
A Proposition of Kedlaya
Let k be an algebraically closed field of char.p > 0. Let W = W (k) be

the Witt ring and σ = σa1 , a > 0 be a power of the Frobenius. We will denote
by W̄Q an algebraic closure of W ⊗ Q. We extend σ in an arbitrary way to
an automorphism of W̄Q . Let f =

∑
n∈Z ant

n ∈ L̄, where an ∈ W̄Q be a
Laurent series. If an ∈ WQ we will write f ∈ L.

We consider the open unit disc

D = {x ∈ W̄ | |x| < 1}

If y ∈ D and f converges for |t| = |y| then we have f(y) ∈ W̄Q.
We define

fσ =
∑

σ(an)tnq.

Consider the map
τ : D → D, τ(x) = σ−1(xq).

We note that |τ(x)| = |x|q
Let x ∈ D. Then we have

fσ(x) = σ(f(τ(x))), (1)

whenever one side of this equation makes sense.
Remark: This suggest the following fact which is easily verified: Let

δ ∈ R, such that 0 < δ < 1.
If fσ converges for δ < |t| < 1, iff f converges for δq < |t| < 1.
We will also use this in the form. If fσ converges for u > ord t > 0, iff f

converges for qu > ord t > 0.

Proposition 1 Let a ∈ Γc, a 6= 0. We assume that f = aσ/a is a rational
function in t.

Then a is the product of a rational function and a unit in W [[t]].

Proof: We know that Γc[1/p] is a field. Then f ∈ Γc[1/p] and our assumption
says that f is in the subring WQ((t)) of Γc[1/p]. We find primitve polynomials
g, h ∈ W [t] (i.e. the greatest common divisor of the coefficients is 1) such
that

f = g/h,

and g and h have no common divisor.
We prove the Proposition by induction on deg g+deg h. If this is zero we

have aσ = ca for some c ∈ WQ, c 6= 0. By the remark above this implies that
aσ and a converges for 0 < |t| < 1. But we may apply the same remark to
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the equation (a−1)σ = c−1a−1 and conclude that a−1 converges in the same
range. But then Lemma 5.1 of [Kedl] proves the result.

We assume now that deg g + deg h = d and that the Proposition holds
for numbers smaller that d.

We may assume that g and h have no zeros outside the open unit disc.
Indeed in the opposite case we find a nonconstant primitive polynomial u ∈
W [t] which has only roots outside the open unit disc and which divides g
or h. Let c0 be the constant coefficient of u. If ord c0 > 0 then the Newton
polygon of u would have a negative slope which would imply a zero in D.
Therefore c0 ∈ W is a unit. We see that u is a unit in W [[t]]. But then by
[MZ] Lemma 31 we may write u = bσ/b for some unit b ∈ W [[t]]. Hence in
the equation

aσ/a = g/h (2)

we may put the factor u from the right hand side to the left hand side, and
apply the induction assumption.

We will call two elements of W̄ equivalent if the differ by a q-th root of
unity.

Let S1, . . . , Sn the equivalence classes of roots of h. We write

Si = {ri1, . . . , riq}

We denote by mij the multiplicity of rij as a root of h. Let mi the
maximum of the mij for fixed i. We have mi > 0 and we may assume that
mi = mi1.

Let e be the polynomial with the roots τ(Si), i = 1, . . . n where every root
appears exactly with multiplicitymi. Then the roots of eσ are S1∪S2∪. . .∪Sn,
where each root appears with multiplicity mi. We note that an element
ρ ∈ Gal(W̄/W )) permutes the sets Si. Moreover if ρ(Si) = Sk then the
multiplicities mij and mkj for j = 1, . . . , q are up to permutation the same.
In particular we have mi = mj. This implies that eσ ∈ W [t] and therefore
e ∈ W [t] is also true.

Therefore eσ is a multiple of the polynomial h. We obtain the equation

(ae)σ = ag(eσ/h). (3)

Let δ ≥ 0 be the smallest number such that a and a−1 converge for δ <
|t| < 1. We note that by (3) the Laurent series (ae)σ converges in the same
range. Hence the remark before the Proposition shows that ae converges for
δq < |t| < 1.

The Proposition will follow if we prove:

Lemma 2 The polynomial e has no roots s with δq < |s| < 1.
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We begin to show how the lemma implies the Proposition. By the Lemma
e is a unit in the ring of Laurent series converging for δq < |s| < 1 and
therefore a converges in this domain because ae does. On the other hand we
have the equation

(a−1)σ

a−1
=
h

g

If we apply the same considerations as to the equation (2) we see that also
a−1 converges in the range δq < |t| < 1. By the choice of δ after (3) this is
only possible if δ = 0. But then Proposition 5.1 [K] shows that a is of the
form ctnu with c ∈ WQ and u ∈ W [[t]] a unit. This proves the Proposition.

We prove now the Lemma. Let us assume the existence of a zero s of e
such that

δq < |s| < 1.

We may assume that s = τ(S1) and in particular s = τ(r11). Since r11 is a
zero of h it is not a zero of g.

Since |r11|q = |s| we have δ < |r11| < 1. Therefore (ae)σ converges in r11
so that the evaluation (ae)σ(r11) makes sense. Note that by our choice of δ
the Laurent series a has no zero in r11. It follows immediately from (3) that
r11 is not a zero of (ae)σ. By (1) we find

(ae)σ(r11) = σ(ae(τ(r11))).

Therefore ae doesn’t vanish in s = τ(r11). Since τ(r1j) = s for j = 1, . . . q
there is no zero of (ae)σ among

r11, r12, . . . , r1q. (4)

These elements are neither zeros of a and g as we already remarked. It follows
from (3) that these are also not zeros of (eσ/h). We see that the order of
zero of eσ and h at the elements (4) is the same, namely m1.

Let e1 ∈ W [t] be the polynomial of minimal degree divisible by (t− s)m1 .
Then e1 divides e. Moreover eσ1 divides h. (Note that also all conjugates of
the elements r1j appear with multiplicity m1 as zeros of h) We write:

geσ1
he1

=
aeσ1
ae1

.

If we reduce the fraction on the left hand side by dividing numerator and
denominator by eσ1 we see that the sum of the degree of the numerator and
denominator is less thatn deg g+ deg h. Therefore we are done by induction.
Q.E.D.
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