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1. INTRODUCTION

Let R((t)) be the fraction field of the complete discrete valuation ]|, of formal power
series oveR, and letF = R((t))(x) be the field of rational functions in one variable o%&((t)).
Let Abe a central simple algebra ovenf exponent 2. The quadratic extensiof(t))(x) of F is
aCy-field (cf. [Ser]) and thereforA@r C((t))(x) is an algebra of index 2, cf. [Art]. It follows
that the index ofA overF is less than or equal to 4. A well known theorem of Albert irepli
that A is Brauer equivalent to a biquaternion algebra, i.e. a tepsmiuct of two quaternion
algebras.Can one describe the algebras of exponent 2 which are exacityglex 2, i.e. which
are Brauer equivalent to quaternion division algebras@ make the question more precise we
recall that the Brauer group of a rational function fi&l¢x) over any fieldK, which we may
assume to be of characteristic not equal to 2, is describgon® extent by its ramification data.
To do this, one interprets(x) as the function field of the projective Iirié(. The closed pointg
of P% correspond to th&-discrete valuations df(x), eithery is the point at infinity ofP% ory
corresponds to a monic irreducible polynomiakifx]. The Brauer group df(X) is described by
an exact sequence of cohomology groups, due to Fadeevadi,[Eer]. We are only interested
in algebras of exponent 2 so we only consider the sequenieted to the 2-components of the
different groups;

0 2Br(K) — 2Br(K(x)) “¥ @ HY(K(y).Z/2Z) 2 MK, Z/2Z) — 0.  (FES)
yePk

HereK(y) is the residue field of the discrete valuation corresponthirtje closed poiny anddy

is the associated ramification map. The nyaqor is the sum of the values of the corestriction
mapsH(K(y),Z/2Z) — HY(K,Z/2Z) induced by the inclusion of the absolute Galois groups
Gal(K/K(y)) c Gal(K/K), (cf. [Ser, Chap. I, App. sec.3]). Note thet'(K(y),Z/27) =
K(y)*/K(y)*? andH(K,Z/2Z) = K* /K*?, moreover these isomorphisms are canonical since
—1is the only primitive 2th-root of unity. After identifyinthese cohomology groups with these
groups of square classes, the corestriction map corresgortde norm map:

Nk (y)/k - K(Y)*/K(y)*2 — K* /K2,
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The ramification map, factors throughBr(K(x)y), whereK (x)y is the completion oK (x) with
respect to the valuation correspondingytdSo if a central simple algebraoverK(x) is trivial
overK(x)y it is unramified, i.edy(A) = 1 modK (y)*2. The value of the ramification map can be
explicitly caculated. Lev be the valuation correspondingya@nd let(f,g)kx be a quaternion
algebra oveK(x), then

v(9)
(1. 8hk0) = (-1 ) < Kty /K

Since anyA € >Br(K(x)) is Brauer equivalent to a tensor product of quaternions atgefby
Merkurjev’s theorem), the ramification can be calculatedibgarity. (If K = R((t)) we saw
already that the algebras of exponent 2 are Brauer equiMal@iensor product of 2 quaternion
algebras.)

The fact that ing@dy) C ker(y cor) is called Faddeev’s reciprocity law. The exact sequence
(FES) says that the Brauer class of an algebrmaf exponent 2 over a rational function field
K(x) is “almost” given by a finite set of local data, namely its rtomial ramification. The
ramification data of consists of a finite set of closed points Ra#j:= {y € P |9, (A) # 0 ¢
H1(K(y),Z/2Z)}, called theramification locus of Aand the sefdy(A)|ly € Ram(A)}. Faddeev
reciprocity law implies that ycrama) COM(dy(A)) = 0 in H(K,Z/2Z). The exactness of the
sequence (FES) ipBr(K(x)) and in Dyert HY(K(y),Z/2Z) implies that data consisting of a
finite set of pointsS= {y € Pt} and a set of non-trivial element§ € H1(K(y),Z/2Z),y €

S satisfying Faddeev’s reciprocity law are exactly the raratibn data of some algebsaof
exponent 2 oveK(x), i.e. S= Ram(A) andd, = dy(A) for ally € S The Brauer class of this
algebraA is defined up to a factor in the Brauer groupkagfmore precisely two algebrasand

A’ have the same ramification data if and onlAif- A’ ®k (x) B whereB = by K(x) with b a
constant algebra (by this we mean an algebra definedkKoneWe can now rephrase the above
guestion in terms of ramification data:

Which ramification data (of algebras of exponent 2 oRé(t))(x)) correspond
to the ramification data of a quaternion algebra?

Can one describe a quaternion algebra A of&t))(x) explicitly in terms of its
ramification data, i.e. can one construct explicitly a quatilr splitting field for
A in terms of the ramification data of A?

In the literature one can find different problems relatechese questions. We discus two such
problems

1.1. The u-invariant of a rational function field. Theu-invariant of a non-real field (i.e. fields
in which —1 is a sum of squares) is the supremum of the dimensions aftemysc quadratic
forms. For real fields this definition evidently would yielit theu-invariant is infinite (since
the form represented by a sumsdquares is always anisotropic over a real field). Therefare f
real fieldsE one defines the-invariant to be

u(E) = sup{dime|@ an anisotropic torsion quadratic form ou&}.
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Where a quadratic fornp overE is a torsion form if and only ih x ¢ is hyperbolic for some
non-zero natural number. Pfister’s local global princightes that the torsion quadratic forms
over a real fielde are exactly the forms which are hyperbolic over every rezdte ofE.

In [Pfis2] Pfister studied the following conjecture concegnfunction fields over real closed
fields:

Conjecture Let R be a real closed field and F a field of transcendence degreeer R then the
u(F)<am

In caseF is purely transcendental ovBrithe conjecture would imply that(F) = 2™.

In general the conjecture is widely open. o 1 the answer is positive and due to Elman and
Lam ([EL]). The casen= 2 is studied by Pfister in his paper. Pfister considers dinialgebras

of exponent 2 oveF which split over all real closures &f. These are the algebras representing
the elements in the kernel of the map

Y :2Br(F) — rLZBr(F")

whereQ is the set of all orderings d¥. (In caseF is not real the kernel is by definition all
of ,Br(F).) Pfister proves that if every non-trivial element in theriedrof ¢ has index 2 the

conjecture on the-invariant ofF holds, i.e.u(F) < 4. So using the following definition we can
rephrase the conjecture (in the c&ses real):

Definition 1.1. Let E be any real field. A central simple algelaver E whose Brauer equiv-
anlence class is in the kernel of the map

Y :Br(E) — rLBr(Ea)

is called amQ-algebra.

Remarkl.2 Since we are only interested in algebras of exponent 2 waugdlin the rest of the
paper the ter@2-algebra forQ-algebras of exponent 2.

So in view of Pfister’s results fan = 2 the conjecture becomes:

Conjecture (Pfister conjecture) Let F be a field of transcendence degree 2 over a real closed
field R. If F is real then ever@-division algebra of exponent 2 over F is a quaternion algebr
If F is non-real then every central division algebra of expoh2 is a quaternion algebra.

Now consider the case wheFeis a purely transcendental extension of degree one over the
function field of a (smooth projective) curve over the reRlssoF = R(C)(x). Letv be the
discrete valuation corresponding to a closed ppiC and letR(C), be the completion dR (C)

with respect tov. It is well known thatR(C)y is of the formC((t)) or of the formR((t)). Since
C((t))(x) is aCy-field the algebras of exponent 2 ov@((t))(x) are also of index 2 (cf. [Art]).

So the following local version of the conjecture, proved karikh Becher, is very natural.

Theorem 1.3(Becher) The index of2-algebras (of exponent 2) ov&((t))(x) is equal to 2.
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In section 2 we will describe the ramification data®falgebras. It turns out th&-algebras
are only ramified in points d%((t)) corresponding to monic irreducible polynomials which are

equal to a sum of squaresR((t))[x]. Since for any such set of local data Faddeev’s reciprocity
law is always satisfied, it follows from Becher’s result thateq such local data there exists a
quaternion algebra ové((t))(x) having the given local data as its ramification data, moreove
Fadeev’s exact sequence (FES) implies that there is onlysodeQ-quaternion algebra. For
certain types of such local data we will give an explicit dggon of the associate@-algebra.
The authors are grateful to Karim Becher for various helpfatassions and for allowing to
reproduce his proof of theorem 1.3 in this paper. In [Bech] aemeneral result is shown. Let
K be a field with Pythagoras number2 such that(K(v/—1)) = 4 thenu(K) < 4. This result
implies that ifK = R((t))(C) is the function field of a curve ové&((t)) such thaip(K) = 2 then
theu-invariant ofK is 4. As we noted before this yields thatalgebras oveK of exponent 2 are
Brauer equivalent to quaternion algebras. In [TVGY] the Rgtiras number of function fields
of hyperelliptic curves oveR((t)) is studied. It is shown there that@ is a curve with good
reduction and ifR((t))(C) is a real field themp(R((t))(C)) = 2. Becher’s result implies that the
u-invariant of such fields is 4.

