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1. INTRODUCTION

Let R((t)) be the fraction field of the complete discrete valuation ringR[[t]], of formal power
series overR, and letF = R((t))(x) be the field of rational functions in one variable overR((t)).
Let A be a central simple algebra overF of exponent 2. The quadratic extensionC((t))(x) of F is
aC2-field (cf. [Ser]) and thereforeA⊗F C((t))(x) is an algebra of index≤ 2, cf. [Art]. It follows
that the index ofA over F is less than or equal to 4. A well known theorem of Albert implies
that A is Brauer equivalent to a biquaternion algebra, i.e. a tensorproduct of two quaternion
algebras.Can one describe the algebras of exponent 2 which are exactly ofindex 2, i.e. which
are Brauer equivalent to quaternion division algebras?To make the question more precise we
recall that the Brauer group of a rational function fieldK(x) over any fieldK, which we may
assume to be of characteristic not equal to 2, is described tosome extent by its ramification data.
To do this, one interpretsK(x) as the function field of the projective lineP1

K. The closed pointsy
of P1

K correspond to theK-discrete valuations ofK(x), eithery is the point at infinity ofP1
K or y

corresponds to a monic irreducible polynomial inK[x]. The Brauer group ofK(x) is described by
an exact sequence of cohomology groups, due to Fadeev, cf. [Fad],[Ser]. We are only interested
in algebras of exponent 2 so we only consider the sequence restricted to the 2-components of the
different groups;

0→ 2Br(K) → 2Br(K(x))
⊕∂y→

⊕

y∈P1
K

H1(K(y),Z/2Z)
∑cor→ H1(K,Z/2Z) → 0. (FES)

HereK(y) is the residue field of the discrete valuation correspondingto the closed pointy and∂y
is the associated ramification map. The map∑cor is the sum of the values of the corestriction
mapsH1(K(y),Z/2Z) → H1(K,Z/2Z) induced by the inclusion of the absolute Galois groups
Gal(K/K(y)) ⊂ Gal(K/K), (cf. [Ser, Chap. II, App. sec.3]). Note thatH1(K(y),Z/2Z) ∼=
K(y)∗/K(y)∗2 andH1(K,Z/2Z) ∼= K∗/K∗2, moreover these isomorphisms are canonical since
−1 is the only primitive 2th-root of unity. After identifyingthese cohomology groups with these
groups of square classes, the corestriction map corresponds to the norm map:

NK(y)/K : K(y)∗/K(y)∗2 → K∗/K∗2.
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The ramification map∂y factors through2Br(K(x)y), whereK(x)y is the completion ofK(x) with
respect to the valuation corresponding toy. So if a central simple algebraA overK(x) is trivial
overK(x)y it is unramified, i.e.∂y(A) = 1 modK(y)∗2. The value of the ramification map can be
explicitly caculated. Letv be the valuation corresponding toy and let( f ,g)K(x) be a quaternion
algebra overK(x), then

∂y(( f ,g)K(x)) = (−1)v( f )v(g)

(
f v(g)

gv( f )

)
∈ K(y)∗/K(y)∗2.

Since anyA ∈ 2Br(K(x)) is Brauer equivalent to a tensor product of quaternions algebras (by
Merkurjev’s theorem), the ramification can be calculated bylinearity. (If K = R((t)) we saw
already that the algebras of exponent 2 are Brauer equivalentto a tensor product of 2 quaternion
algebras.)
The fact that im(⊕∂y) ⊂ ker(∑cor) is called Faddeev’s reciprocity law. The exact sequence
(FES) says that the Brauer class of an algebraA of exponent 2 over a rational function field
K(x) is “almost” given by a finite set of local data, namely its non-trivial ramification. The
ramification data ofA consists of a finite set of closed points Ram(A) := {y ∈ P1

K|∂y(A) 6= 0 ∈
H1(K(y),Z/2Z)}, called theramification locus of A, and the set{∂y(A)|y∈ Ram(A)}. Faddeev
reciprocity law implies that∑y∈Ram(A) cor(∂y(A)) = 0 in H1(K,Z/2Z). The exactness of the
sequence (FES) in2Br(K(x)) and in

⊕
y∈P1

K
H1(K(y),Z/2Z) implies that data consisting of a

finite set of pointsS= {y ∈ P1
K} and a set of non-trivial elementsδy ∈ H1(K(y),Z/2Z),y ∈

S satisfying Faddeev’s reciprocity law are exactly the ramification data of some algebraA of
exponent 2 overK(x), i.e. S= Ram(A) andδy = ∂y(A) for all y ∈ S. The Brauer class of this
algebraA is defined up to a factor in the Brauer group ofK, more precisely two algebrasA and
A′ have the same ramification data if and only ifA∼ A′⊗K(x) B whereB∼= b⊗K K(x) with b a
constant algebra (by this we mean an algebra defined overK). We can now rephrase the above
question in terms of ramification data:

Which ramification data (of algebras of exponent 2 overR((t))(x)) correspond
to the ramification data of a quaternion algebra?

Can one describe a quaternion algebra A overR((t))(x) explicitly in terms of its
ramification data, i.e. can one construct explicitly a quadratic splitting field for
A in terms of the ramification data of A?

In the literature one can find different problems related to these questions. We discus two such
problems

1.1. The u-invariant of a rational function field. Theu-invariant of a non-real field (i.e. fields
in which −1 is a sum of squares) is the supremum of the dimensions of anisotropic quadratic
forms. For real fields this definition evidently would yield that theu-invariant is infinite (since
the form represented by a sum ofssquares is always anisotropic over a real field). Therefore for
real fieldsE one defines theu-invariant to be

u(E) = sup{dimφ |φ an anisotropic torsion quadratic form overE}.
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Where a quadratic formφ overE is a torsion form if and only ifn× φ is hyperbolic for some
non-zero natural number. Pfister’s local global principle states that the torsion quadratic forms
over a real fieldE are exactly the forms which are hyperbolic over every real closure ofE.
In [Pfis2] Pfister studied the following conjecture concerning function fields over real closed
fields:

Conjecture Let R be a real closed field and F a field of transcendence degreem over R then the
u(F) ≤ 2m

In caseF is purely transcendental overR the conjecture would imply thatu(F) = 2m.
In general the conjecture is widely open. Form= 1 the answer is positive and due to Elman and
Lam ([EL]). The casem= 2 is studied by Pfister in his paper. Pfister considers division algebras
of exponent 2 overF which split over all real closures ofF . These are the algebras representing
the elements in the kernel of the map

ψ : 2Br(F) → ∏
α∈Ω

2Br(Fα)

whereΩ is the set of all orderings ofF . (In caseF is not real the kernel is by definition all
of 2Br(F).) Pfister proves that if every non-trivial element in the kernel of ψ has index 2 the
conjecture on theu-invariant ofF holds, i.e.u(F) ≤ 4. So using the following definition we can
rephrase the conjecture (in the caseF is real):

Definition 1.1. Let E be any real field. A central simple algebraA overE whose Brauer equiv-
anlence class is in the kernel of the map

ψ : Br(E) → ∏
α∈Ω

Br(Eα)

is called anΩ-algebra.

Remark1.2. Since we are only interested in algebras of exponent 2 we willuse in the rest of the
paper the termΩ-algebra forΩ-algebras of exponent≤ 2.

So in view of Pfister’s results form= 2 the conjecture becomes:

Conjecture (Pfister conjecture) Let F be a field of transcendence degree 2 over a real closed
field R. If F is real then everyΩ-division algebra of exponent 2 over F is a quaternion algebra.
If F is non-real then every central division algebra of exponent 2 is a quaternion algebra.

Now consider the case whereF is a purely transcendental extension of degree one over the
function field of a (smooth projective) curve over the realsR, so F = R(C)(x). Let v be the
discrete valuation corresponding to a closed pointy∈C and letR(C)v be the completion ofR(C)
with respect tov. It is well known thatR(C)v is of the formC((t)) or of the formR((t)). Since
C((t))(x) is aC2-field the algebras of exponent 2 overC((t))(x) are also of index 2 (cf. [Art]).
So the following local version of the conjecture, proved by Karim Becher, is very natural.

