Weak noise and non hyperbolic unstable fixed points

Giambattista Giacomin

Université Paris Diderot and Laboratoire Probabilités et Modèles Aléatoires (LPMA)

November 6th 2015

Joint work with Mathieu Merle (Paris Diderot and LPMA)

Consider the SDE

$$\mathrm{d}X_{t}^{\varepsilon} = -U'\left(X_{t}^{\varepsilon}\right)\,\mathrm{d}t + \varepsilon\,\mathrm{d}W_{t}$$

where $\varepsilon \geq$ 0, $\{ \mathcal{W}_t \}_{t \geq 0}$ is a standard Brownian motion, and

$$U(x) = \sin(x) - x$$

0 is a saddle point if $\varepsilon = 0$

can go through 0 if $\varepsilon > 0$

Consider the SDE

$$\mathrm{d}X_{t}^{\varepsilon} = -U'\left(X_{t}^{\varepsilon}\right)\,\mathrm{d}t + \varepsilon\,\mathrm{d}W_{t}$$

where $\varepsilon \geq 0$, $\{W_t\}_{t\geq 0}$ is a standard Brownian motion, and

$$U(x) = \sin(x) - x$$

For $\varepsilon > 0$ (small) much of the time is spent at $0 \Longrightarrow$ relation to case

$$U(x) = -\frac{x^3}{6}$$

Easy to guess time scale:

$$X_t^{\varepsilon} = X_0^{\varepsilon} + \int_0^t \left(1 - \cos\left(X_s^{\varepsilon}
ight)
ight) \,\mathrm{d}s + \varepsilon W_t$$

so if we set $Y_t = arepsilon^{-2/3} X_{arepsilon^{-2/3} t}$ (think of $arepsilon^{-2/3} X_0 = O(1)$)

$$Y_t = \varepsilon^{-2/3} X_0 + \varepsilon^{-4/3} \int_0^t \left(1 - \cos\left(\varepsilon^{2/3} Y_s\right) \right) \, \mathrm{d}s + \varepsilon^{1/3} W_{\varepsilon^{-2/3} t}$$

Easy to guess time scale:

$$X_t^{arepsilon} = X_0^{arepsilon} + \int_0^t \left(1 - \cos\left(X_s^{arepsilon}
ight)
ight) \mathrm{d}s + arepsilon W_t$$

so if we set $Y_t = \varepsilon^{-2/3} X_{\varepsilon^{-2/3}t}$ (think of $\varepsilon^{-2/3} X_0 = O(1)$)

$$\begin{split} Y_t &= \varepsilon^{-2/3} X_0 + \varepsilon^{-4/3} \int_0^t \left(1 - \cos\left(\varepsilon^{2/3} Y_s\right) \right) \, \mathrm{d}s + \varepsilon^{1/3} W_{\varepsilon^{-2/3} t} \\ &\approx \varepsilon^{-2/3} X_0 + \int_0^t \frac{1}{2} Y_s^2 \, \mathrm{d}s + B_t \end{split}$$

Easy to guess time scale:

$$X_t^{\varepsilon} = X_0^{\varepsilon} + \int_0^t \left(1 - \cos\left(X_s^{\varepsilon}
ight)
ight) \,\mathrm{d}s + \varepsilon W_t$$

so if we set $Y_t = \varepsilon^{-2/3} X_{\varepsilon^{-2/3}t}$ (think of $\varepsilon^{-2/3} X_0 = O(1)$)

$$\begin{split} Y_t &= \varepsilon^{-2/3} X_0 + \varepsilon^{-4/3} \int_0^t \left(1 - \cos\left(\varepsilon^{2/3} Y_s\right) \right) \, \mathrm{d}s + \varepsilon^{1/3} W_{\varepsilon^{-2/3} t} \\ &\approx \varepsilon^{-2/3} X_0 + \int_0^t \frac{1}{2} Y_s^2 \, \mathrm{d}s + B_t \end{split}$$

Transit time $X_0 = -\pi$ and

$$\inf\{t > 0: X_t^{arepsilon} = \pi \text{ and there exists } s < t \text{ s.t. } X_s^{arepsilon} = 0\}$$

Easy to guess time scale:

$$X_t^{\varepsilon} = X_0^{\varepsilon} + \int_0^t \left(1 - \cos\left(X_s^{\varepsilon}
ight)
ight) \,\mathrm{d}s + \varepsilon W_t$$

so if we set $Y_t = \varepsilon^{-2/3} X_{\varepsilon^{-2/3}t}$ (think of $\varepsilon^{-2/3} X_0 = O(1)$)

$$\begin{split} Y_t &= \varepsilon^{-2/3} X_0 + \varepsilon^{-4/3} \int_0^t \left(1 - \cos\left(\varepsilon^{2/3} Y_s\right) \right) \, \mathrm{d}s + \varepsilon^{1/3} W_{\varepsilon^{-2/3} t} \\ &\approx \varepsilon^{-2/3} X_0 + \int_0^t \frac{1}{2} Y_s^2 \, \mathrm{d}s + B_t \end{split}$$

Transit time $X_0 = -\pi$ and

$$\inf\{t > 0: \ X_t^arepsilon = \pi ext{ and there exists } s < t ext{ s.t. } X_s^arepsilon = 0\}$$

so we expect

$$\varepsilon^{2/3}\tau_{\varepsilon} \stackrel{\varepsilon \searrow 0}{\Longrightarrow} T_3$$
 non degenerate r.v.