1.2. Conic bundle surfaces.The second problem to which the questions put forward are re-
lated, concerns certain rational surfaces d¢el_et K be any field of characteristic not 2. Let
IP’& be the projective line ovef. Its function field is a purely transcendental extend{dr). We
denote the generic point @ by x, soK(x) can also be interpreted as the residue fiela. ok
conic bundle surface over i a smooth projective geometrical integkadvariety X admitting

a dominantK-morphismé¢ : X — P% whose generic fibeXy is isomorphic to a smooth conic.
A conic bundle surface is a rational surface (i.e. biratilyrequivalent toP? over the algebraic
closure ofK).

The fibrationg : X — P} degenerates at a finite number of closed pojritsPk. And each de-
generate fiber consists of a pair of smooth rational cureestrersally intersecting at some point.
If ¢ is relatively minimal, i.e. no degenerate fiber can be bloawwmn then each component of a
degenerate fiber is defined over a quadratic exterisimithe residue field(y).

Let now ¢ : X — P% be a relatively minimal conic bundle surface. ISytbe the set of points
y € Pt where the conic bundle degenerates andget {L,/K(y)|y € Sy} be the set of quadratic
extensions over which the components of the respectivesiifjeare defined. The dat, Ty are
called thelocal invariants ofg : X — P . (Note that the sely alone determines the local invari-
ants.) Itis very natural to ask the following, given a fini ef local invariantLy/K(y) }yes,
(so a finite set of quadratic extensions of different resifilelds) does there exists a (relatively
minimal) conic bundle with this set as it local invariant§2d, is this conic bundle unique up to
a fiber preserving isomorphism?

The following proposition tells us how this question canra@slated into the language of quater-
nion division algebras ove{(x).

Proposition 1.4. (cf. [CS], [Isk1], [Isk2]) There is a one-to-one correspondence between classes,
with respect to fiber preserving birational isomorphisms redétively minimal conic bundles
¢ : X — PL and isomorphism classes of quaternion algebras ovie) KThe correspondence
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associates t@ : X — IP% the quaternion algebra jiover K(x) determined by the generic fiber
Xy of X (X% is a conic over Kx) its equation corresponds to the norm form of a quaternion
algebra over Kx)). In the closed points z whegeis not degenerated fidefines an element of
Br(0,), whered, is the discrete valuation ring corresponding to z. The negeherate fibers of
¢, Xz are the conics corresponding to the residue algebrgsid, K(z).

Moreover letg : X — Pk be a relatively minimal conic bundle and lef;Hbe the corresponding
quaternion algebra over K) then the set of local invariantiLy/K(y)} corresponds to the set
of ramification data of i, i.e.¢ : X — IP% Is degenerate in ¥ IP% if and only if Hy is ramified

iny and in that case y = K(y)(1/dy(Hyp)).

In view of this it is clear that the problems concerning cdmindles formulated above translate
exactly into the questions we considered for algebras cbmept 2 oveK (x). First note that in-
stead of giving the ramification data as elements in the (@t3tGalois cohomology groups these
data can also be represented by a set of quadratic exted$i0psdy) /K (y)ly € Ram(A)}, where

& € K(y) is representing the square classdpfA) under the isomorphisril1(K(y),Z/27) =
K(y)*/K(y)*2. Now given a set of local invariants we know (using the prafoms) that this set
has to satisfy Faddeev’s reciprocity (the sum of the valddbe corestriction maps has to be
zero) in order to be a possible set of local invariants of acbundle. Moreover if this condition
on the local invariants is satisfied there exists an algebexmonent 2 whose ramification data
is determined by that set, but there is no guarantee thattargien algebra with the given rami-
fication data exists (also not in the case= R((t)) as is shown by the examples 2.4). For this to
be true, further conditions on the ramification data are edeth section 3 we explain how our
results on the ramification data 8falgebras of exponent 2 ovir= R((t)) translate into facts
on relatively minimal conic bundles ov&((t)).

Notation and terminology. Throughout the paper we will use the following terminolodye
call two central simple algebrasandB over a fieldK equivalent if they are Brauer equivalent
overkK, i.e. if they define the same element inBj, we use the notatioA ~ B. We call a central
simple algebra oveK trivial if its class in BI(K) is trivial .

Quaternion algebras over a fikdwith a K-basis of the form 1, j,k satisfyingi? = a, j2=Db
andij = —ji = kwith a,b € K, will be denoted by the symbah, b)k. If there is no confusion
possible we will omit in proofs and in calculations the fieldhe index of this symbol.

2. Q-ALGEBRAS OVER RATIONAL FUNCTION FIELDS OVERHENSELIAN DISCRETE VALUED
FIELDS WITH REAL CLOSED RESIDUE FIELD

Our results concernin@-algebras oveR((t))(x) only use the fact thaR((t)) is a Henselian
discrete valued field with real closed residue field. So wéfaimulate and prove the results in
this generality.

In the sequel of the papét will be a Henselian discrete valued field with real closeddes
field denote byk. The fieldK is the fraction field of a Henselian discrete valuation rifig and
we fix a uniformizing elementrin &x. The algebraic closure &fis k(i), i being the square root
of —1. If E is any field extension df, we writeE(i) for E @y k(i).
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We need some facts on the finite extension¥of A finite extensionL is itself a Henselian
discrete valued field; we denote its valuation ring&y. The residue field oL is either the
real closed fielk or its algebraic closurk(i). Any finite extensiorL /K can be split in a tower
K c N C L whereN/K is an unramified extension and'N is a totally ramified extension of
K. The extensiom is either equal t& (in this cased. /K is totally ramified) olN = K(i). This
follows from the fact that the unramified algebraic extensiof a Henselian discrete valued
field are unique “lifts” of the residue field extensions of thal closed field, of course the latter
only has two extensiok andk(i). The totally ramified part /N has the fornL = N(v/77) with

M = urmandu a unit in k. Sincek is real closed the units ik are all of the form+1-c"
for somec € K. So the totally ramified extensions Wfare all of the formIN(y/m) or N(y/—).

It follows that the only quadratic extensionskofareK(i),K(y/m),K(v/—m). This implies that
(—1, -1k, (—1, mk, (—1,—mk represent the only non-trivial elements;ir(K) (cf. [Schil]).
Note thatK is a hereditarily pythagorean field, i.e. all finite real edi®n ofK are pythagorean
or equivalently all non-real field extensionskfcontainK (i) as a subfield (cf. [Beck]). We also
need the following property of finite field extensionskof

Lemma 2.1. Let L be an odd degree extension of K and let F be a finite nohes¢ansion of K.
then|[LF : F] is odd.

Proof: Let[L:K]=d, d odd. Note that = K(/m). The non-real extensioh = K(i)(¥/m). It
follows thatLF = K(i)(y/m) with | the least common multiple afande. So[LF : F] = 'é which
is an odd number since it divides O

We are interested in central simple algebras of exponem pdrticular inQ-algebras) over
the rational function field<(x), i.e. over the function field of the projective lir over K.
The valuation defined by the degree mapkoix) corresponds to a closed point Bf which
we call the point at infinity and which we denote By The “finite” closed points oﬁbﬁ are
parametrized by monic irreducible polynomialskofx]. The order functions corresponding to
these polynomials define-discrete valuations ok (x). Throughout the rest of the paper we will
identify the closed points df%, the corresponding discrete valuations and (for finite {sdithe
monic irreducible polynomials iK[X].