Theorem 1.3(Becher). The index ofΩ-algebras (of exponent 2) overR((t))(x) is equal to 2.
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In section 2 we will describe the ramification data ofΩ-algebras. It turns out thatΩ-algebras
are only ramified in points ofP1

R((t)) corresponding to monic irreducible polynomials which are
equal to a sum of squares inR((t))[x]. Since for any such set of local data Faddeev’s reciprocity
law is always satisfied, it follows from Becher’s result that given such local data there exists a
quaternion algebra overR((t))(x) having the given local data as its ramification data, moreover
Fadeev’s exact sequence (FES) implies that there is only onesuchΩ-quaternion algebra. For
certain types of such local data we will give an explicit description of the associatedΩ-algebra.
The authors are grateful to Karim Becher for various helpful discussions and for allowing to
reproduce his proof of theorem 1.3 in this paper. In [Bech] a more general result is shown. Let
K be a field with Pythagoras number≤ 2 such thatu(K(

√
−1)) = 4 thenu(K) ≤ 4. This result

implies that ifK = R((t))(C) is the function field of a curve overR((t)) such thatp(K) = 2 then
theu-invariant ofK is 4. As we noted before this yields thatΩ-algebras overK of exponent 2 are
Brauer equivalent to quaternion algebras. In [TVGY] the Pythagoras number of function fields
of hyperelliptic curves overR((t)) is studied. It is shown there that ifC is a curve with good
reduction and ifR((t))(C) is a real field thenp(R((t))(C)) = 2. Becher’s result implies that the
u-invariant of such fields is 4.

1.2. Conic bundle surfaces.The second problem to which the questions put forward are re-
lated, concerns certain rational surfaces overK. Let K be any field of characteristic not 2. Let
P1

K be the projective line overK. Its function field is a purely transcendental extensionK(x). We
denote the generic point ofP1

K by x, soK(x) can also be interpreted as the residue field ofx. A
conic bundle surface over Kis a smooth projective geometrical integralK-varietyX admitting
a dominantK-morphismϕ : X → P1

K whose generic fiberXx is isomorphic to a smooth conic.
A conic bundle surface is a rational surface (i.e. birationally equivalent toP2 over the algebraic
closure ofK).
The fibrationϕ : X → P1

K degenerates at a finite number of closed pointsy∈ P1
K. And each de-

generate fiber consists of a pair of smooth rational curves transversally intersecting at some point.
If ϕ is relatively minimal, i.e. no degenerate fiber can be blown down, then each component of a
degenerate fiber is defined over a quadratic extensionL of the residue fieldK(y).
Let now ϕ : X → P1

K be a relatively minimal conic bundle surface. LetSϕ be the set of points
y∈ P1

K where the conic bundle degenerates and letTϕ = {Ly/K(y)|y∈Sϕ} be the set of quadratic
extensions over which the components of the respective fibersXy are defined. The dataSϕ ,Tϕ are
called thelocal invariants ofϕ : X → P1

K. (Note that the setTϕ alone determines the local invari-
ants.) It is very natural to ask the following, given a finite set of local invariants{Ly/K(y)}y∈Sϕ
(so a finite set of quadratic extensions of different residuefields) does there exists a (relatively
minimal) conic bundle with this set as it local invariants? If so, is this conic bundle unique up to
a fiber preserving isomorphism?
The following proposition tells us how this question can be translated into the language of quater-
nion division algebras overK(x).

Proposition 1.4. (cf. [CS], [Isk1], [Isk2]) There is a one-to-one correspondence between classes,
with respect to fiber preserving birational isomorphisms, ofrelatively minimal conic bundles
ϕ : X → P1

K and isomorphism classes of quaternion algebras over K(x). The correspondence
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associates toϕ : X → P1
K the quaternion algebra Hϕ over K(x) determined by the generic fiber

Xx of X (Xx is a conic over K(x) its equation corresponds to the norm form of a quaternion
algebra over K(x)). In the closed points z whereϕ is not degenerated Hϕ defines an element of
Br(Oz), whereOz is the discrete valuation ring corresponding to z. The non-degenerate fibers of
ϕ, Xz are the conics corresponding to the residue algebras Hϕ ⊗Oz K(z).
Moreover letϕ : X → P1

K be a relatively minimal conic bundle and let Hϕ be the corresponding
quaternion algebra over K(x) then the set of local invariants{Ly/K(y)} corresponds to the set
of ramification data of Hϕ , i.e.ϕ : X → P1

K is degenerate in y∈ P1
K if and only if Hϕ is ramified

in y and in that case Ly = K(y)(
√

∂y(Hϕ)).

In view of this it is clear that the problems concerning conicbundles formulated above translate
exactly into the questions we considered for algebras of exponent 2 overK(x). First note that in-
stead of giving the ramification data as elements in the (abstract) Galois cohomology groups these
data can also be represented by a set of quadratic extensions{K(

√
δy)/K(y)|y∈Ram(A)}, where

δy ∈ K(y) is representing the square class of∂y(A) under the isomorphismH1(K(y),Z/2Z) ∼=
K(y)∗/K(y)∗2. Now given a set of local invariants we know (using the proposition) that this set
has to satisfy Faddeev’s reciprocity (the sum of the values of the corestriction maps has to be
zero) in order to be a possible set of local invariants of a conic bundle. Moreover if this condition
on the local invariants is satisfied there exists an algebra of exponent 2 whose ramification data
is determined by that set, but there is no guarantee that a quaternion algebra with the given rami-
fication data exists (also not in the caseK = R((t)) as is shown by the examples 2.4). For this to
be true, further conditions on the ramification data are needed. In section 3 we explain how our
results on the ramification data ofΩ-algebras of exponent 2 overK = R((t)) translate into facts
on relatively minimal conic bundles overR((t)).

Notation and terminology. Throughout the paper we will use the following terminology.We
call two central simple algebrasA andB over a fieldK equivalent if they are Brauer equivalent
overK, i.e. if they define the same element in Br(K), we use the notationA∼B. We call a central
simple algebra overK trivial if its class in Br(K) is trivial .
Quaternion algebras over a fieldK with a K-basis of the form 1, i, j,k satisfyingi2 = a, j2 = b
andi j = − ji = k with a,b∈ K, will be denoted by the symbol(a,b)K. If there is no confusion
possible we will omit in proofs and in calculations the field in the index of this symbol.

2. Ω-ALGEBRAS OVER RATIONAL FUNCTION FIELDS OVERHENSELIAN DISCRETE VALUED

FIELDS WITH REAL CLOSED RESIDUE FIELD

Our results concerningΩ-algebras overR((t))(x) only use the fact thatR((t)) is a Henselian
discrete valued field with real closed residue field. So we will formulate and prove the results in
this generality.
In the sequel of the paperK will be a Henselian discrete valued field with real closed residue
field denote byk. The fieldK is the fraction field of a Henselian discrete valuation ringOK and
we fix a uniformizing elementπ in OK. The algebraic closure ofk is k(i), i being the square root
of −1. If E is any field extension ofk, we writeE(i) for E⊗k k(i).
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We need some facts on the finite extensions ofK. A finite extensionL is itself a Henselian
discrete valued field; we denote its valuation ring byOL. The residue field ofL is either the
real closed fieldk or its algebraic closurek(i). Any finite extensionL/K can be split in a tower
K ⊂ N ⊂ L whereN/K is an unramified extension andL/N is a totally ramified extension of
K. The extensionN is either equal toK (in this caseL/K is totally ramified) orN = K(i). This
follows from the fact that the unramified algebraic extensions of a Henselian discrete valued
field are unique “lifts” of the residue field extensions of thereal closed fieldk, of course the latter
only has two extensionk andk(i). The totally ramified partL/N has the formL = N( n

√
π ′) with

π ′ = uπ andu a unit in OK. Sincek is real closed the units inOK are all of the form±1 · cn

for somec∈ K. So the totally ramified extensions ofN are all of the formN( n
√

π) or N( n
√
−π).

It follows that the only quadratic extensions ofK areK(i),K(
√

π),K(
√
−π). This implies that

(−1,−1)K,(−1,π)K,(−1,−π)K represent the only non-trivial elements in2Br(K) (cf. [Schil]).
Note thatK is a hereditarily pythagorean field, i.e. all finite real extension ofK are pythagorean
or equivalently all non-real field extensions ofK containK(i) as a subfield (cf. [Beck]). We also
need the following property of finite field extensions ofK

Lemma 2.1. Let L be an odd degree extension of K and let F be a finite non-real extension of K.
then[LF : F ] is odd.