About T_3

Universal character of T_3 : for example [Sigeti, Horsthemke JSP 1989]

Pseudo-regular oscillations induced by external noise

They compute in particular:

$$\mathbb{E}[T_3] = 6\left(\frac{1}{3}\right)^{4/3} \Gamma^2(1/3) = 9.952\dots$$
$$\operatorname{var}(T_3) = \frac{1}{3} \mathbb{E}[T_3]^2$$

About T_3

Universal character of T_3 : for example [Sigeti, Horsthemke JSP 1989]

Pseudo-regular oscillations induced by external noise

They compute in particular:

$$\mathbb{E}[T_3] = 6\left(\frac{1}{3}\right)^{4/3} \Gamma^2(1/3) = 9.952\dots$$
$$\mathsf{var}(T_3) = \frac{1}{3} \mathbb{E}[T_3]^2$$

elementary but deep point

noise generates a time length $(\varepsilon^{-2/3}\mathbb{E}[T_3])$

From Sigeti and Horsthemke 89

Pseudo-regular oscillations induced by external noise:

From Sigeti and Horsthemke 89

Law of T_3 : There is an effective cutoff time before which passage through the saddle node is highly improbable. A theoretical analysis indicates that this cutoff occurs at 0.3058 times the mean time.

Same, in modern times

Other, more general, motivation: $U(x) \approx -x^d/(2d)$

Escape/Transit from unstable points:

Other, more general, motivation

In the hyperbolic case (d = 2), U''(0) < 0 (i.e. top of a hill), the natural problem is $X_0^{\varepsilon} = 0$ and by solving the linearized equation one easily proves that the escape time $\tau_{\varepsilon} = \inf\{t > 0 : |X_t^{\varepsilon}| = const.\}$ is (in probability)

$$au_arepsilon = rac{1}{|U''(0)|}\log\left(rac{1}{arepsilon}
ight) + O(1)$$

Other, more general, motivation

In the hyperbolic case (d = 2), U''(0) < 0 (i.e. top of a hill), the natural problem is $X_0^{\varepsilon} = 0$ and by solving the linearized equation one easily proves that the escape time $\tau_{\varepsilon} = \inf\{t > 0 : |X_t^{\varepsilon}| = const.\}$ is (in probability)

$$au_arepsilon = rac{1}{|U''(0)|}\log\left(rac{1}{arepsilon}
ight) + O(1)$$

Non hyperbolic cases:

- saddle points $(U(x) = -\frac{1}{2d}x^d + ..., d = 3, 5, ...)$
- subcritical pitchfork bifurcations $(U(x) = -\frac{1}{d}x^d + ..., d = 4, 6, ...)$

Other, more general, motivation

In the hyperbolic case (d = 2), U''(0) < 0 (i.e. top of a hill), the natural problem is $X_0^{\varepsilon} = 0$ and by solving the linearized equation one easily proves that the escape time $\tau_{\varepsilon} = \inf\{t > 0 : |X_t^{\varepsilon}| = const.\}$ is (in probability)

$$au_arepsilon = rac{1}{|U''(0)|}\log\left(rac{1}{arepsilon}
ight) + O(1)$$

Non hyperbolic cases:

• saddle points $(U(x) = -\frac{1}{2d}x^d + ..., d = 3, 5, ...)$

• subcritical pitchfork bifurcations $(U(x) = -\frac{1}{d}x^d + ..., d = 4, 6, ...)$ Transit/escape from *flat* unstable points \rightarrow nonlinear fluctuations

Several papers in physics (above all in the 90's).

They

capture the scaling

Several papers in physics (above all in the 90's).

They

- capture the scaling
- give analytical approximations (?) to the distribution of rescaled escape/transit times

Several papers in physics (above all in the 90's).

They

- capture the scaling
- give analytical approximations (?) to the distribution of rescaled escape/transit times

However

everything is very heuristical (often guesswork)

Several papers in physics (above all in the 90's).