We collect some facts on central simple algebras of expoRenerK(x) and on their rami-
fication. In the introduction we remarked that all centrahgle algebras of exponent 2 over
R((t))(x) are of index less than or equal to 4 siricgt))(x) is aCy-field. The same is true for
central simple algebras of exponent 2 oK), sinceK(i)(x) is also aCp-field, [Ser, chap. I,
section 3.3]. So we have

Lemma 2.2. Let A be a central simple algebra of exponent 2 ovéx)KThen A is equivalent to
a biquaternion algebra.

In general it is not so that all central simple algebras obexgnt 2 oveK (x) are of index 2. We
give two examples based on the following lemma which can bedon [KRTY] for biquaternion
division algebras oveF (x), with F a local field of characteristic zero.



Q-ALGEBRAS OVER HENSELIAN DISCRETE VALUED FIELDS WITH REAL COSED RESIDUE FIELD 7

Lemma 2.3. (cf. lemma 3.10 ifKRTY].) Let f,g € R][t]][x] such thatg := g mod (t) is not a
square inR(x), f := f mod (t) is non-zero and has a roat of odd multiplicity inR such that
g(a) is positive inR. Then the biquaternion algebid, —1) ® (g,t) is a division algebra.

Proof: It is well known that the assertion is equivalent to the steget that the Albert form
(f,—1, f,—g,—t,tg) is anisotropic oveR((t))(x) (see [LLT, theorem 2.3]). We will show that
(f,—1, f,—g,—t,tg) is anisotropic over the larger field(x)((t)). By Springer’'s theorem (cf.
[Schar, chap. 6, 2.6]) it suffices to check that the first armbisé residue forms with respect
to the uniformizing elemertt, (f,—1, f,—g) and(—1,0) respectively, are anisotropic over the
residue fieldR(x). The hypotheses imply that the second form is anisotrogiGeE that the first
form is anisotropic we apply Springer’s theorem again, nath vespect to the discrete valuation
on R(x) corresponding to irreducible polynomiala. Write f = (x—a)™h with m odd and
h(a) # 0. The second residue forth(a), h(a)) being definite oveR must be anisotropic. Since
g(a) is positive the first residue form (1, —g(a)) is also anisotropic. O

Example.4. (1) Lemma 2.3 implies that the biquaternion algehra (—1, —X) ®gt))(x) (X+
1,t) is a division algebra. This example is the analogue of thengka of Jacob and Tignol of a
biquaternion division algebra ov&p(x). As was noticed in [KRTY] an algebra of this form is
isomorphic to the tensor product of a quaternion algebralRyg))(x) and a constant quaternion
algebra, i.e. a quaternion algebra defined @&/gt)). Namely

(-1, —Xx)® X+ 1t)®(-11)

~ (=1, —-X) @ (—(x+1),t)

(-L-D&x-1)e -(x+1))

(— xx-l—l) (-1, -1)® (X —-1)®(t,—(x+1))
(—1Lx+1)@Xx+1)®(-1,-1)®(x,—1)®(t,—(x+1))
(=1, —(x+1))®(X,—(x+1)) @ (t,— (x+1))

~ (=X ,—(X+1),

where the third equation follows from the fact thatx,x+ 1) ~ 1 since—x+ (x+ 1) = 1.
The equations yield thgt-1, —x) ® (x+ 1,t) ~ (—xt,—(x+ 1)) ® (—1,t), i.e. Ais a quaternion
algebra times a constant algebra. The next example showhihé not always the case.

(2) The biquaternion algebra = ((x—1)(x+1),—1) ® (x,t) is a division algebra in view of
lemma 2.3. IfAis isomorphic to the tensor product of a quaternion algelea&((t))(x) with

a constant algebra, then for some constant quaternionral§eld ® B is of index 2. However
the only quaternion division algebras ow((t)) are(—1, —1)r(«)), (—1,)r(t)), (=1, —Dr(q))-
NowA® (—1,—1) ~ (—(x—1)(x+1),—1)®(x,t). The latter is a division algebra by lemma 2.3,
taking f = xandg = —(x—1)(x+1). In the same way we see that (—1,t) ~ ((Xx—1)(x+
1),—1) ® (—x,t) is a division algebra, applying the lemma with= (x—1)(x+ 1), g = —X
anda= —1. Finally also)A® (—1,—t) ~ (—(Xx—1)(x+1),—1) ® (—x,t) is a division algebra,
applying the lemma withf = —(x—1)(x+ 1), g= —x anda = —1. It follows that in this
exampleAis a biquaternion algebra ovR((t))(x) which is not isomorphic to the tensor product
of a quaternion algebra ov&((t))(x) and a constant algebra.

2

~

i

2
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The following lemma will be helpful to calculate the ramifiicen of elements inpBr(K(x)).

Lemma 2.5. (a) Let f be a sum of squares in(K). For all points yc P% such that Ky) is a
real field, every quaternion algebra of the fofrh g)k ) is trivial over the completion Kx)y. In
particular this holds for the point at infinity dﬁk.

(b) Consider a quaternion algebr@, X)k x), With g a square free polynomial over K not divisible

by x. Let p be a monic irreducible factor of g. Thegx)k x) is ramified at the point ¥ PL
corresponding to p if and only if p has a roBtwhich is not a square in &) (= K(8)).

(c) Consider a quaternion algebr@, 1) (), With g a square free polynomial over K. Let g be a
monic irreducible factor of g. Thefw, 1)k ) is ramified at the point ¥ PL corresponding to q

if and only if rTis not a square in Ky).

Proof: (a) Lety € Pt such thaK (y) is a real field. Then the completidt(x), is also a real field.
The residue field of this completion has Pythagoras numbesorby Hensel's lemma the same
holds forK (x)y. This implies thatf is a square i (x)y, so(f,g)x), is trivial.

(b) Sincev(x) = 0 andv(g) = 1 (wherev is the valuation corresponding ), we calculate the
ramification using the formula on page 2

gV(X) o *2
(9 0i) = (-9 (55 ) =x= 6 modk(y)
So the ramification ity is non-trivial if and only if6 is not a square iK(y).
(c) Sincev(m) = 0 andv(g) = 1 (wherev is the valuation corresponding &), the ramification
formula yields

a _ (_vOV(m gumy _ _ dK ()2
V(9 Mk () = (1) o ) = rTmodK(y)"™.
So the ramification ity is non-trivial if and only ifrTis not a square iK(y). O

Itis clear that any quaternion algebra of the fofg)k ) with f a sum of squares iK(x) is
trivial over all real closure&(x)q, a € Q sincef is a square irK(x)q. So any(f,g)kx) With

f a sum of squares iK(x) is anQ-algebra. Becher’s result (theorem 2.8) yields the converse
For the sake of completeness we will include a proof of thsuite It is based on the fact that
the Pythagoras number &f(x) is 2, which can be seen in different ways (for instance [Beck,
theorem I11.1.4], where it is shown that a fididis a pythagorean if and only f(F (x)) = 2. In
[Pfis1] the following more general fact is shown. LFete a real field and is a nonnegative
integer. Then any sum of squaresFiix) may be written as a sum of at most'2 squares if
and only if one may write -1 as a sum of at moStsgjuares in any non-real finite extension of
F.) We give an argument here which is much in the spirit of tle¢ oé the paper. Although we
state the theorem only for the henselian discrete valuedkfige are considering in this paper,
the argument works over any pythagorean field. (The sameregis used in [TVGY] to study
the Pythagoras number of function fields of hyperellipticves overK.)

Lemma 2.6. Let K be a Henselian discrete valued field with real closeddwsifield. The
rational function field in one variable over K, (K), has Pythagoras number 2.
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Proof: Let f € K(x) be a sum of squares. We consider the quaternion algebtaf )y ),
note that it is arQ2-algebra sincd is a sum of squares. We claim that this algebra is trivial in
2Br(K(x)). If this is true it follows thatf is a norm of the quadratic extensi&ti)(x)/K(x) and
so f will be a sum of two squares. Which is what we have to prove.

To prove the claim we determine the ramification(efl, f ) at all closed points oP%. As-
sume thay € P such thaK(y) is a non -real field, se-1 € K(y)*2. We havedy((—1, f)k ) =
(=D modK (y)*? = 1 modK (y)*?, i.e. the algebré—1, f )i ) is unramified iny.

If yis a point with a real residue field thén 1, f )y is unramified by lemma 2.5 (a).

