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General slow—fast systems

Fully coupled SDEs on well-separated time scales

1
dx; = gf(xt»)’t) dt + % F(xe,y:) dW, (fast variables € R")
dy: = g(xe,ye) dt + o' G(x¢,y:) dW; (slow variables € R™)

v

{W;}¢>0 k-dimensional (standard) Brownian motion
> DCR"xR"™
f:D—=R" g:D—R™ drift coefficients, € C?

F:D—R"™k G:D— R™k diffusion coefficients, € C*

v

v

Small parameters
> ¢ > 0 adiabatic parameter (no quasistatic approach)
> 0,0’ > 0 noise intensities; may depend on &:
o=o0(e), 0’ =d'(¢) and o'(g)/o(e) = p(e) < 1
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Singular limits for deterministic slow—fast systems

In slow time t s In fast time s = t/e
ex =f(x,y) = xX'= f(x,y)
y=g(x.y) y' =cg(x,y)

l e—0 l e—0

Slow subsystem Fast subsystem
0="~(xy) = x'= f(x,y)
y=g(xy) y'=0

Study slow variable y on slow Study fast variable x for frozen
manifold f(x,y) =0 slow variable y
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Near slow manifolds: Assumptions on the fast variables

> Existence of a slow manifold
3Dy CR™ Ix* Dy = R"
s.t. (x*(v),y) € D and f(x*(y),y) =0 for y € Dy

> Slow manifold is attracting

Eigenvalues of A*(y):=0xf(x*(y),y) satisfy Re \;(y) < —ap <0
(uniformly in Dy)
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Fenichel's theorem
Theorem ([Tihonov '52, Fenichel '79])

There exists an adiabatic manifold:

Ix(y,e) s.t

X(y,€) is invariant manifold for deterministic dynamics
(y,e) attracts nearby solutions
(v,0) =
(v,e) =

x*(y)
x*(y) + O(e)

X
> X
X

2

Yr

Consider now stochastic system under these assumptions

Reduced Dynamics
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Random slow—fast systems: Slowly driven systems
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Typical neighbourhoods for the stochastic fast variable

Special case: One-dim. slowly driven systems

1 o
dXt = gf(Xt, t) dt+ % th

Stable slow manifold / stable equilibrium branch x*(t):
f(x*(t),t) =0, a*(t) = Oxf(x*(t),t) < —ap < 0
Linearize SDE for deviation x; — x(t,¢) from adiabatic solution x(t,¢) ~ x*(t)

g

VE

1

dZt = 7a(t)ztdt+ th
€

We can solve the non-autonomous SDE for z;

ot
ze = zge®W/5 4 % /0 e(t9)/= g,

where «o(t) = /0 a(s)ds, a(t,s) = a(t) — a(s) and a(t) = Oxf(X(t, <), t)
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Typical spreading

_ a(t)/e g ' a(t,s)/e
Zy = Zpe + \@ /0 € dWs
z; is a Gaussian r.v. with variance
0_2 t 0_2
v(t) = Var(z;) = — / e2ts)/eds n —
e Jo |a(1)]
For any fixed time t, z; has a typical spreading of \/v(t), and a standard estimate

shows ,
]P){|Zt| > h} < efh /2v(t)

Goal: Similar concentration result for the whole sample path
Define a strip B(h) around x(t,z) of width ~ h/y/|a(t)|

B(h) = {(x, 1) [x = x(t,e)| < h/+/|a(t)[}
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Concentration of sample paths

B(h)

Theorem [Berglund & G '02, '06]

21 [t h
P{x; leaves B(h) before time t} ~ /= 7‘/ a(s) ds‘ 2 e W -0(e)-0h)/20?
0 g

™ £
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Fully coupled random slow—fast systems
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Typical spreading in the general case

1
dx; = gf(xt,yt) dt + \% F(xe, yr) dW; (fast variables € R")
dyr = g(xe,ye) dt + o’ G(x,y) dW, (slow variables € R™)
> Consider det. process (xd¢t = x(yd°t, ), y@°t) on adiabatic manifold