Proof: Let [L : K] = d, d odd. Note thatL = K( d
√

π). The non-real extensionF = K(i)( e
√

π). It
follows thatLF = K(i)( l

√
π) with l the least common multiple ofd ande. So[LF : F ] = l

e, which
is an odd number since it dividesd. ¤

We are interested in central simple algebras of exponent 2 (in particular inΩ-algebras) over
the rational function fieldK(x), i.e. over the function field of the projective lineP1

K over K.
The valuation defined by the degree map onK(x) corresponds to a closed point ofP1

K which
we call the point at infinity and which we denote by∞. The “finite” closed points ofP1

K are
parametrized by monic irreducible polynomials ofK[x]. The order functions corresponding to
these polynomials defineK-discrete valuations onK(x). Throughout the rest of the paper we will
identify the closed points ofP1

K, the corresponding discrete valuations and (for finite points) the
monic irreducible polynomials inK[x].
We collect some facts on central simple algebras of exponent2 overK(x) and on their rami-
fication. In the introduction we remarked that all central simple algebras of exponent 2 over
R((t))(x) are of index less than or equal to 4 sinceC((t))(x) is aC2-field. The same is true for
central simple algebras of exponent 2 overK(x), sinceK(i)(x) is also aC2-field, [Ser, chap. II,
section 3.3]. So we have

Lemma 2.2. Let A be a central simple algebra of exponent 2 over K(x). Then A is equivalent to
a biquaternion algebra.

In general it is not so that all central simple algebras of exponent 2 overK(x) are of index 2. We
give two examples based on the following lemma which can be found in [KRTY] for biquaternion
division algebras overF(x), with F a local field of characteristic zero.
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Lemma 2.3. (cf. lemma 3.10 in[KRTY] .) Let f,g∈ R[[t]][x] such thatg := g mod(t) is not a
square inR(x), f := f mod(t) is non-zero and has a roota of odd multiplicity inR such that
g(a) is positive inR. Then the biquaternion algebra( f ,−1)⊗ (g, t) is a division algebra.

Proof: It is well known that the assertion is equivalent to the statement that the Albert form
〈 f ,−1, f ,−g,−t, tg〉 is anisotropic overR((t))(x) (see [LLT, theorem 2.3]). We will show that
〈 f ,−1, f ,−g,−t, tg〉 is anisotropic over the larger fieldR(x)((t)). By Springer’s theorem (cf.
[Schar, chap. 6, 2.6]) it suffices to check that the first and second residue forms with respect
to the uniformizing elementt, 〈 f ,−1, f ,−g〉 and〈−1,g〉 respectively, are anisotropic over the
residue fieldR(x). The hypotheses imply that the second form is anisotropic. To see that the first
form is anisotropic we apply Springer’s theorem again, now with respect to the discrete valuation
on R(x) corresponding to irreducible polynomialx− a. Write f = (x− a)mh with m odd and
h(a) 6= 0. The second residue form〈h(a),h(a)〉 being definite overR must be anisotropic. Since
g(a) is positive the first residue form−〈1,−g(a)〉 is also anisotropic. ¤

Examples2.4. (1) Lemma 2.3 implies that the biquaternion algebraA = (−1,−x)⊗R((t))(x) (x+
1, t) is a division algebra. This example is the analogue of the example of Jacob and Tignol of a
biquaternion division algebra overQp(x). As was noticed in [KRTY] an algebra of this form is
isomorphic to the tensor product of a quaternion algebra over R((t))(x) and a constant quaternion
algebra, i.e. a quaternion algebra defined overR((t)). Namely

(−1,−x)⊗ (x+1, t)⊗ (−1, t)

∼ (−1,−x)⊗ (−(x+1), t)

∼ (−1,−1)⊗ (x,−1)⊗ (t,−(x+1))

∼ (−x,x+1)⊗ (−1,−1)⊗ (x,−1)⊗ (t,−(x+1))

∼ (−1,x+1)⊗ (x,x+1)⊗ (−1,−1)⊗ (x,−1)⊗ (t,−(x+1))

∼ (−1,−(x+1))⊗ (x,−(x+1))⊗ (t,−(x+1))

∼ (−xt,−(x+1),

where the third equation follows from the fact that(−x,x+ 1) ∼ 1 since−x+ (x+ 1) = 1.
The equations yield that(−1,−x)⊗ (x+1, t) ∼ (−xt,−(x+1))⊗ (−1, t), i.e.A is a quaternion
algebra times a constant algebra. The next example shows that this is not always the case.
(2) The biquaternion algebraA = ((x− 1)(x+ 1),−1)⊗ (x, t) is a division algebra in view of
lemma 2.3. IfA is isomorphic to the tensor product of a quaternion algebra over R((t))(x) with
a constant algebra, then for some constant quaternion algebra B, A⊗B is of index 2. However
the only quaternion division algebras overR((t)) are(−1,−1)R((t)),(−1, t)R((t)),(−1,−t)R((t)).
Now A⊗(−1,−1)∼ (−(x−1)(x+1),−1)⊗(x, t). The latter is a division algebra by lemma 2.3,
taking f = x andg = −(x−1)(x+ 1). In the same way we see thatA⊗ (−1, t) ∼ ((x−1)(x+
1),−1)⊗ (−x, t) is a division algebra, applying the lemma withf = (x− 1)(x+ 1), g = −x
anda = −1. Finally alsoA⊗ (−1,−t) ∼ (−(x−1)(x+ 1),−1)⊗ (−x, t) is a division algebra,
applying the lemma withf = −(x− 1)(x+ 1), g = −x and a = −1. It follows that in this
exampleA is a biquaternion algebra overR((t))(x) which is not isomorphic to the tensor product
of a quaternion algebra overR((t))(x) and a constant algebra.
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The following lemma will be helpful to calculate the ramification of elements in2Br(K(x)).

Lemma 2.5. (a) Let f be a sum of squares in K(x). For all points y∈ P1
K such that K(y) is a

real field, every quaternion algebra of the form( f ,g)K(x) is trivial over the completion K(x)y. In
particular this holds for the point at infinity ofP1

K.
(b) Consider a quaternion algebra(g,x)K(x), with g a square free polynomial over K not divisible
by x. Let p be a monic irreducible factor of g. Then(g,x)K(x) is ramified at the point y∈ P1

K
corresponding to p if and only if p has a rootθ which is not a square in K(y)(∼= K(θ)).
(c) Consider a quaternion algebra(g,π)K(x), with g a square free polynomial over K. Let q be a
monic irreducible factor of g. Then(g,π)K(x) is ramified at the point y∈ P1

K corresponding to q
if and only ifπ is not a square in K(y).

Proof: (a) Lety∈ P1
K such thatK(y) is a real field. Then the completionK(x)y is also a real field.

The residue field of this completion has Pythagoras number one so by Hensel’s lemma the same
holds forK(x)y. This implies thatf is a square inK(x)y, so( f ,g)K(x)y

is trivial.
(b) Sincev(x) = 0 andv(g) = 1 (wherev is the valuation corresponding top), we calculate the
ramification using the formula on page 2

∂y((g,x)K(x)) = (−1)v(g)v(x)
(

gv(x)

xv(g)

)
≡ x≡ θ modK(y)∗2.

So the ramification iny is non-trivial if and only ifθ is not a square inK(y).
(c) Sincev(π) = 0 andv(g) = 1 (wherev is the valuation corresponding toq), the ramification
formula yields

∂y((g,π)K(x)) = (−1)v(g)v(π)

(
gv(π)

πv(g)

)
≡ π modK(y)∗2.

So the ramification iny is non-trivial if and only ifπ is not a square inK(y). ¤

It is clear that any quaternion algebra of the form( f ,g)K(x) with f a sum of squares inK(x) is
trivial over all real closuresK(x)α , α ∈ Ω since f is a square inK(x)α . So any( f ,g)K(x) with
f a sum of squares inK(x) is anΩ-algebra. Becher’s result (theorem 2.8) yields the converse.
For the sake of completeness we will include a proof of this result. It is based on the fact that
the Pythagoras number ofK(x) is 2, which can be seen in different ways (for instance [Beck,
theorem III.1.4], where it is shown that a fieldF is a pythagorean if and only ifp(F(x)) = 2. In
[Pfis1] the following more general fact is shown. LetF be a real field andd is a nonnegative
integer. Then any sum of squares inF(x) may be written as a sum of at most 2d+1 squares if
and only if one may write -1 as a sum of at most 2d squares in any non-real finite extension of
F .) We give an argument here which is much in the spirit of the rest of the paper. Although we
state the theorem only for the henselian discrete valued fields we are considering in this paper,
the argument works over any pythagorean field. (The same argument is used in [TVGY] to study
the Pythagoras number of function fields of hyperelliptic curves overK.)