Since(—1, f)kx) is unramified at all closed points B, the exact sequence (FES) implies that
the algebra is induced by a quaternion algebra definedioveo (—1, f )i x) ~ (—1, &)k x) With

€ €{1,-1t,—t}. Now note that fore € {—1,t,—t} there is always an ordering € Q such
thate < 0 with respect to that ordering. This implies that{—1, &)y, with € € {-1,t,~t},

is non-trivial overK(x)q. But (—1, f)k v, is trivial over all real closures dk(x) since it is an
Q-algebra. It follows that—1, f )y x) # (—1,€) @k K(X) = (—1,&)kx) With € € {-1,t,~t}, so
(—1, f)K(X) ~ (—1, 1)K(X) is trivial. [

Corollary 2.7. LetK be as in the lemma. Any polynomiat K[x] which is a sum of squares in
K(x) is a sum of two squares in[K.

Proof: This follows from the above together with a well known resfltCassels saying that a
polynomial in one variable over a field represented by a catadiorm over the rational function
field is also represented by that quadratic form over thermotyial ring, cf. [Pfis3, Chap. 1,
theorem 2.2]. O

Theorem 2.8(K. Becher) EveryQ-algebra A over Kx) of exponent 2 is Brauer equivalent to
a quaternion division algebra of the for(i2 + g2, h) with f,g € K[X.

Proof: The proof is based on a quadratic form argument. A.be aQ-algebra of exponent 2,
we know (cf. lemma 2.2) thah is equivalent to a biquaternion algebra. We have to show that
this biquaternion algebra is not a division algebra. We usenathat this is equivalent to the
statement that a 6-dimensional quadratic foomef discriminant 1 is isotropic. (The quadratic
form o is the Albert form associated #). SinceA is anQ-algebraA is trivial over all real
closures ofK(x), this means thatr is hyperbolic over all real closures &f(x) or equivalently
(by Pfister’s Local-Global Principle) that is a torsion form in the Witt ring oK (x).

Assume for the sake of contradiction tleats anisotropic. NowK (i)(x) is aCp-field (cf. page 6)

so theu-invariantu(K (i)(x)) = 4. This implies that3(K(x)) is torsion free (her&(K(x)) is the
fundamental ideal in the Witt ring df(x)). We also obtain thatr @ K(i)(X) is isotropic, which
tells us thato contains up to scaling the norm form kfi)(x) /K (x) as a subform (cf. [Schar]).
So we may assume that= (1,1) | 3. Sincea is anisotropic so i. The Albert forma is in
12(K(x)) so 2x a is a torsion form in3(K(x)) and therefore hyperbolic. It contains<B as a
subform, and since di@ x 8) > %dima it follows that 2x  is isotropic. It is well known (see
[EL, proposition 2.2]) that this implies th#& contains a 2-dimensional forpsuch that 2< y

is hyperbolic. Soyis a torsion form, its discriminartt must therefore be a sum of squares, and
because the Pythagoras numbeK¢x) is 2, actually a sum of two squares. We have (comparing
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discriminants)

a=(11) 1 (—a,—ad) Lf,
for somea € K(x). Sincea andf are torsion forms the same holds fdr, 1, —a, —ad). It
follows thata is a sum of squares and therefore a sum of two squar&sgxp implying that
(1,1, —a, —ad) is isotropic. This contradicts the fact thatis anisotropic.
Finally we note that a®-quaternion algebra ovét(x) is of the form(e, f) x) with ea sum of
two squares it [x] andf € K(x)*. This follows from the fact that its norm form is a 2-fold tans
Pfister form¢ by Pfister's Local-Global Principle. Sin¢&(K(x)) = 0 we have X ¢ hyperbolic.
So it has to contain a 2-dimensional torsion form which implihatp = (1, —e, —f,ef) with e
a sum of two squares i (x) andf € K(x)*. Since we may multiply with any square i (x)*,
it can be replaced by a polynomial K{x] which is a sum of two squares Kx|. O

We now characteriz@-algebras oveK(x) by their local data.

Proposition 2.9. Let A be a central simple algebra of exponent 2 ovér)K Then A is an
Q-algebra if and only if the following two properties hold
(@) Aw = AR K(X)o Is trivial, so A is unramified at infinity.
(b) The monic irreducible polynomials at which A is ramified area@do sums of two squares.

Proof: Let A be aQ-algebra of exponent 2. We know (cf. theorem 2.8) #had equivalent to

a quaternion algebree, f)(y), whereeis a polynomial which is a sum of two squareski(x).
Lemma 2.5 (a) implies thae, f) @k x) K(X)w Is trivial in Br(K(X)«), this proves point (a), that
Alis trivial at co.

The (finite) ramification points correspond to monic irreithles factors ofe f. We may assume
thateis a square free polynomial, its irreducible factors area¢tpa sum of two squares since
eis a sum of two squares. (This follows from the fact that a sditwo squares is a norm of
the extensiorK (i)(x) /K (x) and that the norm is multiplicative.) Lg be the monic irreducible
factors off. In view of lemma 2.5 (a) the algeb(e, f )« is unramified at points corresponding
to monic irreducible polynomialp; having a real residue field. On the other hand if the residue
field pj is a non-real extension &f we remarked (cf. page 6) that it contak($) but thenp; is a
norm of the field extensioK (i)(x)/K(x) and sop; is a sum of two squares. This proves that (b)
holds.

To prove the converse I& be a central simpl&(x)-algebra satisfying properties (a) and (b).
Write A, up to Brauer equivalence, as a tensor product of quatertie@s[T; (&; fi, bigi)k x)
with fj, gi monic polynomials oveK anda;, b; € K*. (Lemma 2.2 implies that it is a product of 2
factors but that is not necessary for the argument.) Shisdy assumption unramified at infinity
the points in the ramification locus &f correspond to irreducible factors éfandg;. We can
expand the produd; (a; fi, bigi )k x to a productT;(a, bi)k x) ® i (&, 9 )k x) @ i (bi, fi)kx ©
ﬂj(pj,qj)K(x) with pj andg; monic irreducible factors of thg andgi. We collect the first three
parts of this expansion together with all the fact@ps gr )k ) With pr andg, not equal to a sum
of squares and call this produBt As we mentioned before the remaining factors are clearly al
Q-algebras since eithgg; or gj is a sum of squares. Therefore there product,Gayg also an
Q-algebra. So by the first part of the prddfs trivial overK(x). andC is only ramified in points
corresponding to monic irreducible polynomials which arms of squares. By assumption the
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same facts hold foh. So becausB ~ A® 4 C itis anQ-algebra. It follows thaB @ () K (X)e

is trivial and thatB is unramified at all finite points (since its ramification Isas a subset of

{pr,ds}rs but none of these polynomials is a sum of squares). But Fateect sequence (cf.

(FES)) implies that the only non-trivial unramified algeboverK (x) are algebras defined over
K and these are non-trivial at infinity. It follows thBtis trivial and therefore we may conclude
thatA is equivalent to th&-algebraC. OJ

Remark2.1Q It is possible to prove the above proposition without using tact that theQ-
algebras are quaternion algebras. It is knownAtatequivalent to a tensor product of quaternion
algebrad;i(e, fi)k(x where thes are monic polynomials ovef which are equal to a sum of

squares. (For fields such that3(F (v/—1)) = 0 an argument can be found in [BP], where the
statement follows from the end of the proof of propositiod.2. The argument in the proof of
proposition 2.9 can now be applied to all monic irreducilaletors of the produdf] g f;.

Corollary 2.11. An Q-algebra A over Kx) with empty ramification locus is trivial. TwQ-
algebras A and B over k) with the same ramification locus are equivalent.

Proof: The first part follows from property (a) in proposition 2.9h& exact sequence (FES)
yields that the unramified algebras oW€fx) are of the formc @k K(x) with ¢ an algebra of
exponent 2 defined ovét. But all these algebras, except the trivial ones, are noratmat the
point at infinity.

The residue fields of ramification points Qfalgebras have a unique quadratic extension, so the
group of square classes of such a residue field is of orderfdlldvs that if A andB are two
Q-algebras with the same ramification locus, t#eRy ) B does not ramify in any point. The
first part of the corollary now yield tha andB are equivalent. O

We will now state our main result. We first define 3 types of m@ulynomials oveK.

Definition 2.12. Type (1) The monic polynomial® € K[x] which are sums of 2 squares and
whose monic irreducible factofg overK are of degree@ with g; an odd number. I%; is a root
of Q; (in some algebraic closure &) thenx; € K(x)*? (i.e. x; is a square in its root field.)

