A Proposition of Kedlaya

Let k be an algebraically closed field of char. $p>0$. Let $W=W(k)$ be the Witt ring and $\sigma=\sigma_{1}^{a}, a>0$ be a power of the Frobenius. We will denote by $\bar{W}_{\mathbb{Q}}$ an algebraic closure of $W \otimes \mathbb{Q}$. We extend σ in an arbitrary way to an automorphism of $\bar{W}_{\mathbb{Q}}$. Let $f=\sum_{n \in \mathbb{Z}} a_{n} t^{n} \in \overline{\mathcal{L}}$, where $a_{n} \in \bar{W}_{\mathbb{Q}}$ be a Laurent series. If $a_{n} \in W_{\mathbb{Q}}$ we will write $f \in \mathcal{L}$.

We consider the open unit disc

$$
D=\{x \in \bar{W}| | x \mid<1\}
$$

If $y \in D$ and f converges for $|t|=|y|$ then we have $f(y) \in \bar{W}_{\mathbb{Q}}$.
We define

$$
f^{\sigma}=\sum \sigma\left(a_{n}\right) t^{n q} .
$$

Consider the map

$$
\tau: D \rightarrow D, \quad \tau(x)=\sigma^{-1}\left(x^{q}\right)
$$

We note that $|\tau(x)|=|x|^{q}$
Let $x \in D$. Then we have

$$
\begin{equation*}
f^{\sigma}(x)=\sigma(f(\tau(x))) \tag{1}
\end{equation*}
$$

whenever one side of this equation makes sense.
Remark: This suggest the following fact which is easily verified: Let $\delta \in \mathbb{R}$, such that $0<\delta<1$.

If f^{σ} converges for $\delta<|t|<1$, iff f converges for $\delta^{q}<|t|<1$.
We will also use this in the form. If f^{σ} converges for $u>\operatorname{ord} t>0$, iff f converges for $q u>\operatorname{ord} t>0$.

Proposition 1 Let $a \in \Gamma^{c}, a \neq 0$. We assume that $f=a^{\sigma} / a$ is a rational function in t.

Then a is the product of a rational function and a unit in $W[t t]$.
Proof: We know that $\Gamma^{c}[1 / p]$ is a field. Then $f \in \Gamma^{c}[1 / p]$ and our assumption says that f is in the subring $W_{\mathbb{Q}}((t))$ of $\Gamma^{c}[1 / p]$. We find primitve polynomials $g, h \in W[t]$ (i.e. the greatest common divisor of the coefficients is 1) such that

$$
f=g / h,
$$

and g and h have no common divisor.
We prove the Proposition by induction on $\operatorname{deg} g+\operatorname{deg} h$. If this is zero we have $a^{\sigma}=c a$ for some $c \in W_{\mathbb{Q}}, c \neq 0$. By the remark above this implies that a^{σ} and a converges for $0<|t|<1$. But we may apply the same remark to
the equation $\left(a^{-1}\right)^{\sigma}=c^{-1} a^{-1}$ and conclude that a^{-1} converges in the same range. But then Lemma 5.1 of [Kedl] proves the result.

We assume now that $\operatorname{deg} g+\operatorname{deg} h=d$ and that the Proposition holds for numbers smaller that d.

We may assume that g and h have no zeros outside the open unit disc. Indeed in the opposite case we find a nonconstant primitive polynomial $u \in$ $W[t]$ which has only roots outside the open unit disc and which divides g or h. Let c_{0} be the constant coefficient of u. If ord $c_{0}>0$ then the Newton polygon of u would have a negative slope which would imply a zero in D. Therefore $c_{0} \in W$ is a unit. We see that u is a unit in $W[[t]]$. But then by [MZ] Lemma 31 we may write $u=b^{\sigma} / b$ for some unit $b \in W[[t]]$. Hence in the equation

$$
\begin{equation*}
a^{\sigma} / a=g / h \tag{2}
\end{equation*}
$$

we may put the factor u from the right hand side to the left hand side, and apply the induction assumption.

We will call two elements of \bar{W} equivalent if the differ by a q-th root of unity.

Let S_{1}, \ldots, S_{n} the equivalence classes of roots of h. We write

$$
S_{i}=\left\{r_{i 1}, \ldots, r_{i q}\right\}
$$

We denote by $m_{i j}$ the multiplicity of $r_{i j}$ as a root of h. Let m_{i} the maximum of the $m_{i j}$ for fixed i. We have $m_{i}>0$ and we may assume that $m_{i}=m_{i 1}$.