Lemma 2.6. Let K be a Henselian discrete valued field with real closed residue field. The
rational function field in one variable over K, K(x), has Pythagoras number 2.
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Proof: Let f ∈ K(x) be a sum of squares. We consider the quaternion algebra(−1, f )K(x),
note that it is anΩ-algebra sincef is a sum of squares. We claim that this algebra is trivial in
2Br(K(x)). If this is true it follows thatf is a norm of the quadratic extensionK(i)(x)/K(x) and
so f will be a sum of two squares. Which is what we have to prove.
To prove the claim we determine the ramification of(−1, f )K(x) at all closed points ofP1

K. As-
sume thaty∈ P1

K such thatK(y) is a non -real field, so−1∈ K(y)∗2. We have∂y((−1, f )K(x)) ≡
(−1)v( f ) modK(y)∗2 ≡ 1 modK(y)∗2, i.e. the algebra(−1, f )K(x) is unramified iny.
If y is a point with a real residue field then(−1, f )K(x) is unramified by lemma 2.5 (a).
Since(−1, f )K(x) is unramified at all closed points ofP1

K, the exact sequence (FES) implies that
the algebra is induced by a quaternion algebra defined overK, so(−1, f )K(x) ∼ (−1,ε)K(x) with
ε ∈ {1,−1, t,−t}. Now note that forε ∈ {−1, t,−t} there is always an orderingα ∈ Ω such
that ε < 0 with respect to that orderingα. This implies that(−1,ε)K(x), with ε ∈ {−1, t,−t},
is non-trivial overK(x)α . But (−1, f )K(x)α is trivial over all real closures ofK(x) since it is an
Ω-algebra. It follows that(−1, f )K(x) 6∼ (−1,ε)⊗K K(x) = (−1,ε)K(x) with ε ∈ {−1, t,−t}, so
(−1, f )K(x) ∼ (−1,1)K(x) is trivial. ¤

Corollary 2.7. Let K be as in the lemma. Any polynomial f∈ K[x] which is a sum of squares in
K(x) is a sum of two squares in K[x].

Proof: This follows from the above together with a well known resultof Cassels saying that a
polynomial in one variable over a field represented by a quadratic form over the rational function
field is also represented by that quadratic form over the polynomial ring, cf. [Pfis3, Chap. 1,
theorem 2.2]. ¤

Theorem 2.8(K. Becher). EveryΩ-algebra A over K(x) of exponent 2 is Brauer equivalent to
a quaternion division algebra of the form( f 2 +g2,h) with f,g∈ K[x].

Proof: The proof is based on a quadratic form argument. LetA be aΩ-algebra of exponent 2,
we know (cf. lemma 2.2) thatA is equivalent to a biquaternion algebra. We have to show that
this biquaternion algebra is not a division algebra. We use again that this is equivalent to the
statement that a 6-dimensional quadratic form,α, of discriminant 1 is isotropic. (The quadratic
form α is the Albert form associated toA). SinceA is anΩ-algebraA is trivial over all real
closures ofK(x), this means thatα is hyperbolic over all real closures ofK(x) or equivalently
(by Pfister’s Local-Global Principle) thatα is a torsion form in the Witt ring ofK(x).
Assume for the sake of contradiction thatα is anisotropic. NowK(i)(x) is aC2-field (cf. page 6)
so theu-invariantu(K(i)(x)) = 4. This implies thatI3(K(x)) is torsion free (hereI(K(x)) is the
fundamental ideal in the Witt ring ofK(x)). We also obtain thatα ⊗K(i)(x) is isotropic, which
tells us thatα contains up to scaling the norm form ofK(i)(x)/K(x) as a subform (cf. [Schar]).
So we may assume thatα ∼= 〈1,1〉 ⊥ β . Sinceα is anisotropic so isβ . The Albert formα is in
I2(K(x)) so 2×α is a torsion form inI3(K(x)) and therefore hyperbolic. It contains 2×β as a
subform, and since dim(2×β ) > 1

2 dimα it follows that 2×β is isotropic. It is well known (see
[EL, proposition 2.2]) that this implies thatβ contains a 2-dimensional formγ such that 2× γ
is hyperbolic. Soγ is a torsion form, its discriminantd must therefore be a sum of squares, and
because the Pythagoras number ofK(x) is 2, actually a sum of two squares. We have (comparing
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discriminants)
α ∼= 〈1,1〉 ⊥ 〈−a,−ad〉 ⊥ β ,

for somea ∈ K(x). Sinceα and β are torsion forms the same holds for〈1,1,−a,−ad〉. It
follows thata is a sum of squares and therefore a sum of two squares inK(x), implying that
〈1,1,−a,−ad〉 is isotropic. This contradicts the fact thatα is anisotropic.
Finally we note that anΩ-quaternion algebra overK(x) is of the form(e, f )K(x) with e a sum of
two squares inK[x] and f ∈K(x)∗. This follows from the fact that its norm form is a 2-fold torsion
Pfister formϕ by Pfister’s Local-Global Principle. SinceI3(K(x)) = 0 we have 2×ϕ hyperbolic.
So it has to contain a 2-dimensional torsion form which implies thatϕ ∼= 〈1,−e,− f ,e f〉 with e
a sum of two squares inK(x) and f ∈ K(x)∗. Since we may multiplyewith any square inK(x)∗,
it can be replaced by a polynomial inK[x] which is a sum of two squares inK[x]. ¤

We now characterizeΩ-algebras overK(x) by their local data.

Proposition 2.9. Let A be a central simple algebra of exponent 2 over K(x). Then A is an
Ω-algebra if and only if the following two properties hold
(a)A∞ = A⊗K(x)∞ is trivial, so A is unramified at infinity.
(b) The monic irreducible polynomials at which A is ramified are equal to sums of two squares.

Proof: Let A be aΩ-algebra of exponent 2. We know (cf. theorem 2.8) thatA is equivalent to
a quaternion algebra(e, f )K(x), wheree is a polynomial which is a sum of two squares inK(x).
Lemma 2.5 (a) implies that(e, f )⊗K(x) K(x)∞ is trivial in Br(K(x)∞), this proves point (a), that
A is trivial at ∞.
The (finite) ramification points correspond to monic irreducible factors ofe f. We may assume
thate is a square free polynomial, its irreducible factors are equal to a sum of two squares since
e is a sum of two squares. (This follows from the fact that a sum of two squares is a norm of
the extensionK(i)(x)/K(x) and that the norm is multiplicative.) Letpi be the monic irreducible
factors of f . In view of lemma 2.5 (a) the algebra(e, f )K(x) is unramified at points corresponding
to monic irreducible polynomialspi having a real residue field. On the other hand if the residue
field pi is a non-real extension ofk, we remarked (cf. page 6) that it containsk(i) but thenpi is a
norm of the field extensionK(i)(x)/K(x) and sopi is a sum of two squares. This proves that (b)
holds.
To prove the converse letA be a central simpleK(x)-algebra satisfying properties (a) and (b).
Write A, up to Brauer equivalence, as a tensor product of quaternion algebras∏i(ai fi ,bigi)K(x)
with fi ,gi monic polynomials overK andai ,bi ∈ K∗. (Lemma 2.2 implies that it is a product of 2
factors but that is not necessary for the argument.) SinceA is by assumption unramified at infinity
the points in the ramification locus ofA correspond to irreducible factors offi andgi. We can
expand the product∏i(ai fi ,bigi)K(x) to a product∏i(ai ,bi)K(x)⊗∏i(ai,gi)K(x)⊗∏i(bi , fi)K(x)⊗
∏ j(p j ,q j)K(x) with p j andq j monic irreducible factors of thefi andgi . We collect the first three
parts of this expansion together with all the factors(pr ,qr)K(x) with pr andqr not equal to a sum
of squares and call this productB. As we mentioned before the remaining factors are clearly all
Ω-algebras since eitherpi or q j is a sum of squares. Therefore there product, sayC, is also an
Ω-algebra. So by the first part of the proofC is trivial overK(x)∞ andC is only ramified in points
corresponding to monic irreducible polynomials which are sums of squares. By assumption the
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same facts hold forA. So becauseB∼ A⊗K(x)C it is anΩ-algebra. It follows thatB⊗K(x) K(x)∞
is trivial and thatB is unramified at all finite points (since its ramification locus is a subset of
{pr ,qs}r,s but none of these polynomials is a sum of squares). But Faddeev’s exact sequence (cf.
(FES)) implies that the only non-trivial unramified algebras overK(x) are algebras defined over
K and these are non-trivial at infinity. It follows thatB is trivial and therefore we may conclude
thatA is equivalent to theΩ-algebraC. ¤

Remark2.10. It is possible to prove the above proposition without using the fact that theΩ-
algebras are quaternion algebras. It is known thatA is equivalent to a tensor product of quaternion
algebras∏i(ei, fi)K(x) where theei are monic polynomials overK which are equal to a sum of
squares. (For fieldsF such thatI3(F(

√
−1)) = 0 an argument can be found in [BP], where the

statement follows from the end of the proof of proposition 2.9.). The argument in the proof of
proposition 2.9 can now be applied to all monic irreducible factors of the product∏ei fi .

