλ(Yt) is a local martingale if

1

2
f ′′λ (y)− V ′

ε(y)f
′
λ(y) + λfλ(y) = 0
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Some ideas of the proofs (d odd)

Let us do like if Mt := exp(λt)fλ(Yt) is a martingale:

E [exp(λτε−2/da(Y )] fλ(aε
−2/d ) = E

[
Mτ

ε−2/d a
(Y )

]
= M0 = fλ

(
y
(ε)
0

)
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and taking ε ց 0, with T = Td (d odd)
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fλ(−∞)
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Let us do like if Mt := exp(λt)fλ(Yt) is a martingale:

E [exp(λτε−2/da(Y )] fλ(aε
−2/d ) = E

[
Mτ

ε−2/d a
(Y )

]
= M0 = fλ

(
y
(ε)
0

)

and taking ε ց 0, with T = Td (d odd)

ΦT (λ) = E [exp(λT )] =
fλ(−∞)

fλ(+∞)

There must be something wrong because there are plenty of fλ!
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Some ideas of the proofs: convergence

First issue: convergence

τε−2/da(Y ) = ε2(d−2)/d τa(X )
εց0
=⇒ Td
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First issue: convergence

τε−2/da(Y ) = ε2(d−2)/d τa(X )
εց0
=⇒ Td

Path we have taken for the convergence part:

1 introduce the scale function

sε(y) :=

∫ y

0
exp (2Vε(u)) du

so that sε(Y·) is a local martingale and (Dubins-Schwarz) can be
transformed into standard Brownian motion by time change.
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and of convergence properties of sε and s ′ε ◦ (sε)−1.
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1 introduce the scale function

sε(y) :=

∫ y

0
exp (2Vε(u)) du

so that sε(Y·) is a local martingale and (Dubins-Schwarz) can be
transformed into standard Brownian motion by time change.

2 the original question can now be restated in terms of a standard BM
and of convergence properties of sε and s ′ε ◦ (sε)−1.

3 . . . and the convergence issue is taken care of (;-)
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A formula for the law of the limit variable

Important point

Once we have the convergence we can (and do) choose to work with
Vε(y) = V (y) = −yd/(2d), so the ODE to study does not contain ε

1

2
f ′′λ (y)− V ′(y)f ′λ(y) + λfλ(y) = 0

and from now we stick to d = 3, i.e. V (y) = −1
6y

3.
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Once we have the convergence we can (and do) choose to work with
Vε(y) = V (y) = −yd/(2d), so the ODE to study does not contain ε

1

2
f ′′λ (y)− V ′(y)f ′λ(y) + λfλ(y) = 0

and from now we stick to d = 3, i.e. V (y) = −1
6y

3.

It is time to go back and try to really ask whether or not Mt

dMt = exp(λt)f ′λ(Yt)dBt

is a true martingale. Sufficient condition:

E

[∫ τ
ε−2/d a

(Y )

0
exp(2λs)(f ′λ(Ys))

2
ds

]
< ∞

and requiring supy∈R |f ′λ(y)| < ∞ does the job for λ < 0.
G.G. (Paris Diderot and LPMA) 8th Random Dyn. Sys. Workshop (2015) 19 / 25



A formula for the law of the limit variable

We are therefore in front of the ODE with somewhat atypical b.c.’s

{
1
2 f

′′
λ (y)− V ′(y)f ′λ(y) + λfλ(y) = 0

lim supy→±∞ |f ′λ(y)| < ∞
(ODE)
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We are therefore in front of the ODE with somewhat atypical b.c.’s

{
1
2 f

′′
λ (y)− V ′(y)f ′λ(y) + λfλ(y) = 0

lim supy→±∞ |f ′λ(y)| < ∞
(ODE)

and the formula (with T := T3 and λ ≤ 0)

ΦT (λ) = E [exp(λT )] =
fλ(−∞)

fλ(+∞)

should hold. So (ODE) should have only one solution (up to
multiplicative constant).

The point is that. . .

the y → ±∞ behaviors of solutions to (ODE) are limited!
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Schrödinger and WKB enter the game

As a matter of fact a WKB analysis shows that

1

2
f ′′λ (y)− V ′(y)f ′λ(y) + λfλ(y) = 0 (ODE)

has only one solution (up to a multiplicative constant) under conditions of
boundedness of f ′λ(±∞). WKB provides also explicit formulas for
asymptotic behaviors.

G.G. (Paris Diderot and LPMA) 8th Random Dyn. Sys. Workshop (2015) 21 / 25



Schrödinger and WKB enter the game

As a matter of fact a WKB analysis shows that

1

2
f ′′λ (y)− V ′(y)f ′λ(y) + λfλ(y) = 0 (ODE)

has only one solution (up to a multiplicative constant) under conditions of
boundedness of f ′λ(±∞). WKB provides also explicit formulas for
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For WKB it is imperative to pass to Schrödinger form: set

uλ(y) = exp(−V (y))fλ(y) = exp

(
1

6
y3

)
fλ(y)
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f ′′λ (y)− V ′(y)f ′λ(y) + λfλ(y) = 0 (ODE)

has only one solution (up to a multiplicative constant) under conditions of
boundedness of f ′λ(±∞). WKB provides also explicit formulas for
asymptotic behaviors.