They

- capture the scaling
- give analytical approximations (?) to the distribution of rescaled escape/transit times

However

- everything is very heuristical (often guesswork)
- completely fail to capture tail behaviors

General set up

We consider the strong solution X to the stochastic differential equation

$$X_0 = x_0^{(\varepsilon)}, \qquad \mathrm{d}X_t = -U'(X_t)\,\mathrm{d}t + \varepsilon\,\mathrm{d}W_t$$

General set up

We consider the strong solution X to the stochastic differential equation

$$X_0 = x_0^{(\varepsilon)}, \qquad \mathrm{d}X_t = -U'(X_t)\,\mathrm{d}t + \varepsilon\,\mathrm{d}W_t$$

We are after $U(x) \stackrel{x \to 0}{\sim} -\frac{x^d}{2d}$ (+... see previous figure!)

$$\tau_{a,\varepsilon}(X) := \begin{cases} \inf \{t : X_t = a\}, & \text{if } d \text{ is odd } (X_0 = -a), \\ \inf \{t : |X_t| = a\}, & \text{if } d \text{ is even } (X_0 = 0). \end{cases}$$

Theorem

We have

$$\mathcal{L} - \lim_{\varepsilon \searrow 0} \varepsilon^{2(d-2)/d} \tau_{a,\varepsilon}(X) =: T_d$$

Theorem

We have

$$\mathcal{L} - \lim_{\varepsilon \searrow 0} \varepsilon^{2(d-2)/d} \tau_{\mathbf{a},\varepsilon}(X) =: T_d$$

For a random variable $Z \ge 0$, we write

$$\Phi_Z(\lambda) := \mathbb{E}[\exp(\lambda Z)]$$

We set

$$\lambda_0 = \lambda_0(Z) := \sup\{\lambda : \Phi_Z(\lambda) < \infty\}$$

so $\Phi_Z(\cdot)$ is well defined and analytic in $\{\lambda \in \mathbb{C} : \Re(\lambda) < \lambda_0\}$.

Theorem

We have

$$\mathcal{L} - \lim_{\varepsilon \searrow 0} \varepsilon^{2(d-2)/d} \tau_{\mathbf{a},\varepsilon}(X) =: T_d$$

For a random variable $Z \ge 0$, we write

$$\Phi_{Z}(\lambda) := \mathbb{E}[\exp(\lambda Z)]$$

We set

$$\lambda_0 = \lambda_0(Z) := \sup\{\lambda : \Phi_Z(\lambda) < \infty\}$$

so $\Phi_Z(\cdot)$ is well defined and analytic in $\{\lambda \in \mathbb{C} : \Re(\lambda) < \lambda_0\}$.

The Theorem is of course equivalent to

$$\lim_{\varepsilon \searrow 0} \mathbb{E} \left[\exp \left(\lambda \varepsilon^{2(d-2)/d} \tau_{a}(X) \right) \right] = \Phi_{\mathcal{T}_{d}}(\lambda) \quad \text{ for every } \lambda < 0$$

Theorem

We have

$$\mathcal{L} - \lim_{\varepsilon \searrow 0} \varepsilon^{2(d-2)/d} \tau_{\mathbf{a},\varepsilon}(X) =: T_d$$

For a random variable $Z \ge 0$, we write

$$\Phi_Z(\lambda) := \mathbb{E}[\exp(\lambda Z)]$$

We set

$$\lambda_0 = \lambda_0(Z) := \sup\{\lambda : \Phi_Z(\lambda) < \infty\}$$

so $\Phi_Z(\cdot)$ is well defined and analytic in $\{\lambda \in \mathbb{C} : \Re(\lambda) < \lambda_0\}$.

The Theorem is of course equivalent to

$$\lim_{\varepsilon \searrow 0} \mathbb{E} \left[\exp \left(\lambda \varepsilon^{2(d-2)/d} \tau_{a}(X) \right) \right] = \Phi_{T_{d}}(\lambda) \quad \text{ for every } \lambda < 0$$

Is $\Phi_{\mathcal{T}_d}(\lambda) < \infty$ for some $\lambda > 0$?

Tail behavior (*d* odd)

We introduce the Schrödinger operator *L* with domain $C^2(\mathbb{R};\mathbb{R})$:

$$Lu(x) = -\frac{1}{2}u''(x) + q_d(x)u(x).$$

where

$$q_d(x) := rac{1}{2} \left(V'(x)
ight)^2 - rac{1}{2} V''(x) \quad ext{so} \quad q_3(x) = rac{1}{2} x + rac{1}{8} x^4$$

Classical deep results ensure that the equation $Lu = \lambda u$ has a solution that is in $\mathbb{L}^2(\mathbb{R};\mathbb{R})$ if and only if $\lambda = \widetilde{\lambda}_j = \widetilde{\lambda}_{j,d}$, with $\widetilde{\lambda}_0 < \widetilde{\lambda}_1 < \ldots$

Tail behavior (*d* odd)

We introduce the Schrödinger operator *L* with domain $C^2(\mathbb{R};\mathbb{R})$:

$$Lu(x) = -\frac{1}{2}u''(x) + q_d(x)u(x).$$

where

$$q_d(x) := rac{1}{2} \left(V'(x)
ight)^2 - rac{1}{2} V''(x) \quad ext{so} \quad q_3(x) = rac{1}{2} x + rac{1}{8} x^4$$

Classical deep results ensure that the equation $Lu = \lambda u$ has a solution that is in $\mathbb{L}^2(\mathbb{R}; \mathbb{R})$ if and only if $\lambda = \widetilde{\lambda}_j = \widetilde{\lambda}_{j,d}$, with $\widetilde{\lambda}_0 < \widetilde{\lambda}_1 < \ldots$

Theorem

 $\lambda_0 := \lambda_0(T_d)$ is (strictly) positive and it coincides with λ_0 . Moreover there exists a positive constant C_d such that

$$\Phi_{T_d}(\lambda) \overset{\lambda
earrow \lambda_0}{\sim} rac{\mathcal{C}_d}{\lambda_0 - \lambda}$$

 $\Phi_{\mathcal{T}_d}(\cdot)$ extends to the whole of \mathbb{C} as a meromorphic function.