Corollary 2.11. An Ω-algebra A over K(x) with empty ramification locus is trivial. TwoΩ-
algebras A and B over K(x) with the same ramification locus are equivalent.

Proof: The first part follows from property (a) in proposition 2.9. The exact sequence (FES)
yields that the unramified algebras overK(x) are of the formc⊗K K(x) with c an algebra of
exponent 2 defined overK. But all these algebras, except the trivial ones, are non-trivial at the
point at infinity.
The residue fields of ramification points ofΩ-algebras have a unique quadratic extension, so the
group of square classes of such a residue field is of order 2. Itfollows that if A andB are two
Ω-algebras with the same ramification locus, thenA⊗K(x) B does not ramify in any point. The
first part of the corollary now yield thatA andB are equivalent. ¤

We will now state our main result. We first define 3 types of monic polynomials overK.

Definition 2.12. Type (1) The monic polynomialsQ ∈ K[x] which are sums of 2 squares and
whose monic irreducible factorsQi overK are of degree 2qi with qi an odd number. Ifxi is a root
of Qi (in some algebraic closure ofK) thenxi ∈ K(xi)

∗2 (i.e.xi is a square in its root field.)

Type (2) The monic polynomialsR∈ K[x] which are sums of 2 squares and whose monic irre-
ducible factorsRj overK are of degree 2r j with r j an odd number. Ify j is a root ofRj (in some
algebraic closure ofK) theny j 6∈ K(y j)

∗2 (i.e.y j is not a square in its root field.)

Type (3) The monic polynomialsP∈ K[x] which are sums of 2 squares and whose monic irre-
ducible factorsPk overK are of degree 2sk pk with pk an odd number,sk ∈ N andsk > 1. If zk is
a root ofPk (in some algebraic closure ofK) thenzk 6∈ K(zk)

∗2 (i.e. zk is not a square in its root
field.)

Note that the monic irreducible factors of polynomials of type (1), (2) or (3) are also equal to a
sum of two squares inK[x] (corollary 2.7).

Theorem 2.13.Let A be anΩ-algebra over K(x) of exponent 2. Let A be ramified exactly in
the points corresponding to monic irreducible polynomialsQi, i = 1, . . . ,a, of type (1), Rj , j =
1, . . . ,e, of type (2) and Pk,k= 1, . . . , l , of type (3) (where any of the three sets of polynomials may



12 D.F., BAZYLEU, J., VAN GEEL, AND V.I., YANCHEVSKǏI

be empty). Then there is a polynomial h∈ K[x] such that A is equivalent to a quaternion algebra
of the form: (πh,PQR), with P= ∏k Pk, Q = ∏i Qi and R= ∏ j Rj and withπ a uniformizing
element for the discrete valuation on K.

The polynomialh occuring here will be constructed explicitly in terms of theramification data
of A.

Remark2.14. (a) The onlyΩ-algebras for which theorem 2.13 does not give an explicit descrip-
tion are those which are ramified at some monic irreducible polynomial Sof degree 2tr, t > 1, r
an odd number, which is a sum of two squares and with a root which is a square in the root field
of S.
(b) In previous notes the authors obtained special cases of theorem 2.13. In [BY] the cases
Ram(A) = {Qi}i, Ram(A) = {Rj} j , Ram(A) = {Pk}k or Ram(A) = {Rj ,Pk} j,k where treated. In
[BVY] the case Ram(A) = {Qi,Rj}i, j and in [Baz] the case{Qi ,Pk}i,k was proved. The latter,
i.e. anΩ-algebrasA with ramification of type (1) and (3) say in points{Qi,Pk}i,k, follows from
the fact that the quaternion algebra(QP,πx), with Q = ∏i Qi andP = ∏k Pk has the required
ramification type. This can be seen by expanding(QP,πx) into

(Q,π)⊗ (Q,x)⊗ (P,π)⊗ (P,x).

Lemma 2.5 implies that(Q,x) and(P,π) are trivial algebras. The same lemma yields that the
ramification locus of(Q,π) consists exactly of the pointsQi and that the ramification locus of
(P,x) consists exactly of the pointsPk. Since(QP,πx) is anΩ-algebra with exactly the same
ramification asA, corollary 2.11 implies thatA∼ (QP,πx).
We mention further that in [BTY] a result complementary to thetheorem stated above is given.
There an explicit description of allΩ-algebras ramified in at most two points ofP1

K is obtained.

The proof of theorem 2.13 is organized as follows. We start with a subsection containing some
technical lemmas. In a second subsection the polynomialh∈ K[x] occuring in the statement of
the theorem is constructed. The third subsection contains afinal lemma from which the proof of
the theorem follows. Throughout the notation as given in theorem 2.13 remains fixed.

2.1. Some lemmas.

Lemma 2.15. (1) Let g∈ K[x] be a monic irreducible polynomial of non-zero degree divisible by
4 and such that g is a sum of squares in K(x). Then the quaternion algebra(g,π)K(x) is trivial.
(2) Let f,g∈K[x] be monic irreducible polynomials, both sums of squares in K(x). Letdegf = 2
and4|degg. Let y0 be a root of g and assume that y0 6∈ K(y0)

∗2. Then the quaternion algebra
( f ,g)K(x) is trivial.

Proof: (1) Note that the algebra(g,π) is anΩ-algebra,g being a sum of squares. It follows that
the ramification can only occur atg. Let θ be a root ofg in some algebraic closure ofK. Since
degg = 2smwith s> 1, man odd number, and sinceg is a sum of squares inK(x) it follows that
K(θ) = K(i)( l

√
π), with l = 2s−1m. Soπ is a square inK(θ). Consequently, by lemma 2.5 (b),

(g,π) is unramified everywhere, hence trivial (cf. corollary 2.11).
(2) Sincef is a monic quadratic polynomial, lemma 2.5 (a) implies that( f ,g)⊗K(x)∞ is trivial.
Let x0 be a root off . Put degg = 4m, m∈ N\{0}. Since f andg are both a sum of squares in
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K(x) their root fields containk(i). It follows thatK(x0) = K(i) and thatK(y0) is a totally ramified
extension ofK(x0) of degree 2m. Hencex0 is a square inK(y0) because the latter contains the
unique quadratic extension ofK(x0). Sincey0 is not a square inK(y0) and all units are squares
in K(y0), the valuesv(x0) andv(y0) (with v the valuation onK(y0)) are distinct.
First assume thatv(x0) > v(y0). We havef (y0) = (y0− x0)(y0− xτ

0), with τ the automorphism
induced by sendingi to −i. Sincev(xτ

0) = v(x0) > v(y0) it follows that f (y0) ≡ y2
0 ≡ 1 mod

K(y0)
∗2.

Now let v(x0) < v(y0) then f (y0) = (y0− x0)(y0− xτ
0) ≡ (−x0)(−xτ

0) ≡ f (0) ≡ 1 modK(y0)
∗2

( f is a sum of squares inK[x], so its constant term is a square). It follows from the ramification
formula that( f ,g) is unramified atg.
SinceK(y0) is the unique totally ramified extension ofK(i), K(y0)/K is a Galois extension. Let
G = Gal(K(y0)/K) = {σ1, . . . ,σ4m}. Theng(x0) = ∏4m

i=1(x0− yσi
0 ), where for alli = 1, . . . ,4m

the elementsyσi
0 have equal values with respect to the valuationv of K(y0).

If v(x0) < v(y0) thenv(g(x0)) = v(∏4m
i=1(x0− yσi

0 )) = v(x4m
0 ) = 4mv(x0). Henceg(x0) ≡ 1 mod

K(x0)
∗2.