For WKB it is imperative to pass to Schrödinger form: set

uλ(y) = exp(−V (y))fλ(y) = exp

(
1

6
y3

)
fλ(y)

so

u′′λ(y)− Qλ(y)uλ(y) = 0, Qλ(y) = (V ′)2 − V ′′(y) = y − 1

4
y4 − λ
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Schrödinger and WKB enter the game

u′′λ(y)− Qλ(y)uλ(y) = 0, Qλ(y) = y − 1

4
y4 − 2λ

Formal WKB analysis says that for every λ ∈ C there exist solutions such
that

uλ(y)
y→∞∼ 1

Q
1/4
λ (y)

exp

(
±
∫ y

c

Q
1/2
λ

)
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y→∞∼ 1
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1/4
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exp
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c

Q
1/2
λ

)

and actually this corresponds to an impressive rigorous machinery
[R. Langer, H. Weyl, E. Titchmarsch,. . ., Y. Sibuya].
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Schrödinger and WKB enter the game

u′′λ(y)− Qλ(y)uλ(y) = 0, Qλ(y) = y − 1

4
y4 − 2λ

Formal WKB analysis says that for every λ ∈ C there exist solutions such
that

uλ(y)
y→∞∼ 1

Q
1/4
λ (y)

exp

(
±
∫ y

c

Q
1/2
λ

)

and actually this corresponds to an impressive rigorous machinery
[R. Langer, H. Weyl, E. Titchmarsch,. . ., Y. Sibuya].
In particular solutions are either subdominant (vanishing at infinity) or
dominant (exploding) at infinity.
Notably there is a unique solution subdominant at −∞ with the property:

uλ,sub,−(y)
y→−∞∼ exp

(
y3

6

)
, so fλ(−∞) = 1

and uλ,sub,−(y) is entire in λ (and y).
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What does uλ,sub(y) do for y → ∞?

0 y

uλ,sub,−(y)

uλ,sub,− ∈ L2(R)!
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0 y

uλ,sub,−(y)

uλ,sub,− ∈ L2(R)!

uλ,sub,−(y) = auλ,sub,+(y) + buλ,dom,+(y)
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What does uλ,sub(y) do for y → ∞?

0 y

uλ,sub,−(y)

uλ,sub,− ∈ L2(R)!

uλ,sub,−(y) = auλ,sub,+(y) + buλ,dom,+(y)

i.e.

fλ(y) = exp

(
−y3

6

)(
a(λ)uλ,sub,+(y) + b(λ)uλ,dom,+(y)

)
y→∞∼ b(λ)c(λ)
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Wrapping all up

Therefore now the formula

ΦT (λ) = E [exp(λT )] =
fλ(−∞)

fλ(+∞)

makes sense, a priori for ℜ(λ) ≤ 0.
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ΦT (λ) = E [exp(λT )] =
fλ(−∞)

fλ(+∞)

makes sense, a priori for ℜ(λ) ≤ 0. But the right-hand side is
meromorphic, with poles for λ such that fλ(+∞) = 0, so the left-hand
side coincides with the right-hand side at least for ℜ(λ) < λ0, with λ0 the
bottom of the spectrum of the Schrödinger operator we are considering:

Lu(y) = −1

2
u′′(y) + qd(y)u(y) , q3(y) =

1

2
y +

1

8
y4
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makes sense, a priori for ℜ(λ) ≤ 0. But the right-hand side is
meromorphic, with poles for λ such that fλ(+∞) = 0, so the left-hand
side coincides with the right-hand side at least for ℜ(λ) < λ0, with λ0 the
bottom of the spectrum of the Schrödinger operator we are considering:

Lu(y) = −1

2
u′′(y) + qd(y)u(y) , q3(y) =

1

2
y +

1

8
y4

Also the case λ → −∞ can be tackled by WKB techniques:

Lu(y)− λu = −1

2
u′′(y) + (qd (y)− λ)u(y) = 0
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Conclusions and perspectives

We have established the universal behavior of the leading behavior of
noise induced exit/transit time from/through non hyperbolic
stationary points
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We have established the universal behavior of the leading behavior of
noise induced exit/transit time from/through non hyperbolic
stationary points

We have then established properties of the limit law, notably tail
properties

Questions and perspectives:

Unimodality?

Some higher dimensional cases can be tackled, but generalizations are
not straightforward

Potentially we can give a formula of the type

fTd (t) ∼
∑

j

Cj exp
(
−λ̃jt

)
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