Type (2) The monic polynomial® € K[x] which are sums of 2 squares and whose monic irre-
ducible factorsRj overK are of degreeZ with rj an odd number. I§; is a root ofR; (in some
algebraic closure df) theny; ¢ K(y;)*2 (i.e.y; is not a square in its root field.)

Type (3) The monic polynomial® € K[x] which are sums of 2 squares and whose monic irre-
ducible factord overK are of degree ®p, with p, an odd numbeig € N ands, > 1. If z is

a root of P (in some algebraic closure &f) thenz, ¢ K(z)*? (i.e. z is not a square in its root
field.)

Note that the monic irreducible factors of polynomials giey(1), (2) or (3) are also equal to a
sum of two squares iK|[x] (corollary 2.7).

Theorem 2.13.Let A be anQ-algebra over Kx) of exponent 2. Let A be ramified exactly in
the points corresponding to monic irreducible polynom@lsi = 1,...,a, of type (1), R,j =
1,...,e oftype (2)andRk=1,....1, of type (3) (where any of the three sets of polynomials may
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be empty). Then there is a polynomiat iK[x] such that A is equivalent to a quaternion algebra
of the form: (7th, PQR), with P= R, Q = [1; Qi and R= []; Rj and with 1T a uniformizing
element for the discrete valuation on K.

The polynomialh occuring here will be constructed explicitly in terms of tlanification data
of A.

Remark2.14 (a) The onlyQ-algebras for which theorem 2.13 does not give an expligtdp-
tion are those which are ramified at some monic irreduciblgrmonial Sof degree &,t > 1,r
an odd number, which is a sum of two squares and with a roothwkia square in the root field
of S

(b) In previous notes the authors obtained special caseseofém 2.13. In [BY] the cases
Ram(A) = {Q}i, RamA) = {R;};, RamA) = {R}« or Ram(A) = {R;, R}k where treated. In
[BVY] the case RarfA) = {Q;,Rj}i,; and in [Baz] the cas¢Q;,R}i x was proved. The latter,
i.e. anQ-algebrasA with ramification of type (1) and (3) say in poinf&;, F}i . follows from
the fact that the quaternion algebi@P, rix), with Q = [1; Qi andP = []x R has the required
ramification type. This can be seen by expandi@®, rx) into

(QmM&(Qx)®(Pm& (PX).
Lemma 2.5 implies thatQ, x) and (P, i) are trivial algebras. The same lemma yields that the
ramification locus of Q, 1) consists exactly of the point3; and that the ramification locus of
(P,x) consists exactly of the poinf&. Since(QP mnx) is anQ-algebra with exactly the same
ramification asA, corollary 2.11 implies thah ~ (QP, 1x).
We mention further that in [BTY] a result complementary to theorem stated above is given.
There an explicit description of al-algebras ramified in at most two points]l?.ﬁ is obtained.

The proof of theorem 2.13 is organized as follows. We staith wisubsection containing some
technical lemmas. In a second subsection the polynamiaK [x] occuring in the statement of
the theorem is constructed. The third subsection contdimabdemma from which the proof of
the theorem follows. Throughout the notation as given imtem 2.13 remains fixed.

2.1. Some lemmas.

Lemma 2.15.(1) Let g€ K[x] be a monic irreducible polynomial of non-zero degree dlesby
4 and such that g is a sum of squares ifxK Then the quaternion algebi@, 11) ) is trivial.

(2) Let f,g € K[x] be monic irreducible polynomials, both sums of squares(i) KLetdegf = 2
and4|degg. Let y be a root of g and assume thag & K(yo)*2. Then the quaternion algebra
(f,9)k(x is trivial.

Proof: (1) Note that the algebr@, 1) is anQ-algebrag being a sum of squares. It follows that
the ramification can only occur gt Let 8 be a root ofg in some algebraic closure &f. Since
degg = 2°mwith s> 1, man odd number, and singds a sum of squares i (x) it follows that
K(8) = K(i)(v/m), with | = 25-'m. Somis a square ifK(8). Consequently, by lemma 2.5 (b),
(g, ) is unramified everywhere, hence trivial (cf. corollary 2.11

(2) Sincef is a monic quadratic polynomial, lemma 2.5 (a) implies {tfa) ® K(X)« is trivial.
Let xo be a root off. Put degg=4m, me N\ {0}. Sincef andg are both a sum of squares in
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K(x) their root fields contaifa(i). It follows thatK (xg) = K(i) and thaK (yp) is a totally ramified
extension oK (xp) of degree tn. Hencexg is a square irfK(yp) because the latter contains the
unique quadratic extension Bf(xp). Sinceyy is not a square i (yo) and all units are squares
in K(yo), the values/(xp) andv(yp) (with v the valuation orK(yp)) are distinct.

First assume that(xo) > V(yo). We havef (yo) = (Yo — Xo) (Yo — Xg), with T the automorphism
induced by sendingto —i. Sincev(x}) = v(Xo) > V(Yo) it follows that f(yo) = y3 = 1 mod

K (yo)*?.

Now letv(xo) < V(yo) then f (yo) = (Yo —%o) (Yo — X§) = (—X0)(—x§) = f(0) = 1 modK (yo)*2
(f is a sum of squares i{[x], so its constant term is a square). It follows from the raraifan
formula that( f,g) is unramified ag.

SinceK(yp) is the unique totally ramified extension kfi), (yo)/K is a Galois extension. Let
G = Gal(K(yo)/K) = {01, ..,0am}. Theng(xo) = M (X0~ yy'), where for alli = 1,....,4m
the eIementg have equal values with respect to the valuatiar K (yp).

If V(xO)2 < V(o) thenv(g(xo)) = V([iTL(%0 —¥g' ) = V(™) = 4mU(xo). Henceg(xo) =1 mod
K (x0) ™.

If v(x0) > V(yo) thenv(g(xo)) = V(M™% —Y5)) = V(M (-5 ) = V(9(0)) sog(xo) =g(0) =

1 modK (xp)*?, because is a sum of squares iK[x] and sog(0) is a square irK. Hence the
formula for the ramification also yields thét, g) does not ramify af.

It follows that theQ-algebra(f,g) is unramified everywhere and corollary 2.11 implies that
(f,Q) is trivial. O

Remark2.16 LetE be the splitting field of the polynomiaf, RandP, it is a Galois extension
of K. LetH be the 2-Sylow subgroup of G&l/K). The fixed fieldL = E™ of H is an odd
degree extension ¢f. SinceE contains all the roots of the polynomidls, Rj andR, and since
[E : L] = 2™ for somem > 1, it follows that all the irreducible factors overof the polynomials
Qi,R; andR have degree a power of 2 (they cannot be of degree one sincieginees of the
polynomialsQj, R; andR; are all even and so they cannot have a root in an odd degreesgig
Moreover we have,

Corollary 2.17. Let L be as above. The irreducible factors over L offQ) and R, have degrees
2,2 and 2, s > 1 respectively. They are monic irreducible polynomials dverf type (1), (2)
and (3) respectively.

Proof: The only thing we still need to show is that the polynomials af the given type. Let
Qi,L be an irreducible factor d@; overL and letx; be a root ofQ; |, it is also a root of); so it is
a square in the root fielld(x; ). It follows thatx; is also a square in the larger fidldx; ). SoQ; .

is of type (1).

Let Rj L be an irreducible factor dRj overL and lety; be a root ofR; |, it is also a root oR;
so it is not a square in the root fiekdy;). Lemma 2.1 implies that the degr@igy;) : K(yj)] is
odd. It follows thaty; is not a square ih(yj). SoR; . is of type (2). In the same way it follows
that the irreducible factors & overL are of type (3). O

These observations will allows us to reduce some argumertketcase where the polynomials
Qi,Rj, A are of degree a power of 2.
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Lemma 2.18. Let A be theQ-algebra over Kx) as in theorem 2.13. Then:

(1) A~ (QR M)k x) @k (x) (P.X)k(x)
(2) A~ (XQR 1P)k (x) @K (x) (TLX)K (x)

Proof: We first prove the lemma in the special case that the polyrisi@eandR; are of degree
2 and that the polynomial are of degree®.

(1) Consider the algebréQR 1) @y (Px). We calculate its ramification. Sind@R and
P are polynomials which are equal to a sum of squareK(x) lemma 2.5 (a) implies that
((QR 1) ®k (x) (PX))k ()., IS trivial.