> Deviation ¢, == x, — x%°* of fast variables from adiabatic manifold
> Linearize SDE for &, ; resulting process £ is Gaussian
Key observation

1 . . . .
— Cov f? is a particular solution of the deterministic slow—fast system
o

- det det det

. {Ex(t) = AERX () + XA + Fo(y ™) Fo(y**)!
veo = e(x(yie) i)

with A(y) = 0«f(X(y,€),y) and Fy Oth-order approximation to F
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Typical neighbourhoods in the general case

Typical neighbourhoods
B()={(x,9): ([x = x(y.€)], X(y,) 7} [x = x(y.)]) < )

where X(y,¢) denotes the adiabatic manifold for the system (x)

1.
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Concentration of sample paths

Define (random) first-exit times
Tp, =inf{s >0:ys & Do}
(k) = inf{s > 0: (xs,ys) ¢ B(h)}

Theorem [Berglund & G, JDE 2003]
Assume || X(y,e)|l, [|X(y,e)~ | uniformly bounded in Dy
Then degg>0 dhg>0 Ve<eg Vh< hy

IP’{TB(,,) < min(t,7p,)} < Com(t) exp{—zf;2 [1-0O(h) - (9(5)]}

where C, (1) = [C" + h™"] (1 + ;)
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Reduced dynamics
Reduction to adiabatic manifold x(y, ¢):

dy? = g(%(y?,€),y?) dt + 0 G(x(s?. €), ¥?) dWWe

Theorem — informal version [Berglund & G '06]

y? approximates y; to order o\/z up to Lyapunov time of ydt = g(x(ydt, £)ydet)

Remark
!

o . . . .
For — < /e, the deterministic reduced dynamics provides a better approximation
o
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Longer time scales

Behaviour of g or behaviour of y; and y¢* becomes important

Example:
ydet following a stable periodic orbit
const
> ye ~ ydet for t < oVAVeE

linear coupling — ¢
nonlinear coupling — o
noise acting on slow variable — o

> On longer time scales: Markov property allows for restarting

y: stays exponentially long in a neighbourhood of the periodic orbit
(with probability close to 1)

Reduced Dynamics Barbara Gentz NCTS, 17 May 2012 15 / 29



Deterministic Slow—Fast Systems Slowly driven systems Fully coupled systems Deterministic averaging Random fast motion

The main idea of deterministic averaging
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Which timescale should be studied?

Simple example

ye =eb(y,&), ys=y€R"” > h:RM"xR" - R™
> £ :[0,00) > R"
> 0<ex 1

If b is not increasing too fast then

ve—=yl=y as e — 0 uniformly on any finite time interval [0, T]

Not the relevant timescale! ...need to look at time intervals of length > 1/¢

> Introduce slow time t = es
> Note that t € [0, T] <& s € [0, T /¢]
> Rewrite equation
ve = by &), o=y €RT”
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Deterministic averaging

Assumptions (simplest setting)
> ||b(y1, &) — b(ya, €)|| < Kl[y1 — y2|| for all £ € R" (Lipschitz condition)

> lim */ (y,&)dt = b(y) uniformly in y € R™ (e.g., periodic &)

T—o0

Can we obtain an autonomous equation for y? Can we replace b by b?

For small time steps A

A A A
yZ*y:/O b(yf,ét/g)dt:/o b(y,&/g)d5+/o [b(ys, &ese) — by, &ese)] dt

AJe .
1. integrale%/ b(y,&)ds ~ Ab(y) ase/A — 0
0

2. integral = O(A?) (using Lipschitz continuity and leading order)
With a little work: y; converges uniformly on [0, T] towards solution of ¥/, = b(V,)
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Averaging principle

Slow variable yi and fast variable £ (now depending on y;)

yf: bl(yf~€?)7 YS:yGRm
. 1
&= nlvi.€). G-cekr

Freeze slow variable y and consider

Gly) =ba(y. &), &ly)=¢

Random fast motion

Assume I|m —/ bi(y, &y b1 (y) exists (and is independent of )

Averaging principle

The slow variable y¢ is well approximated by v, = by(V,), Vo=y

Reduced Dynamics Barbara Gentz NCTS, 17 May 2012
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Random fast motion:

The main idea of stochastic averaging
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Random fast motion

Consider again assumption form last slide

T—o0

17 -
lim 7/0 bi(y,&(y))dt = bi(y) exists

Convergence of time averages: Resembles Law of Large Numbers!