If v(x0) > v(y0) thenv(g(x0)) = v(∏4m
i=1(x0−yσi

0 )) = v(∏4m
i=1(−yσi

0 )) = v(g(0)) sog(x0)≡ g(0)≡
1 modK(x0)

∗2, becauseg is a sum of squares inK[x] and sog(0) is a square inK. Hence the
formula for the ramification also yields that( f ,g) does not ramify atf .
It follows that theΩ-algebra( f ,g) is unramified everywhere and corollary 2.11 implies that
( f ,g) is trivial. ¤

Remark2.16. Let E be the splitting field of the polynomialsQ, R andP, it is a Galois extension
of K. Let H be the 2-Sylow subgroup of Gal(E/K). The fixed fieldL = EH of H is an odd
degree extension ofK. SinceE contains all the roots of the polynomialsQi,Rj andPk and since
[E : L] = 2m for somem≥ 1, it follows that all the irreducible factors overL of the polynomials
Qi,Rj andPk have degree a power of 2 (they cannot be of degree one since thedegrees of the
polynomialsQi,Rj andPk are all even and so they cannot have a root in an odd degree extension).
Moreover we have,

Corollary 2.17. Let L be as above. The irreducible factors over L of Qi,Rj and Pk, have degrees
2,2 and2s

k, sk > 1 respectively. They are monic irreducible polynomials overL of type (1), (2)
and (3) respectively.

Proof: The only thing we still need to show is that the polynomials are of the given type. Let
Qi,L be an irreducible factor ofQi overL and letxi be a root ofQi,L, it is also a root ofQi so it is
a square in the root fieldK(xi). It follows thatxi is also a square in the larger fieldL(xi). SoQi,L
is of type (1).
Let Rj,L be an irreducible factor ofRj overL and lety j be a root ofRj,L, it is also a root ofRj
so it is not a square in the root fieldK(y j). Lemma 2.1 implies that the degree[L(y j) : K(y j)] is
odd. It follows thaty j is not a square inL(y j). SoRj,L is of type (2). In the same way it follows
that the irreducible factors ofPk overL are of type (3). ¤

These observations will allows us to reduce some arguments to the case where the polynomials
Qi,Rj ,Pk are of degree a power of 2.



14 D.F., BAZYLEU, J., VAN GEEL, AND V.I., YANCHEVSKǏI

Lemma 2.18.Let A be theΩ-algebra over K(x) as in theorem 2.13. Then:

(1) A∼ (QR,π)K(x)⊗K(x) (P,x)K(x)
(2) A∼ (xQR,πP)K(x)⊗K(x) (π,x)K(x)

Proof: We first prove the lemma in the special case that the polynomials Qi andRj are of degree
2 and that the polynomialsPk are of degree 2sk.
(1) Consider the algebra(QR,π)⊗K(x) (P,x). We calculate its ramification. SinceQR and
P are polynomials which are equal to a sum of squares inK(x) lemma 2.5 (a) implies that
((QR,π)⊗K(x) (P,x))K(x)∞ is trivial.
The algebra(QR,π)⊗K(x) (P,x) can only ramify in finite points corresponding to irreducible
factors ofQ,R,P andx.
Since degQi = degRj = 2 and sinceQi andRj are both sums of squares we haveK(xi) = K(y j) =
K(i). Soπ is not a square inK(xi) = K(y j). Lemma 2.5 (c) implies that(QR,π) is ramified at
the points corresponding to the polynomialsQi andRj for all i and all j. The same is true for
(QR,π)⊗K(x) (P,x) since(P,x) is unramified at these points.
Sincezk is not a square inK(x) we conclude (by lemma 2.5 (b) that(P,x) is ramified at the
irreducible polynomialsPk. The same is true for(QR,π)⊗K(x) (P,x) since(QR,π) is unramified
at these points.
The polynomialP is a sum of squares inK[x] soP(0) ≡ 1 modK∗2. Hence, by the ramification
formula,(P,x) and therefore also(QR,π)⊗K(x) (P,x) is not ramified inx.
It follows thatA and(QR,π)⊗K(x) (P,x) have the same ramification so corollary 2.11 yields that
they are equivalent. This finishes the proof of (1).
(2) Lemma 2.15 implies that the quaternion algebras(Qi ,Pk) and (Rj ,Pk) are trivial. Hence
(Q,P) ∼ ∏i,k(Qi ,Pk) and(R,P) ∼ ∏ j,k(Rj ,Pk) are trivial. This and part (1) of the proof implies

A ∼ (QR,π)⊗ (P,x)

∼ (QR,π)⊗ (x,π)⊗ (P,x)⊗ (P,Q)⊗ (P,R)⊗ (x,π)

∼ (xQR,π)⊗ (xQR,P)⊗ (π,x)

∼ (xQR,πP)⊗ (π,x).

We now show that the general case can be reduced to the specialcase above. LetL/K be the odd
degree extension described in remark 2.16, say with[L : K] = d. Choose a uniformizing element
πL in L such thatπ = (πL)

d (this is possible sinceL = K( d
√

π)).
SinceQ,R and P are also overL of type (1), (2) and (3) respectively. And since the degree
of the irreducible factors ofQ andR overL is 2 and since the degree of the irreducible factors
of P is a power of 2. It follows from the above thatA⊗ L ∼ (QR,πL)L(x) ⊗L(x) (P,x)L(x) =
((QR,π)⊗ (P,x))⊗ L(x). But L(x)/K(x) being of odd degree implies that the natural map
2Br(K(x)) → 2Br(L(x)) is injective. So the equivalenceA∼ (QR,π)⊗K(x) (P,x)) follows. The
second equivalence follows in the same way. ¤

Lemma 2.19. Let f,g be monic irreducible polynomials in K[x] such that f is a sum of squares
in K(x). Let x0 be a root of f and y0 a root of g such that K(y0) is a non-real field.
If f (y0) 6≡ 1 modK(y0)

∗2 then v(x0) = v(y0) with v the valuation of the field K(x0,y0).
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If in addition f is a quadratic polynomial then x0 = πau0 with a∈ Z and u0 a unit in OK(x0).
Then w0 = y0π−a is a unit inOK(x0,y0). Let u0 andw0 be the residues in k(i) of respectively u0
and w0, thenu0 andw0 are equal or conjugated under the automorphismτ defined byτ(i) =−i.

Proof: By assumptionf is of even degree, say degf = 2m. Letx0 be a root off and letσ1, . . .σ2m
be the automorphisms of the splitting fieldL of f . So the elementsxσ1

0 , . . . ,xσ2m
0 are exactly the

2m different roots of f , and f (x) = ∏2m
i=1(x− xσi

0 ). The values of the rootsxσ1
0 , . . . ,xσ2m

0 with
respect to the valuation onL are all equal.
Suppose for the sake of contradiction thatv(x0) 6= v(y0), wherev is the valuation onK(x0,y0).
If v(x0) > v(y0) thenv( f (y0)) = v(∏2m

i=1(y0− xσi
0 )) = v(y2m

0 ). Hence f (y0) ≡ 1 modK(y0)
∗2,

contradicting the hypotheses.
If v(x0) < v(y0) thenv( f (y0)) = v(∏2m

i=1(y0− xσi
0 )) = v(∏2m

i=1(−xσi
0 )) = v( f (0)), hencef (y0) ≡

f (0) ≡ 1 modK∗2 (since f is a sum of squares), again contradicting the hypotheses.
So v(x0) = v(y0). In the casem= 1, i.e. f is a quadratic polynomial,f (x) = (x− x0)(x− xτ

0),
with τ inducing the non-trivial automorphism onL = K(x0) = K(i), so thatτ(i) = −i.
We can putx0 = πau0 with u0 a unit inOK(x0) and it follows thatw0 = y0π−a is a unit inOK(y0)

(note thatK(x0) = K(y0) in this case). We havef (y0) = (πaw0−πau0)(πaw0−πauτ
0) ≡ (w0−

u0)(w0−uτ
0) modK(y0)

∗2. By assumptionK(y0) containsk(i) and therefore the units inOK(y0)

are all squares. For the sake of contradiction assume thatw0 6= u0 andw0 6= u0
τ . Thenw0−u0

andw0− uτ
0 are units inOK(y0) so it are squares inK(y0). The above calculation implies that

f (y0) ≡ 1 modK(y0)
∗2 contradicting the hypotheses. This proves the lemma. ¤

Lemma 2.20.Letδ be a root of the polynomial xn−a2, where n≡ 1 mod 2and a∈ K∗. If K(δ )
is non-real then R(δ ) ≡ 1 modK(δ )∗2 and P(δ ) ≡ 1 modK(δ )∗2 (where R and P are products
of monic irreducible polynomials of type (2) and (3), respectively).