The results (d = 3 at times)

Theorem

For $\lambda \to -\infty$ we have

$$\Phi_{\mathcal{T}_3}(\lambda) \,=\, \left(1 + \mathit{O}(|\lambda|^{-1/4})\right) \exp\left(-\mathit{C}_{3/4}|\lambda|^{3/4}\right)$$

where $C_{3/4} = 3\Gamma \left(-(3/4)\right)^2 / (2^{9/4}\sqrt{2\pi})$.

The results (d = 3 at times)

Theorem

For $\lambda \to -\infty$ we have

$$\Phi_{\mathcal{T}_3}(\lambda) \,=\, \left(1 + \mathit{O}(|\lambda|^{-1/4})\right) \exp\left(-\mathit{C}_{3/4}|\lambda|^{3/4}\right)$$

where $C_{3/4} = 3\Gamma \left(-(3/4)\right)^2 / (2^{9/4}\sqrt{2\pi})$.

Corollary (via Tauberian argument)

$$\lim_{t \to \infty} \frac{1}{t} \log \mathbb{P} \left(T_d > t \right) = -\lambda_0(T_d)$$
$$\lim_{t \searrow 0} t^{d/(d-2)} \log \mathbb{P} \left(T_d < t \right) = -c_d < 0 \text{ and explicit}$$
i.e. $\mathbb{P} \left(T_3 < t \right) = \exp \left(-\frac{c_3 + o(1)}{t^3} \right)$

The results

By studying the characteristic function $\varphi_X(s) := \mathbb{E} \exp(isX)$:

Proposition

 $f_{T_d}(\cdot)$ is real analytic except at 0 and it can be extended to an analytic function in a cone containing the positive real axis. Moreover for $t \to \infty$

$$f_{T_d}(t) = C_d \exp\left(-\lambda_0(T_d)t\right) + O\left(\exp(-bt)\right) \,,$$

for any choice of $b \in (\widetilde{\lambda}_0, \widetilde{\lambda}_1) = (\lambda_0(T_d), \widetilde{\lambda}_1).$

Some ideas of the proofs (d odd)

Proofs can be separated into two (entangled!) blocks:

- Convergence of $\varepsilon^{2(d-2)/d} \tau_{a,\varepsilon}(X)$ to a limit variable called T_d : probability arguments (martingale/stochastic analysis tools)
- ② Analysis of the law of T_d : analytic arguments (WKB)

Some ideas of the proofs (d odd)

Proofs can be separated into two (entangled!) blocks:

- Convergence of $\varepsilon^{2(d-2)/d} \tau_{a,\varepsilon}(X)$ to a limit variable called T_d : probability arguments (martingale/stochastic analysis tools)
- ② Analysis of the law of T_d : analytic arguments (WKB)

We start with a sloppy argument...

Some ideas of the proofs (d odd)

Proofs can be separated into two (entangled!) blocks:

- Convergence of $\varepsilon^{2(d-2)/d} \tau_{a,\varepsilon}(X)$ to a limit variable called T_d : probability arguments (martingale/stochastic analysis tools)
- **2** Analysis of the law of T_d : analytic arguments (WKB)

We start with a sloppy argument... Scaling

$$\begin{split} Y_t &:= \varepsilon^{-2/d} X_{\varepsilon^{-2(d-2)/d}t} \qquad B_t := \varepsilon^{(d-2)/d} W_{\varepsilon^{-2(d-2)/d}t} \\ \text{so } V_{\varepsilon}(y) &= \varepsilon^{-2} U_{\varepsilon}(\varepsilon^{2/d}y), \ Y_0 = \varepsilon^{-2/d} y_0^{(\varepsilon)} \text{ and} \\ \\ \mathrm{d} Y_t &= -(V_{\varepsilon})'(Y_t) \,\mathrm{d} t + \mathrm{d} B_t \end{split}$$

Some ideas of the proofs (d odd)

Proofs can be separated into two (entangled!) blocks:

- Convergence of $\varepsilon^{2(d-2)/d} \tau_{a,\varepsilon}(X)$ to a limit variable called T_d : probability arguments (martingale/stochastic analysis tools)
- **2** Analysis of the law of T_d : analytic arguments (WKB)