The algebra QR 1) @k ) (P,x) can only ramify in finite points corresponding to irredueibl
factors ofQ, R, P andx.

Since de®®; = degR; = 2 and sinc&); andR; are both sums of squares we h#ei) = K(yj) =
K(i). Somis not a square iiK(x;) = K(yj). Lemma 2.5 (c) implies thgQR ) is ramified at
the points corresponding to the polynomi@isandR; for all i and all j. The same is true for
(QR 1) ®k (x) (P,X) since(P,x) is unramified at these points.

Sincez is not a square ifK(x) we conclude (by lemma 2.5 (b) th&® x) is ramified at the
irreducible polynomial$. The same is true faiQR 71) @ (x) (P,x) since(QR ) is unramified
at these points.

The polynomialP is a sum of squares ii[x] soP(0) = 1 modK*2. Hence, by the ramification
formula, (P,x) and therefore als@QR 11) @k ) (P.X) is not ramified inx.

It follows thatA and(QR 1) ®k () (P,x) have the same ramification so corollary 2.11 yields that
they are equivalent. This finishes the proof of (1).

(2) Lemma 2.15 implies that the quaternion algebi@sF) and (R;,F) are trivial. Hence
(Q,P) ~ Mik(Qi,R) and(R,P) ~ ; k(Rj, R) are trivial. This and part (1) of the proof implies

A ~ (QRmM®(PX)
~ (QRM® (x,m&(PX)®([PQ)® (PR @ (x,m
~ (XQRm) ® (XQRP) ® (11,X)
~ (XQRP) ® (1T,X).

We now show that the general case can be reduced to the spesgshbove. Ldt/K be the odd
degree extension described in remark 2.16, say |ittkK| = d. Choose a uniformizing element
i in L such thatr= (1) (this is possible sinck = K(J/7)).

SinceQ,R and P are also ovet of type (1), (2) and (3) respectively. And since the degree
of the irreducible factors of andR overL is 2 and since the degree of the irreducible factors
of P is a power of 2. It follows from the above thA&t® L ~ (QR T0) () @ (PX) ) =
((QR M ® (P,x)) ® L(x). But L(x)/K(x) being of odd degree implies that the natural map
2Br(K(x)) — 2Br(L(x)) is injective. So the equivalende~ (QR 1) ® x) (P, X)) follows. The
second equivalence follows in the same way. O

Lemma 2.19. Let f,g be monic irreducible polynomials in[K such that f is a sum of squares
in K(X). Let % be aroot of f and ya root of g such that Kyp) is a non-real field.
If f(yo) Z 1 modK (yp)*? then \(xo) = V(yo) with v the valuation of the field o, yo).
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If in addition f is a quadratic polynomial therpx= U with a€ Z and w a unit in Oy ).
Then w = yorr 2 is a unit in Ok (xoy0)- LELUo @andWp be the residues in(k) of respectively g
and wy, thentp andwp are equal or conjugated under the automorphisefined byr (i) = —i.

Proof: By assumptiorf is of even degree, say dég= 2m. Letxg be a root off and letoq, ... oo
be the automorphisms of the splitting fidldof f. So the elementxgl, . ,xgzm are exactly the
2m different roots off, and f(x) = 127 (x—xJ). The values of the rootg],...,xg?" with
respect to the valuation dnare all equal.

Suppose for the sake of contradlctlon tkl()to) V(Yo), wherev is the valuation oK (Xg, o).
If v(x0) > V(yo) thenv(f(yo)) = V([ (Yo —x5)) = V(¥s™). Hencef (yo) = 1 modK (yo)*,
contradicting the hypotheses.

If v(x0) < V(yo) thenv(f(yo)) = V(M (Yo —x3)) = V(MA(—X5) = v(F(0)), hencef (yo) =
f(0) = 1 modK*? (sincef is a sum of squares), again contradicting the hypotheses.
SoV(Xp) = V(Yo). In the caseam=1, i.e. f is a quadratic polynomialf (x) = (X — Xg) (X — XJ),
with T inducing the non-trivial automorphism dn= K(Xo) = K(i), so thatr (i) = —i

We can putxg = mug with ug a unit in Ok (x,) @nd it follows thatwg = YoTT @ is a unitin Ok (yo)
(note thatk (xg) = K(yo) in this case). We havé(yp) = (mwp — mup) (TPwp — T12Uj) = (Wo —
Uo) (Wo — u§) modK (yo)*2. By assumptiorK (yo) containsk(i) and therefore the units i (yo)
are all squares. For the sake of contradiction assumevihgtty andwyp # Ug". Thenwp — U
andwp — Ug are units indy y, so it are squares iK(yo). The above calculation implies that

f(yo) = 1 modK (yp)*? contradicting the hypotheses. This proves the lemma. OJ

Lemma 2.20. Let & be a root of the polynomial’x- a2, where n= 1 mod 2and ac K*. If K(35)
is non-real then RS) = 1 modK (5)*? and R(&) = 1 modK (5)*2 (where R and P are products
of monic irreducible polynomials of type (2) and (3), redpasy).

Proof: SinceK(d) is a non-real extension ov&, it containsk (i),henceK (d) = K(i)( /) for
someme N. Sod = (Y/m)Pu, with p € Z andu a unit in Oy ;) 7). Fromd" = a2, it follows
thatmmu = a2. This impliesi € Z sincea € K*. Letd = gcd(m n), putm=dm,n=dny,
with ged(my,ng) = 1, note thad is odd sincen is odd. Sincefit = 5 € Z, n=1 mod 2 and
gcdmy,ng) = 1, it follows that 2 is a divisor ofp, i.e. p = 2myp;, with p; € Z. Sinceu is
a unit in Oy iy mp itis a square ik (i)({/mm) = K(d). Hence,6 = ({/mPu= (y/m)2Mbiy =
1 modK (8)*?

Letw be a root of an irreducible fact®; of R or of an irreducible factoR of P. Theni € K(w)
soK(w) = K(i)(¢m), with g=25"1r,sc N,s> 1, andr an odd number.

We first show that the values of the elementsv with respect to the valuation of the field
K(d,w) are distinct. To do this assum&d) = v(w). Now K(J) = K(i)(¥/m) and K( ) =
K(i)(¢m) implies thatk (w, d) = K(i)(+/m)), with h = Icm(g,m). Sincew # 1 modK( )2, we
havew = m?4"1)/9¢ whereq € Z ande¢ is a unit in O y,). Hence, fromw = ({/m)2+) h/gg

andd = (V/m)PYMu = (y/m)2Prm™h/ My it follows that (2qgl) 2mmih - since we assumed that

v(w) =Vv(d). So we ha\vez%1 = %, implying that(2q+ 1)d = 2p1g. This is impossible, since
(2q+1)d is odd and P19 is even.
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Since the values of the elemerisandw are distinct, lemma 2.19 implies thS([é) =1 mod
K(6)*? for all irreducible factorsS(x) of R(x) or of P(x). It follows thatR(6) = |‘|J 1Rj(0) =

1 modK (8)*? and thatP(d) = [k_; () = 1 modK (5)*2

U

2.2. The construction of the polynomial h. Let A be theQ-algebra overK(x) as given in
theorem 2.13. We now construct the polynonfigt) € K[x] in terms of the ramification oA
given by the monic irreducible polynomialg,i=1,...a,Rj,j=1,...,eandR,k=1,...,| of

type (1), (2) and (3) respectively.

Consider the field extensiad = K(yx,...,Ye,71,...,2), with for j =1,...,e, y; a root of the
polynomialQj, and fork=1,...,1, z a root of the polynomial§. ThenM = K(i)({/m) for

somed € N, definen:=4d + 1. We denotel = {y1,...,Ye} andZ = {z,...,7}.

Using thaty; is a square irK(yj) andz is not a square ifK(z). And using thatK(yj,z) =

K (i)( {/m), with m= 2%~1r wherer is odd, ands is such that 2 p, = [K(z) : K], with py odd.
A similar argument as the one used in the proof of lemma 2.2@yithat for the valuation av

all the elements of have a value different to the values of all the elemenf.in

In order to define the polynomi&lwe have to consider four different cases. In what follows we
use the following notation. For any finite 3&tof elements irL, letm(W) denote the element of
W with the smallest value and Ibt(W) denote the element &¥ with the largest value.

(i) The element of Y Z with the smallest valuation is an element of Y and the elenfent) Z

with the largest value is an element of Z.