Proof: SinceK(δ ) is a non-real extension overK, it containsK(i),henceK(δ ) = K(i)( m
√

π) for
somem∈ N. Soδ = ( m

√
π)pu, with p∈ Z andu a unit inOK(i)( m√π). Fromδ n = a2, it follows

thatπ
pn
m un = a2. This implies pn

2m ∈ Z sincea∈ K∗. Let d = gcd(m,n), put m= dm1,n = dn1,
with gcd(m1,n1) = 1, note thatd is odd sincen is odd. Sincepn1

2m1
= pn

2m ∈ Z, n≡ 1 mod 2 and
gcd(m1,n1) = 1, it follows that 2m1 is a divisor ofp, i.e. p = 2m1p1, with p1 ∈ Z. Sinceu is
a unit inOK(i)( m√π) it is a square inK(i)( m

√
π) = K(δ ). Hence,δ = ( m

√
π)pu = ( m

√
π)2m1p1u≡

1 modK(δ )∗2.
Let w be a root of an irreducible factorRj of Ror of an irreducible factorPk of P. Theni ∈ K(w)

soK(w) = K(i)( g
√

π), with g = 2s−1r,s∈ N,s> 1, andr an odd number.
We first show that the values of the elementsδ ,w with respect to the valuation of the field
K(δ ,w) are distinct. To do this assumev(δ ) = v(w). Now K(δ ) = K(i)( m

√
π) and K(w) =

K(i)( g
√

π) implies thatK(w,δ ) = K(i)( h
√

π)), with h = lcm(g,m). Sincew 6≡ 1 modK(w)∗2, we
havew = π(2q+1)/gε, whereq ∈ Z andε is a unit inOK(w). Hence, fromw = ( h

√
π)(2q+1)h/gε

andδ = ( h
√

π)ph/mu = ( h
√

π)2p1m1h/mu it follows that (2q+1)h
g = 2p1m1h

m , since we assumed that

v(w) = v(δ ). So we have2q+1
g = 2p1

d , implying that(2q+1)d = 2p1g. This is impossible, since
(2q+1)d is odd and 2p1g is even.
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Since the values of the elementsδ andw are distinct, lemma 2.19 implies thatS(δ ) ≡ 1 mod
K(δ )∗2 for all irreducible factorsS(x) of R(x) or of P(x). It follows thatR(δ ) = ∏l

j=1Rj(δ ) ≡
1 modK(δ )∗2 and thatP(δ ) = ∏l

k=1Pk(δ ) ≡ 1 modK(δ )∗2. ¤

2.2. The construction of the polynomial h. Let A be theΩ-algebra overK(x) as given in
theorem 2.13. We now construct the polynomialh(x) ∈ K[x] in terms of the ramification ofA
given by the monic irreducible polynomialsQi , i = 1, . . .a, Rj , j = 1, . . . ,e andPk,k = 1, . . . , l of
type (1), (2) and (3) respectively.
Consider the field extensionM = K(y1, . . . ,ye,z1, . . . ,zl ), with for j = 1, . . . ,e, y j a root of the
polynomialQ j , and fork = 1, . . . , l , zk a root of the polynomialsPk. ThenM = K(i)( d

√
π) for

somed ∈ N, definen := 4d+1. We denoteY = {y1, . . . ,ye} andZ = {z1, . . . ,zl}.
Using thaty j is a square inK(y j) andzk is not a square inK(zk). And using thatK(y j ,zk) =

K(i)( m
√

π), with m= 2sk−1r wherer is odd, andsk is such that 2sk pk = [K(zk) : K], with pk odd.
A similar argument as the one used in the proof of lemma 2.20 yields that for the valuation onM
all the elements ofY have a value different to the values of all the elements inZ.

In order to define the polynomialh we have to consider four different cases. In what follows we
use the following notation. For any finite setW of elements inL, let m(W) denote the element of
W with the smallest value and letM(W) denote the element ofW with the largest value.

(i) The element of Y∪Z with the smallest valuation is an element of Y and the elementof Y∪Z
with the largest value is an element of Z.
In this case we partitionY andZ respectively in subsetsYr ⊂ Y, r = 1, . . . ,b andZt ⊂ Z, t =
1, . . . ,b such that for all elements̃yr ∈Yr and all elements̃zt ∈ Zt the following holds:

v(ỹ1) < v(z̃1) < .. . < v(ỹb) < v(z̃b).

Put (square brackets means taking integer parts)

c1 = [4d+1
2d v(M(Y1))]+1,

c2 = [4d+1
2d v(M(Z1))]+1

...
c2b−1 = [4d+1

2d v(M(Yb))]+1

c2b = [4d+1
2d v(M(Zb))]+1

Then fori = 1, . . . ,b we havev(M(Yi)) < v(m(Zi)) and the following inequalities hold:

4d+1
2d

(v(m(Zi))−v(M(Yi))) ≥
4d+1

2d
> 2.

This implies

4d+1
2d

v(M(Yi)) < c2(i−1)+1 <
4d+1

2d
v(M(Yi))+2 <

4d+1
2d

v(m(Zi)),
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and therefore
(4d+1)v(M(Yi)) < 2dc2(i−1)+1 < (4d+1)v(m(Zi)).

We obtain
v(M(Yi)

n) < v(π2c2(i−1)+1) < v(m(Zi)
n).

By definition we have fori = 1, . . . ,b− 1, (since the values of the elements inY are different
form the values of the elements inZ), thatv(M(Zi)) < v(m(Yi+1)). We get

4d+1
2d

(v(m(Yi+1)−v(M(Zi))) ≥
4d+1

2d
> 2,

so
(4d+1)v(M(Zi)) < 2dc2i < (4d+1)v(m(Yi+1)),

yielding

v(M(Zi)
n) < v(π2ci) < v(m(Yi+1)

n).

Finally for j = b we get directly from the definition that

v(M(Zb)
n) < v(π2c2b).

So we verified that

v((M(Y1))
n) < v(π2c1) < v((m(Z1))

n) ≤ v((M(Z1))
n) < v(π2c2) <

v((m(Y2))
n) ≤ v(M(Y2))

n) < .. . ≤ v((M(Zb))
n) < v(π2c2b).

(ii) The element of Y∪Z with the smallest valuation is an element of Y and the elementof Y∪Z
with the largest value is an element of Y .
In this case we can partitionY andZ respectively in subsetsYr ⊂Y, r = 1, . . . ,b+1 andZt ⊂ Z,
t = 1, . . . ,b such that for all elements̃yr ∈Yr and all elements̃zt ∈ Zt the following holds:

v(ỹ1) < v(z̃1) < .. . < v(ỹb) < v(z̃b) < v(ỹb+1).

As above we definec j ( j = 1. . . ,2b),

c2(i−1)+1 = [4d+1
2d M(Yi)]+1

c2i = [4d+1
2d M(Zi)]+1,

and verify in a similar way that

v((M(Y1))
n) < v(π2c1) < v((m(Z1))

n) ≤ v((M(Z1))
n) < v(π2c2) < v((m(Y2))

n) ≤
. . . ≤ v((M(Zb))

n) < v(π2c2b) < v((m(Yb+1))
n).

(iii) The element of Y∪Z with smallest value is an element of Z and the element of Y∪Z with
largest value is an element of Y .We partitionY∪Z in 2b setsY1, . . . ,Yb andZ1, . . . ,Zb, such that

v(z̃1) < v(ỹ1) < .. . < v(z̃b) < v(ỹb).
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And we definec j , ( j = 1, . . . ,2b−1) as follows:

c2(i−1)+1 = [4d+1
2d M(Zi)]+1

c2i = [4d+1
2d M(Yi)]+1,

herei =,1. . .b−1. One can verify the following inequalities,

v((M(Z1))
n) < v(π2c1) < v((m(Y1))

n) ≤ v((M(Y1))
n) < v(π2c2) < v((m(Z2))

n) ≤
. . . < v(π2c2b−1) < v((m(Yb))

n).