We start with a sloppy argument... Scaling

$$\begin{split} Y_t &:= \varepsilon^{-2/d} X_{\varepsilon^{-2(d-2)/d}t} \qquad B_t := \varepsilon^{(d-2)/d} W_{\varepsilon^{-2(d-2)/d}t} \\ \text{so } V_{\varepsilon}(y) &= \varepsilon^{-2} U_{\varepsilon}(\varepsilon^{2/d}y), \ Y_0 = \varepsilon^{-2/d} y_0^{(\varepsilon)} \text{ and} \\ \\ \mathrm{d} Y_t &= -(V_{\varepsilon})'(Y_t) \,\mathrm{d} t + \mathrm{d} B_t \end{split}$$

Itô formula: $\exp(\lambda t) f_{\lambda}(Y_t)$ is a local martingale if

$$\frac{1}{2}f_{\lambda}''(y) - V_{\varepsilon}'(y)f_{\lambda}'(y) + \lambda f_{\lambda}(y) = 0$$

Some ideas of the proofs (*d* odd)

Let us do like if $M_t := exp(\lambda t)f_{\lambda}(Y_t)$ is a martingale:

$$\mathbb{E}\left[\exp(\lambda\tau_{\varepsilon^{-2/d}a}(Y)\right]f_{\lambda}(a\varepsilon^{-2/d}) = \mathbb{E}\left[M_{\tau_{\varepsilon^{-2/d}a}(Y)}\right] = M_{0} = f_{\lambda}\left(y_{0}^{(\varepsilon)}\right)$$

Some ideas of the proofs (d odd)

Let us do like if $M_t := exp(\lambda t)f_{\lambda}(Y_t)$ is a martingale:

$$\mathbb{E}\left[\exp(\lambda\tau_{\varepsilon^{-2/d}a}(Y)\right]f_{\lambda}(a\varepsilon^{-2/d}) = \mathbb{E}\left[M_{\tau_{\varepsilon^{-2/d}a}(Y)}\right] = M_{0} = f_{\lambda}\left(y_{0}^{(\varepsilon)}\right)$$

and taking $\varepsilon \searrow 0$, with $T = T_{d}$ (d odd)
$$\Phi_{T}(\lambda) = \mathbb{E}\left[\exp(\lambda T)\right] = \frac{f_{\lambda}(-\infty)}{f_{\lambda}(+\infty)}$$

Some ideas of the proofs (*d* odd)

Let us do like if $M_t := exp(\lambda t)f_{\lambda}(Y_t)$ is a martingale:

$$\mathbb{E}\left[\exp(\lambda\tau_{\varepsilon^{-2/d}a}(Y)\right]f_{\lambda}(a\varepsilon^{-2/d}) = \mathbb{E}\left[M_{\tau_{\varepsilon^{-2/d}a}(Y)}\right] = M_{0} = f_{\lambda}\left(y_{0}^{(\varepsilon)}\right)$$

and taking $\varepsilon \searrow 0$, with $T = T_d$ (d odd)

$$\Phi_{\mathcal{T}}(\lambda) = \mathbb{E}\left[\exp(\lambda T)\right] = \frac{f_{\lambda}(-\infty)}{f_{\lambda}(+\infty)}$$

There must be something wrong because there are plenty of f_{λ} !

First issue: convergence

$$\tau_{\varepsilon^{-2/d}a}(Y) = \varepsilon^{2(d-2)/d} \tau_a(X) \stackrel{\varepsilon \searrow 0}{\Longrightarrow} T_d$$

First issue: convergence

$$\tau_{\varepsilon^{-2/d}a}(Y) = \varepsilon^{2(d-2)/d} \tau_a(X) \stackrel{\varepsilon \searrow 0}{\Longrightarrow} T_d$$

Path we have taken for the convergence part:

Introduce the scale function

$$s_{\varepsilon}(y) := \int_0^y \exp(2V_{\varepsilon}(u)) \, \mathrm{d}u$$

so that $s_{\varepsilon}(Y)$ is a local martingale and (Dubins-Schwarz) can be transformed into standard Brownian motion by time change.

First issue: convergence

$$\tau_{\varepsilon^{-2/d}a}(Y) = \varepsilon^{2(d-2)/d} \tau_a(X) \stackrel{\varepsilon \searrow 0}{\Longrightarrow} T_d$$

Path we have taken for the convergence part:

Introduce the scale function

$$s_{\varepsilon}(y) := \int_0^y \exp(2V_{\varepsilon}(u)) \, \mathrm{d}u$$

so that $s_{\varepsilon}(Y_{\cdot})$ is a local martingale and (Dubins-Schwarz) can be transformed into standard Brownian motion by time change.

② the original question can now be restated in terms of a standard BM and of convergence properties of s_ε and s'_ε ∘ (s_ε)⁻¹.