Our goal: Consider &; given by a random motion
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The general setting

yi = b(e, t,yf,w) , y§=y€eR"”

w € Q indicates the random influence; underlying probability space (2, F,P)

Assumptions
> (t,y) — b(e, t,y,w) is continuous for almost all w and all &
> SUP.-q SUP,o Ellb(e, t,y, w)||?
> [lbe, t,x,w) — b(e, £y, @) | < Klx —
for almost all w, all x,y e R™ allt >0and ¢ >0
> There exists b(y, t), continuous in (y, t), s.t. V0 > 0VT >0Vy € R™

to+T to+T
IimOIP{‘/ b(e, t,y.,w)dt—/ b(t,y)dt 25} =0

to to
uniformly in tg > 0

< 00
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Stochastic averaging

Theorem (c.f. [WF '84])

Under the assumptions on the previous slide,
Ve=bt.y), Yo=vy
has a unique solution, and

I IP’{ s _y >5}:0
lim Py max llye = ¥ell =

forall T >0 and all § > 0.

Remarks
> Convergence in probability is a rather weak notion

> Stronger assumptions yield stronger result
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Idea of the proof |

t
Ive — 7l < / 16(e,5,y5,w) — b(e, 5,7, w)]| ds
0

/O [b(e. 5.7, w) — B(s.7,)] ds

Using Lipschitz condition

/ [b(e. 1,7,,) — B(u, 7,)] ds

t
m(e) = s ;=7 <K / m(s)ds + sup
selo,t s€0,t]

Gronwall's lemma: sufficient to estimate

{sup /[b e, u,y,,w)— b(u,y,)]ds
s€[0,T]

25}
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Idea of the proof Il

> b Lipschitz continuous = b Lipschitz continuous

> On short time intervals [kT /n, (k + 1) T /n] replace y, by V7,
> Total error accumulated over all time intervals is still O(1/n)

> Apply assumption on b to

(k+1)T/n
/ [6(e. 0,y jm ) — B, Ver )] ds
kT /n

> It remains to deal with upper integration limits not of the form (k +1)T/n

> Use: interval short, Tchebyschev's inequality, assumption on second moment
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Deviation from the averaged process

Deviations of order /e

If b is sufficiently smooth & other conditions ...

—(yf —=¥;) = Gaussian Markov process

(Convergence in distribution on [0, T])
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Averaging for stochastic differential equations

dy; = b(y;, &) dt + o(ys) dW, (slow variable € R™)
3 1 g & 1 g 13 H n
des = gf(}/tvft) dt + ﬁF(yt,gt) dW; (fast variable € R ")

o =o(yf, &) depending also on &5 can be considered
(we refrain from doing so since this would require to introduce additional notations)

Introduce Markov process 5{‘5 for frozen slow variable y

A&yt = fly, &%) dt + Fy, &) dWe, g =¢
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Averaging Theorem for SDEs

Assume there exist functions b(y) and x(T) s.t. forall to >0, £ € R", y € R™;

1 to+T _
E(HT/ b(y, &%) ds — b(y)H> <K(T)—=0 as T — oo
to

Let y; denote the solution of

dye = b(y:) + o(7)dWe, o=y

Theorem

For all T >0, 6 > 0 and all initial conditions £ € R", y €¢ R™

imP{ sup = 3l >3} =0
e—0 0<t<T
(convergence in probability)
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