In this case we partitiolY andZ respectively in subset¢ C Y, r=1....bandzZ Cc Z,t =
.,bsuch that for all elementg € Y; and all elementg € Z the following holds:

V(Y1) <V(Z1) < ... <V(Vb) < V(Z).

Put (square brackets means taking integer parts)

a = [fGMM))+1,
e = [*GGVM(Z))]+1
- [45E1V(M(Y6))] + 1
b = [FM(Z)]+1

Then fori =1,...,bwe havev(M(Y;)) < v(m(Z)) and the following inequalities hold:

4d+1 4d +1
T(V(m(zi))—V(M(Yi)))Z >d > 2.

This implies

4d+1 0 | 4d+1 4d+1
2d
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and therefore
(4d+1)V(M(Yi)) < 2dCy(i-1)11 < (4d+1)v(m(Z)).
We obtain
VIM(Y)") < v(r?%20-0+1) < v(m(Z)M).
By definition we have foi = 1,...,b— 1, (since the values of the elementsYirare different
form the values of the elements), thatv(M(Z;)) < v(m(Yi;+1)). We get

M%) ~v(M(z)) = “O

> 2,

SO
(4d +1)V(M(Zi)) < 2dcz < (4d+ 1)v(m(Yit1)),
yielding
V(M(Z)") < V(%) < v(m(Yis1)").

Finally for j = b we get directly from the definition that

V(M(Z)") < V().
So we verified that

V((M(YD))™) < (1) < v((M(Zy))") <V((M(Z )) ") < v(1P%) <
V((M(Y2))") S V(M(Y2)") < ... < V((M(Zp))") < V(TT°2).

(ii) The element of Y Z with the smallest valuation is an element of Y and the eleofefit Z
with the largest value is an element of Y .

In this case we can partitionnandZ respectively in subse¥ C Y, r=1,....b+1andz C Z,
t=1,...,bsuch that for all elementg €Y; and all elementg € Z the following holds:

V(Y1) <V(Z) < ... < V() < V(%) < V(Vor1)-
As above we define; (j =1...,2b),

C—n1 = [*FFEM(Y)]+1

Ci = [%—glM<ZI)] + 17
and verify in a similar way that
V(M(YD)") < V(1) < v((M(Z)") < V((M(Z0))") < V(°2) < v((m(Y2))") <
< V((M(Zo))") < V(1P2) < V((M(Yo11))").
(i) The element of Y Z with smallest value is an element of Z and the elementwZ Yvith

largest value is an element of We partitionY UZ in 2b setsYs, ..., Yy andZy, ..., Zy,, such that

V(Z1) < V(Y1) < ... <V(Z) < V(Yp)-
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And we definecj, (j =1,...,2b—1) as follows:

G- = [GEM(Z)]+1

Coi = [*GEMY)]+1,
herei =,1...b— 1. One can verify the following inequalities,

V(M(Z0)") < v(P™) < v((m(Y0))") < V((M(Y2))") < V(P2) < v((Mm(Z2))") <
(1P < v((m(Yp))™).

(iv) The element of Y Z with smallest value is an element of Z and the elementwZ Yvith
largest value is also an element of Z.

We partitionY UZ in 2b+ 1 setsYy,...,Yp andZy,...,Zy 1. We define the elements (i =
1,...,2b+1):

Coicn1 = [*FFM(Z)]+1

Cai = [*FMY)]+ 1,
withi=1,...,b. And one verifies the inequalities,

V((M(Z2))") < V() < V((m(Y2)") < V(M(Y2)") < v(72%) < v((m(Zz))") <
e S V(TP) < V(M(Zo11))") < V(M (Zo2))") < V(TP251).

Definition of h.

Definem:= 2biif (i) or (ii) holds, m:= 2b— 1 if (iii) holds andm:= 2b+ 1 if (iv) holds.
LetL be the odd degree extensionkotiefined in remark 2.16. Every polynom@j,i=1,...,a

splits overL in g irreducible factors of degree 2, s@y, i =1,...aandt =1,...q;. Letxt be
V(% t)

aroot ofQit. Thenxiy = 9 wiy wherev(xi;) is the value ofx; in the fieldL(xt), Wit is a

unit in ﬁL(X“), andgq; is as defined in definition 2.12. Since the residue fiel& a$ infinite we

can choose unitss in K in such a way thatts)® # (Wiy)", (Us)? # (wf,)"for alls=1,...m, and

j =1,...,a whereUs be the residue afis in k, Wiy be the residue oy ; in k(i), andet is an
element conjugated iy undert (the automorphism defined by— —i).

Definition 2.21. Let m, ¢ andus for s= 1,...,m be as defined above. Defirrg = mus,
s=1,...,m, and define
m

h(x) := |1(a§ —x").

2.3. Proof of theorem 2.13. With h as in definition 2.21 the following holds:
Lemma 2.22. The quaternion algebra&QR 7iP) ) and (1th(x),XxPQR x, are isomorphic.
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Proof: First note that sinca— 1 is evena2 —x" = a2 — (x"z")2xis a norm of the quadratic exten-
sionK (x)(1/X). It follows that for eacrsthe quaternion algebr@Z — x", x) is trivial. Hence also
(h,x) is trivial. Lemma 2.5 (1) implies that the algekia 1) = ®}_, (P, ) is trivial. Expanding
(rth, xPQR then yields
(1h,xPOR ~ (1,xPQR ® (h,xPQR
~ (mx)®(QR m & (h,PQR).
Lemma 2.5 (b) says th&Q, P) and(R, P) are trivial so the expansion ¢xQR 7iP) gives
(XQR7P) ~ (x,m®(xP)@(QRmM®(Q,P)®(RP)
~ (xm®(Px) ©(QR m).
It follows that the isomorphisn{xQR nP) = (1th,xPQR), which we have to prove, is established
if we show that

(x,m® (PX)®(QR 1) = (1,X) ® (QR m) @ (h, PQR),
or equivalently that
(1) (P.x) = (h,PQR).

Note that both ar€-algebras. The ramification locus @ x) consists exactly of the points
corresponding td,...,A. So the isomorphism (1) holds if the ramification locus of tiggt
hand side is also equal B, ..., R (cf. corollary 2.11). This holds true if

h(x) = 1 modK (x)*? foralli=1,....a
) h(yj) = 1 modK(yj)*?, forallj=1,...,e
h(z) # 1 modK (z)*2, forallk=1,...,1

P(0)Q(d)R(d) ~ 1inK(d) for all rootsd of h.

We first verify the last condition in (2). L&l be a root oh. Note that ifK(d) is a real field, then
we have thaP(5)Q(d)R(5) = 1 modK (8)*? (since the polynomialB, Q, R are sums of squares
in K[x]). So we may assume thKtd) is a non-real field. According to lemma 2.20 we have
R(8) =1 modK(5)*2, P(8) = 1 modK(8)*?in K(d).

Assume thaQ(5) # 1 modK(8)*2. Then it follows from lemma 2.1 th&®(5) # 1 modL(5)*?
whereL is the odd degree extensionkfdefined in remark 2.16. The®i((5) # 1 modL(d)*2
for some(i,t), whereQ;; are the monic irreducible factors Qf overL (as defined in subsec-
tion 2.2). We also fixed a roog; of Q;t. According to lemma 2.19(d) = v(Xit) in L(Xit,9).
Let 5 = m'%¢, with hy € Z ande a unit in &, 5), sinced" = a3, for somes € {1,...,m},
we haves = {/u2. And by the choice of the unitss, s= 1,...,mwe see that the residues &f
andvv}jt are not equal and not conjugated under the automorphjgimerefore the same holds
for the residues of andw;;. Lemma 2.19 then implie®;(5) = 1 modL(5)*?, and we have a
contradiction. Henc®(4) = 1 modK (8)*2.

SoP(6)Q(8)R(d) = 1 modK (8)*2, and we proved that the last condition of (2) is satisfied.
We now verify the first condition of (2). To do this we verifyrfall s=1,...,m and for all
indicesi thataZ — x" = 1 modK (x;)*? in the three possible case&?) < v(x"), v(a2) > v(x)
andv(a2) = v(x"), wherev is the valuation oK (x).
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1 modK (x)*? sincex; = 1 modK (x;)*2 andK (i) C K(x)2. Finally if v(a2) = v(x") thenaZ —
X' = /(@) (U2 —w!") = 1 modK (x)*2 because? —w! is a unit indy ) (by construction of the
elementsls).