First issue: convergence

$$\tau_{\varepsilon^{-2/d}a}(Y) = \varepsilon^{2(d-2)/d} \tau_a(X) \stackrel{\varepsilon \searrow 0}{\Longrightarrow} T_d$$

Path we have taken for the convergence part:

Introduce the scale function

$$s_{\varepsilon}(y) := \int_0^y \exp(2V_{\varepsilon}(u)) \, \mathrm{d}u$$

so that $s_{\varepsilon}(Y_{\cdot})$ is a local martingale and (Dubins-Schwarz) can be transformed into standard Brownian motion by time change.

- ② the original question can now be restated in terms of a standard BM and of convergence properties of s_ε and s'_ε ∘ (s_ε)⁻¹.
- Issue is taken care of (;-)

Important point

Once we have the convergence we can (and do) choose to work with $V_{\varepsilon}(y) = V(y) = -y^d/(2d)$, so the ODE to study does not contain ε

$$\frac{1}{2}f_{\lambda}''(y) - V'(y)f_{\lambda}'(y) + \lambda f_{\lambda}(y) = 0$$

and from now we stick to d = 3, i.e. $V(y) = -\frac{1}{6}y^3$.

Important point

Once we have the convergence we can (and do) choose to work with $V_{\varepsilon}(y) = V(y) = -y^d/(2d)$, so the ODE to study does not contain ε

$$\frac{1}{2}f_{\lambda}''(y) - V'(y)f_{\lambda}'(y) + \lambda f_{\lambda}(y) = 0$$

and from now we stick to d = 3, i.e. $V(y) = -\frac{1}{6}y^3$.

It is time to go back and try to really ask whether or not M_t

$$\mathrm{d}M_t = \exp(\lambda t) f_\lambda'(Y_t) \mathrm{d}B_t$$

is a true martingale.

Important point

Once we have the convergence we can (and do) choose to work with $V_{\varepsilon}(y) = V(y) = -y^d/(2d)$, so the ODE to study does not contain ε

$$\frac{1}{2}f_{\lambda}''(y) - V'(y)f_{\lambda}'(y) + \lambda f_{\lambda}(y) = 0$$

and from now we stick to d = 3, i.e. $V(y) = -\frac{1}{6}y^3$.

It is time to go back and try to really ask whether or not M_t

$$\mathrm{d}M_t = \exp(\lambda t) f_\lambda'(Y_t) \,\mathrm{d}B_t$$

is a true martingale. Sufficient condition:

$$\mathbb{E}\left[\int_{0}^{\tau_{\varepsilon}-2/d_{s}(Y)}\exp(2\lambda s)(f_{\lambda}'(Y_{s}))^{2} \,\mathrm{d}s\right] < \infty$$

and requiring $\sup_{y\in\mathbb{R}}|f_{\lambda}'(y)|<\infty$ does the job for $\lambda<0.$

We are therefore in front of the ODE with somewhat atypical b.c.'s

$$\begin{cases} \frac{1}{2}f_{\lambda}''(y) - V'(y)f_{\lambda}'(y) + \lambda f_{\lambda}(y) = 0\\ \limsup_{y \to \pm \infty} |f_{\lambda}'(y)| < \infty \end{cases}$$
(ODE)

We are therefore in front of the ODE with somewhat atypical b.c.'s

$$\begin{cases} \frac{1}{2}f_{\lambda}^{\prime\prime}(y) - V^{\prime}(y)f_{\lambda}^{\prime}(y) + \lambda f_{\lambda}(y) = 0\\ \limsup_{y \to \pm \infty} |f_{\lambda}^{\prime}(y)| < \infty \end{cases}$$
(ODE)

and the formula (with $T := T_3$ and $\lambda \leq 0$)

$$\Phi_{\mathcal{T}}(\lambda) = \mathbb{E}\left[\exp(\lambda T)\right] = \frac{f_{\lambda}(-\infty)}{f_{\lambda}(+\infty)}$$

should hold.

We are therefore in front of the ODE with somewhat atypical b.c.'s

$$\begin{cases} \frac{1}{2}f_{\lambda}^{\prime\prime}(y) - V^{\prime}(y)f_{\lambda}^{\prime}(y) + \lambda f_{\lambda}(y) = 0\\ \limsup_{y \to \pm \infty} |f_{\lambda}^{\prime}(y)| < \infty \end{cases}$$
(ODE)

and the formula (with $T := T_3$ and $\lambda \leq 0$)

$$\Phi_{\mathcal{T}}(\lambda) = \mathbb{E}\left[\exp(\lambda T)\right] = \frac{f_{\lambda}(-\infty)}{f_{\lambda}(+\infty)}$$

should hold. So (ODE) should have only one solution (up to multiplicative constant).

We are therefore in front of the ODE with somewhat atypical b.c.'s

$$\begin{cases} \frac{1}{2}f_{\lambda}^{\prime\prime}(y) - V^{\prime}(y)f_{\lambda}^{\prime}(y) + \lambda f_{\lambda}(y) = 0\\ \limsup_{y \to \pm \infty} |f_{\lambda}^{\prime}(y)| < \infty \end{cases}$$
(ODE)

and the formula (with $T := T_3$ and $\lambda \leq 0$)

$$\Phi_{\mathcal{T}}(\lambda) = \mathbb{E}\left[\exp(\lambda T)\right] = \frac{f_{\lambda}(-\infty)}{f_{\lambda}(+\infty)}$$

should hold. So (ODE) should have only one solution (up to multiplicative constant).