Let e be the polynomial with the roots $\tau\left(S_{i}\right), i=1, \ldots n$ where every root appears exactly with multiplicity m_{i}. Then the roots of e^{σ} are $S_{1} \cup S_{2} \cup \ldots \cup S_{n}$, where each root appears with multiplicity m_{i}. We note that an element $\rho \in \operatorname{Gal}(\bar{W} / W))$ permutes the sets S_{i}. Moreover if $\rho\left(S_{i}\right)=S_{k}$ then the multiplicities $m_{i j}$ and $m_{k j}$ for $j=1, \ldots, q$ are up to permutation the same. In particular we have $m_{i}=m_{j}$. This implies that $e^{\sigma} \in W[t]$ and therefore $e \in W[t]$ is also true.

Therefore e^{σ} is a multiple of the polynomial h. We obtain the equation

$$
\begin{equation*}
(a e)^{\sigma}=a g\left(e^{\sigma} / h\right) . \tag{3}
\end{equation*}
$$

Let $\delta \geq 0$ be the smallest number such that a and a^{-1} converge for $\delta<$ $|t|<1$. We note that by (3) the Laurent series $(a e)^{\sigma}$ converges in the same range. Hence the remark before the Proposition shows that ae converges for $\delta^{q}<|t|<1$.

The Proposition will follow if we prove:
Lemma 2 The polynomial e has no roots s with $\delta^{q}<|s|<1$.

We begin to show how the lemma implies the Proposition. By the Lemma e is a unit in the ring of Laurent series converging for $\delta^{q}<|s|<1$ and therefore a converges in this domain because ae does. On the other hand we have the equation

$$
\frac{\left(a^{-1}\right)^{\sigma}}{a^{-1}}=\frac{h}{g}
$$

If we apply the same considerations as to the equation (2) we see that also a^{-1} converges in the range $\delta^{q}<|t|<1$. By the choice of δ after (3) this is only possible if $\delta=0$. But then Proposition $5.1[\mathrm{~K}]$ shows that a is of the form $c t^{n} u$ with $c \in W_{\mathbb{Q}}$ and $u \in W[[t]]$ a unit. This proves the Proposition.

We prove now the Lemma. Let us assume the existence of a zero s of e such that

$$
\delta^{q}<|s|<1 .
$$

We may assume that $s=\tau\left(S_{1}\right)$ and in particular $s=\tau\left(r_{11}\right)$. Since r_{11} is a zero of h it is not a zero of g.

Since $\left|r_{11}\right|^{q}=|s|$ we have $\delta<\left|r_{11}\right|<1$. Therefore (ae) $)^{\sigma}$ converges in r_{11} so that the evaluation $(a e)^{\sigma}\left(r_{11}\right)$ makes sense. Note that by our choice of δ the Laurent series a has no zero in r_{11}. It follows immediately from (3) that r_{11} is not a zero of $(a e)^{\sigma}$. By (1) we find

$$
(a e)^{\sigma}\left(r_{11}\right)=\sigma\left(a e\left(\tau\left(r_{11}\right)\right)\right) .
$$

Therefore ae doesn't vanish in $s=\tau\left(r_{11}\right)$. Since $\tau\left(r_{1 j}\right)=s$ for $j=1, \ldots q$ there is no zero of $(a e)^{\sigma}$ among

$$
\begin{equation*}
r_{11}, r_{12}, \ldots, r_{1 q} . \tag{4}
\end{equation*}
$$

These elements are neither zeros of a and g as we already remarked. It follows from (3) that these are also not zeros of $\left(e^{\sigma} / h\right)$. We see that the order of zero of e^{σ} and h at the elements (4) is the same, namely m_{1}.

Let $e_{1} \in W[t]$ be the polynomial of minimal degree divisible by $(t-s)^{m_{1}}$. Then e_{1} divides e. Moreover e_{1}^{σ} divides h. (Note that also all conjugates of the elements $r_{1 j}$ appear with multiplicity m_{1} as zeros of h) We write:

$$
\frac{g e_{1}^{\sigma}}{h e_{1}}=\frac{a e_{1}^{\sigma}}{a e_{1}} .
$$

If we reduce the fraction on the left hand side by dividing numerator and denominator by e_{1}^{σ} we see that the sum of the degree of the numerator and denominator is less thatn $\operatorname{deg} g+\operatorname{deg} h$. Therefore we are done by induction. Q.E.D.