Finally we verify the second and the third condition of (28, h(y) = 1 modK (y)*?forally € Y
andh(z) # 1 modK(z)*2 for all z€ Z. To do this we have to consider the cases (i) - (iv), on
which the definition oh depend, seperatly.

We consider case (i). Lgte Y thenh(y) = 122, (a2 —y") = 21 (—y") = y*" =1 modK (y)*2.

Lety € Yj with j > 1, thenh(y) = 12, (82 —y") = M2 1 * 82 121 (—Y") = a2 Dy2(b-j+1n —

1 modK (y)*2. This settles the second condition of (2).

Let z € Z thenh(z) = 12,82 — 2") = & a2 2 (~2") = —ad & V2241 = 7
1 modK (2)*?, since(2b— 2k +1)n= 1 mod 2 andz # 1 modK(z)*2. Which proves that the
third condition of (2) holds foh.

In a similar way on can verify in each of the three other caggs({ii) and (iv)) that the polyno-
mial h satisfies the second and the third condition of (2). O

We can now prove our main result.

Proof of theorem 2.13: Let A be anQ-algebra oveK(x) of exponent 2 and with ramification
locus as in theorem 2.13. Lemma 2.18 implies that (xQR 1P) ® (11,X).

According to Lemma 2.22 there exist elemeasts...,an € K* and an odd numbem, such
that (XQR 11P) ~ (T[], (a2 — X"),xPQR. Since(a2— x",x) ~ (a2 — (x"z )2x,x) ~ 1, we have
(h,x) ~ (T2, (a2 — xM),x) ~ 1. This implies(t,x) ~ (1th,x). Therefore

A~ (xQR7P) ® (11,X) ~ (1, XxPQR & (1th, X) ~ (7th, PQR),

as stated in the theorem. O

3. CONIC BUNDLE SURFACES OVERHENSELIAN DISCRETE VALUED FIELDS WITH REAL
CLOSED RESIDUE FIELDS

As mentioned in part 1.2 of the introduction, the resultsalgebras oveK(x) with K a
Henselian discrete valued field with real closed residud figdcussed in section 2, especially
theorem 2.8 and theorem 2.13, yield information on the eris# of relatively minimal conic
bundlesp : X — P& overK with prescribed local data. In this section we give the pragns-
lation of these results.

Let K be a Henselian discrete valued field with real closed redigletk. Let x be the generic
point of P%, thenK(x) is the function field ofP%. A closed pointy of Pt such that its residue
field K(y) is a finite extension oK(i), corresponds to a monic irreducible polynomiaWwhich

is a sum of two squares K[x]. We say thay is of type (1), (2) or (3) ifT is of type (1), (2), (3)
respectively according to definition 2.12.
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Theorem 3.1.(1) Let S be a finite set of closed points Y, such that Ki) € K(y). Then there
exists a relatively minimal conic bundgg: X — P% with S= {y € P} |¢ degenerates in}ysuch
that the fibers Xin the K-rational points z oPx are isomorphic td% .

Moreover a relatively minimal conic bundle with these prdjgeris unique up to fiber preserving
birational isomorphisms, its local invariants are given fly,/K(y) }yes, where ly is the unique
totally ramified quadratic extension of(i).

(2) If S consists only of points of type (1), (2) or (3), themdgieneric fibre Xof ¢sis isomorphic
to the conic given by an equation of the forrhx%Jr PQR>§ = x%, where PQR is the product of
the monic irreducible polynomials associated to the clgseidts in S and k& K[x].

Proof: Lety € S Note that (by the transitivity of the norm) Gy k (K(Y)*) = Nk y)/k (K(y)*) C
Nk i)k (K*) € K*2+K*2 = K*2 (becauseK is pythagorean). It follows that any element in

EByEsHl(K(y),Z/ZZ) has trivial image under the m&pcor in the exact sequence (FES). So
Faddeev’s exact sequence implies the existence of an aldelwhich ramifies exactly in the
points of S Up to multiplying A with an algebra defined ové& we may assumd is an Q-
algebra (using proposition 2.9). It follows from theoren® Zhat A is a quaternion algebra.
Proposition 1.4 then yields the existence of a relative maiconic bundlep : X — P§ with
generic fiber corresponding to the conic associateldad with local invariants exactly defined
in the points ofS. Letzbe aK-rational point ofP . The fact thaf is anQ-algebra implies (using
lemma 2.5,(a)) thaf @ () K(X)z is trivial. But A, being unramified irg, defines an element
in Br(Oz). This element must also be trivial since the canonical ma®Br— Br(K(X)) is
injective. The conic defined i ®o, K(z) therefore contains a rational point. Proposition 1.4
then implies thaX, = PL.

To prove uniqueness up to fiber preserving birational is@msem, we first note that the s8t
determines the local invariants. Let SthenK(y) is a finite extension oK (i). Therefore (cf.
page 6) there is a unique quadratic extensial(@f, given byK (y)( 3/m), with n= [K(y) : K(i)].
This means tha® defines a unique set of local invariants.

Now letB be an other quaternion algebra o¥&x) with ramification locusS. Then Fadeev’s ex-
act sequence (FES) implies thhaky ) B is a constant algebra, i.2x ) B is Brauer equivalent
to an algebra defined ovir, or equivalentlyB ~ A®y ) (—1,€)k(x With € € {1, -1, 11, —11}. It
follows that eitherB is isomorphic toA, in the case = 1, orB®y ) K(X)w ~ (=1, &)k (x),, With

€ =—1,mor —1. In the later cas8 ® ) K(X)w is a division algebra. The fiber at the point at
infinity of the conic bundle corresponding Bowill be the conicu? +v? — ew?, (€ = —1, 11, — 1),
overK, which is a conic without a rational point. So if the relativenimal conic bundle over
K with degenerate fibers exactly in the pointsStias a fiber at infinity which is isomorphic to
]P’ﬁ it must be a conic bundle corresponding to the quaterniosbadA. It follows from propo-
sition 1.4 that such a relative minimal conic bundle is ueigudetermined up to fiber preserving
birational isomorphism.

The second part of the theorem follows immediately from psijon 1.4 and theorem 2.13.]

Remark3.2 (1) In theorem 3.1 the condition on the fibers in Kxeational points can be replaced
by the same condition for one fiber inkarational point. This follows from the fact that in
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the characterization d-algebras (proposition 2.9). The property thab K(X) is trivial is
equivalent to saying tha&® K (x),, wherez s any rational point oP%, is trivial.

(2) One can ask whether theorem 3.1 could be replaced by agsiraversion stating the®
determines four essentially different relative minimahiwdundles oveK, one corresponding to
the Q-algebraA with Ram(A) = Sand three others correspondingA® (—1,—1), A® (-1, n),
andA® (—1,—m) respectively . This is not possible in general since thesethlgebras are not
always of index 2, but rather could be of index 4 okék). We illustrate this with two examples
overK =R((t)).

(a) The quaternion algebitdy = (1+x2,t)K(X) is a division algebra since it is ramified in the
point corresponding to the irreducible polynomial %2, (its ramification is equal to which is
not a square in the residue fiekdi)((t))). It is also anQ-algebra since one of the entries is
a sum of squares. The biquaternion algefa (—1, —1)k ) corresponds to the Albert form
(14 x%,t,—t(1+x%),1,1,1). This quadratic form is anisotropic over the figdx)((t)); as in
the proof of lemma 2.3, this can be seen by considering thiduedorms overR(x). So it

is certainly anisotropic over the smaller fitfdx) = R((t))(x), implying that the biquaternion
algebraH; ® (-1, — 1)k x) is a division algebra and therefore of index 4 okgK).

(b) The quaternion algebtdy = (1+ x?, —(1+t +x2))K(X) is a division algebra since it is ram-
ified in the point corresponding to the irreducible polynahdi+x? € K|x], (the ramification in
that point is equal to, which is not a square in the residue fi&lti)((t))). H> is also arQ2-algebra
since one of the entries is a sum of squares. (Notethat also equal t¢1+x?, 1+t +x2)K(X), a
guaternion algebra with both entries equal to a sum of twauses) In this case the biquaternion
algebraHz @ (—1, —1)k(x is equivalent to—(1+x?), —(1+t 4 Xx?))k(x. SO it is an algebra of
index 2.
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