The point is that...

the $y \to \pm \infty$ behaviors of solutions to (ODE) are limited!

As a matter of fact a WKB analysis shows that

$$\frac{1}{2}f_{\lambda}^{\prime\prime}(y) - V^{\prime}(y)f_{\lambda}^{\prime}(y) + \lambda f_{\lambda}(y) = 0$$
 (ODE)

has only one solution (up to a multiplicative constant) under conditions of boundedness of $f'_{\lambda}(\pm\infty)$. WKB provides also explicit formulas for asymptotic behaviors.

As a matter of fact a WKB analysis shows that

$$\frac{1}{2}f_{\lambda}^{\prime\prime}(y) - V^{\prime}(y)f_{\lambda}^{\prime}(y) + \lambda f_{\lambda}(y) = 0$$
 (ODE)

has only one solution (up to a multiplicative constant) under conditions of boundedness of $f'_{\lambda}(\pm\infty)$. WKB provides also explicit formulas for asymptotic behaviors.

For WKB it is imperative to pass to Schrödinger form: set

$$u_{\lambda}(y) = \exp(-V(y))f_{\lambda}(y) = \exp\left(\frac{1}{6}y^3\right)f_{\lambda}(y)$$

As a matter of fact a WKB analysis shows that

$$\frac{1}{2}f_{\lambda}^{\prime\prime}(y) - V^{\prime}(y)f_{\lambda}^{\prime}(y) + \lambda f_{\lambda}(y) = 0$$
 (ODE)

has only one solution (up to a multiplicative constant) under conditions of boundedness of $f'_{\lambda}(\pm\infty)$. WKB provides also explicit formulas for asymptotic behaviors.

For WKB it is imperative to pass to Schrödinger form: set

$$u_{\lambda}(y) = \exp(-V(y))f_{\lambda}(y) = \exp\left(\frac{1}{6}y^3\right)f_{\lambda}(y)$$

so

$$u_{\lambda}''(y) - Q_{\lambda}(y)u_{\lambda}(y) = 0, \quad Q_{\lambda}(y) = (V')^2 - V''(y) = y - \frac{1}{4}y^4 - \lambda$$

$$u_{\lambda}''(y) - Q_{\lambda}(y)u_{\lambda}(y) = 0,$$
 $Q_{\lambda}(y) = y - \frac{1}{4}y^4 - 2\lambda$

Formal WKB analysis says that for every $\lambda \in \mathbb{C}$ there exist solutions such that

$$u_{\lambda}(y) \stackrel{y \to \infty}{\sim} rac{1}{Q_{\lambda}^{1/4}(y)} \exp\left(\pm \int_{c}^{y} Q_{\lambda}^{1/2}\right)$$

$$u_{\lambda}^{\prime\prime}(y)-Q_{\lambda}(y)u_{\lambda}(y)=0, \qquad Q_{\lambda}(y)=y-rac{1}{4}y^4-2\lambda$$

Formal WKB analysis says that for every $\lambda \in \mathbb{C}$ there exist solutions such that

$$u_{\lambda}(y) \stackrel{y o \infty}{\sim} rac{1}{Q_{\lambda}^{1/4}(y)} \exp\left(\pm \int_{c}^{y} Q_{\lambda}^{1/2}
ight)$$

and actually this corresponds to an impressive rigorous machinery [R. Langer, H. Weyl, E. Titchmarsch,..., Y. Sibuya].

$$u_{\lambda}^{\prime\prime}(y)-Q_{\lambda}(y)u_{\lambda}(y)=0, \qquad Q_{\lambda}(y)=y-rac{1}{4}y^4-2\lambda$$

Formal WKB analysis says that for every $\lambda \in \mathbb{C}$ there exist solutions such that

$$u_{\lambda}(y) \stackrel{y \to \infty}{\sim} rac{1}{Q_{\lambda}^{1/4}(y)} \exp\left(\pm \int_{c}^{y} Q_{\lambda}^{1/2}
ight)$$

and actually this corresponds to an impressive rigorous machinery [R. Langer, H. Weyl, E. Titchmarsch,..., Y. Sibuya]. In particular solutions are either subdominant (vanishing at infinity) or dominant (exploding) at infinity.

$$u_\lambda''(y)-Q_\lambda(y)u_\lambda(y)=0, \qquad Q_\lambda(y)=y-rac{1}{4}y^4-2\lambda$$

Formal WKB analysis says that for every $\lambda \in \mathbb{C}$ there exist solutions such that

$$u_{\lambda}(y) \stackrel{y \to \infty}{\sim} rac{1}{Q_{\lambda}^{1/4}(y)} \exp\left(\pm \int_{c}^{y} Q_{\lambda}^{1/2}
ight)$$

and actually this corresponds to an impressive rigorous machinery [R. Langer, H. Weyl, E. Titchmarsch,..., Y. Sibuya]. In particular solutions are either subdominant (vanishing at infinity) or dominant (exploding) at infinity.

Notably there is a unique solution subdominant at $-\infty$ with the property:

$$u_{\lambda, {
m sub}, -}(y) \overset{y o -\infty}{\sim} \exp\left(rac{y^3}{6}
ight), \quad ext{ so } f_{\lambda}(-\infty) = 1$$

and $u_{\lambda, {
m sub}, -}(y)$ is entire in λ (and y).

What does $u_{\lambda,sub}(y)$ do for $y \to \infty$?

What does $u_{\lambda,sub}(y)$ do for $y \to \infty$?

$$u_{\lambda, \mathsf{sub}, -}(y) = au_{\lambda, \mathsf{sub}, +}(y) + bu_{\lambda, \mathsf{dom}, +}(y)$$

What does $u_{\lambda, sub}(y)$ do for $y \to \infty$?

$$u_{\lambda,\mathrm{sub},-}(y) = au_{\lambda,\mathrm{sub},+}(y) + bu_{\lambda,\mathrm{dom},+}(y)$$

i.e.

$$f_{\lambda}(y) = \exp\left(-\frac{y^3}{6}\right) \left(a(\lambda)u_{\lambda,\mathsf{sub},+}(y) + b(\lambda)u_{\lambda,\mathsf{dom},+}(y)\right) \overset{y \to \infty}{\sim} b(\lambda)c(\lambda)$$

G.G. (Paris Diderot and LPMA)

8th Random Dyn. Sys. Workshop (2015)

Wrapping all up

Therefore now the formula

$$\Phi_{T}(\lambda) = \mathbb{E}\left[\exp(\lambda T)\right] = \frac{f_{\lambda}(-\infty)}{f_{\lambda}(+\infty)}$$

makes sense, a priori for $\Re(\lambda) \leq 0$.

Wrapping all up

Therefore now the formula

$$\Phi_{\mathcal{T}}(\lambda) = \mathbb{E}\left[\exp(\lambda T)\right] = \frac{f_{\lambda}(-\infty)}{f_{\lambda}(+\infty)}$$

makes sense, a priori for $\Re(\lambda) \leq 0$. But the right-hand side is meromorphic, with poles for λ such that $f_{\lambda}(+\infty) = 0$, so the left-hand side coincides with the right-hand side at least for $\Re(\lambda) < \lambda_0$, with λ_0 the bottom of the spectrum of the Schrödinger operator we are considering:

$$Lu(y) = -\frac{1}{2}u''(y) + q_d(y)u(y), \quad q_3(y) = \frac{1}{2}y + \frac{1}{8}y^4$$

Wrapping all up

Therefore now the formula

$$\Phi_{\mathcal{T}}(\lambda) = \mathbb{E}\left[\exp(\lambda T)\right] = \frac{f_{\lambda}(-\infty)}{f_{\lambda}(+\infty)}$$

makes sense, a priori for $\Re(\lambda) \leq 0$. But the right-hand side is meromorphic, with poles for λ such that $f_{\lambda}(+\infty) = 0$, so the left-hand side coincides with the right-hand side at least for $\Re(\lambda) < \lambda_0$, with λ_0 the bottom of the spectrum of the Schrödinger operator we are considering:

$$Lu(y) = -\frac{1}{2}u''(y) + q_d(y)u(y), \quad q_3(y) = \frac{1}{2}y + \frac{1}{8}y^4$$

Also the case $\lambda \to -\infty$ can be tackled by WKB techniques:

$$Lu(y) - \lambda u = -\frac{1}{2}u''(y) + (q_d(y) - \lambda)u(y) = 0$$

 We have established the universal behavior of the leading behavior of noise induced exit/transit time from/through non hyperbolic stationary points

- We have established the universal behavior of the leading behavior of noise induced exit/transit time from/through non hyperbolic stationary points
- We have then established properties of the limit law, notably tail properties

- We have established the universal behavior of the leading behavior of noise induced exit/transit time from/through non hyperbolic stationary points
- We have then established properties of the limit law, notably tail properties

Questions and perspectives:

• Unimodality?

- We have established the universal behavior of the leading behavior of noise induced exit/transit time from/through non hyperbolic stationary points
- We have then established properties of the limit law, notably tail properties

Questions and perspectives:

- Unimodality?
- Some higher dimensional cases can be tackled, but generalizations are not straightforward

- We have established the universal behavior of the leading behavior of noise induced exit/transit time from/through non hyperbolic stationary points
- We have then established properties of the limit law, notably tail properties

Questions and perspectives:

- Unimodality?
- Some higher dimensional cases can be tackled, but generalizations are not straightforward
- Potentially we can give a formula of the type

$$f_{T_d(t)} \sim \sum_j C_j \exp\left(-\widetilde{\lambda}_j t\right)$$