(iv) The element of Y∪Z with smallest value is an element of Z and the element of Y∪Z with
largest value is also an element of Z.
We partitionY ∪ Z in 2b+ 1 setsY1, . . . ,Yb and Z1, . . . ,Zb+1. We define the elementsci (i =
1, . . . ,2b+1):

c2(i−1)+1 = [4d+1
2d M(Zi)]+1

c2i = [4d+1
2d M(Yi)]+1,

with i = 1, . . . ,b. And one verifies the inequalities,

v((M(Z1))
n) < v(π2c1) < v((m(Y1))

n) ≤ v((M(Y1))
n) < v(π2c2) < v((m(Z2))

n) ≤
. . . < v(π2c2b) < v((m(Zb+1))

n) ≤ v((M(Zb+1))
n) < v(π2c2b+1).

Definition of h.

Definem := 2b if (i) or (ii) holds, m := 2b−1 if (iii) holds andm := 2b+1 if (iv) holds.
Let L be the odd degree extension ofK defined in remark 2.16. Every polynomialQi, i = 1, . . . ,a
splits overL in qi irreducible factors of degree 2, sayQi,t , i = 1, . . .a andt = 1, . . .qi. Let xi,t be

a root ofQi,t . Thenxi,t = π
v(xi,t )

qi wi,t wherev(xi,t) is the value ofxi,t in the fieldL(xi,t), wi,t is a
unit in OL(xi,t), andqi is as defined in definition 2.12. Since the residue field ofK is infinite we

can choose unitsus in K in such a way that(us)
2 6= (wi,t)

n,(us)
2 6= (wτ

i,t)
n for all s= 1, . . .m, and

j = 1, . . . ,a, whereus be the residue ofus in k, wi,t be the residue ofwi,t in k(i), andwτ
i,t is an

element conjugated towi,t underτ (the automorphism defined byi 7→ −i).

Definition 2.21. Let m, cs and us for s = 1, . . . ,m be as defined above. Defineas = πcsus,
s= 1, . . . ,m, and define

h(x) :=
m

∏
s=1

(a2
s −xn).

2.3. Proof of theorem 2.13. With h as in definition 2.21 the following holds:

Lemma 2.22.The quaternion algebras(xQR,πP)K(x) and(πh(x),xPQR)K(x) are isomorphic.
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Proof: First note that sincen−1 is even,a2
s−xn = a2

s−(x
n−1

2 )2x is a norm of the quadratic exten-
sionK(x)(

√
x). It follows that for eachs the quaternion algebra(a2

s−xn,x) is trivial. Hence also
(h,x) is trivial. Lemma 2.5 (1) implies that the algebra(P,π) =⊗l

k=1(Pk,π) is trivial. Expanding
(πh,xPQR) then yields

(πh,xPOR) ∼ (π,xPQR)⊗ (h,xPQR)

∼ (π,x)⊗ (QR,π)⊗ (h,PQR).

Lemma 2.5 (b) says that(Q,P) and(R,P) are trivial so the expansion of(xQR,πP) gives

(xQR,πP) ∼ (x,π)⊗ (x,P)⊗ (QR,π)⊗ (Q,P)⊗ (R,P)

∼ (x,π)⊗ (P,x)⊗ (QR,π).

It follows that the isomorphism,(xQR,πP)∼= (πh,xPQR), which we have to prove, is established
if we show that

(x,π)⊗ (P,x)⊗ (QR,π) ∼= (π,x)⊗ (QR,π)⊗ (h,PQR),

or equivalently that

(1) (P,x) ∼= (h,PQR).

Note that both areΩ-algebras. The ramification locus of(P,x) consists exactly of the points
corresponding toP1, . . . ,Pl . So the isomorphism (1) holds if the ramification locus of theright
hand side is also equal toP1, . . . ,Pl (cf. corollary 2.11). This holds true if

(2)





h(xi) ≡ 1 modK(xi)
∗2 for all i = 1, . . . ,a

h(y j) ≡ 1 modK(y j)
∗2, for all j = 1, . . . ,e

h(zk) 6≡ 1 modK(zk)
∗2, for all k = 1, . . . , l

P(δ )Q(δ )R(δ ) ∼ 1inK(δ ) for all rootsδ of h.

We first verify the last condition in (2). Letδ be a root ofh. Note that ifK(δ ) is a real field, then
we have thatP(δ )Q(δ )R(δ ) ≡ 1 modK(δ )∗2 (since the polynomialsP,Q,Rare sums of squares
in K[x]). So we may assume thatK(δ ) is a non-real field. According to lemma 2.20 we have
R(δ ) ≡ 1 modK(δ )∗2, P(δ ) ≡ 1 modK(δ )∗2 in K(δ ).
Assume thatQ(δ ) 6≡ 1 modK(δ )∗2. Then it follows from lemma 2.1 thatQ(δ ) 6≡ 1 modL(δ )∗2

whereL is the odd degree extension ofK defined in remark 2.16. ThenQi,t(δ ) 6≡ 1 modL(δ )∗2

for some(i, t), whereQi,t are the monic irreducible factors ofQ over L (as defined in subsec-
tion 2.2). We also fixed a rootxi,t of Qi,t . According to lemma 2.19,v(δ ) = v(xi,t) in L(xi,t ,δ ).
Let δ = πv(δ )ε, with h1 ∈ Z andε a unit in OL(xi,t ,δ ), sinceδ n = a2

s, for somes∈ {1, . . . ,m},

we haveε = n
√

u2
s. And by the choice of the unitsus, s= 1, . . . ,m we see that the residues ofεn

andwn
i,t are not equal and not conjugated under the automorphismτ, therefore the same holds

for the residues ofε andwi,t . Lemma 2.19 then impliesQi(δ ) ≡ 1 modL(δ )∗2, and we have a
contradiction. HenceQ(δ ) ≡ 1 modK(δ )∗2.
SoP(δ )Q(δ )R(δ ) ≡ 1 modK(δ )∗2, and we proved that the last condition of (2) is satisfied.
We now verify the first condition of (2). To do this we verify for all s = 1, . . . ,m and for all
indicesi that a2

s − xn
i ≡ 1 modK(xi)

∗2 in the three possible casesv(a2
s) < v(xn

i ), v(a2
s) > v(xn

i )
andv(a2

s) = v(xn
i ), wherev is the valuation ofK(xi).
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If v(a2
s) < v(xn

i ) then a2
s − xn

i ≡ a2
s ≡ 1 modK(xi)

∗2. If v(a2
s) > v(xn

i ) then a2
s − xn

i ≡ −xn
i ≡

1 modK(xi)
∗2 sincexi ≡ 1 modK(xi)

∗2 andK(i) ⊂ K(xi)
2. Finally if v(a2

s) = v(xn
i ) thena2

s −
xn

i = π2v(as)(u2
s−wn

i )≡ 1 modK(xi)
∗2 becauseu2

s−wn
i is a unit inOK(xi) (by construction of the

elementsus).

Finally we verify the second and the third condition of (2), i.e.h(y)≡ 1 modK(y)∗2 for all y∈Y
andh(z) 6≡ 1 modK(z)∗2 for all z∈ Z. To do this we have to consider the cases (i) - (iv), on
which the definition ofh depend, seperatly.

We consider case (i). Lety∈Y1 thenh(y) = ∏2b
s=1(a

2
s−yn)≡∏2b

s=1(−yn)≡ y2bn≡ 1 modK(y)∗2.

Lety∈Yj with j > 1, thenh(y) = ∏2b
s=1(a

2
s−yn)≡∏2 j−2

s=1 a2
s ∏2b

s=2 j−1(−yn)≡a4( j−1)
s y2(b− j+1)n≡

1 modK(y)∗2. This settles the second condition of (2).

Let z ∈ Zk then h(z) = ∏2b
s=1(a

2
s − zn) ≡ ∏2k−1

s=1 a2
s ∏2b

s=2k(−zn) ≡ −a2(2k−1)
s z(2b−2k+1)n ≡ z 6≡

1 modK(z)∗2, since(2b− 2k+ 1)n ≡ 1 mod 2 andz 6≡ 1 modK(z)∗2. Which proves that the
third condition of (2) holds forh.
In a similar way on can verify in each of the three other cases ((ii), (iii) and (iv)) that the polyno-
mial h satisfies the second and the third condition of (2). ¤

We can now prove our main result.

Proof of theorem 2.13: Let A be anΩ-algebra overK(x) of exponent 2 and with ramification
locus as in theorem 2.13. Lemma 2.18 implies thatA∼ (xQR,πP)⊗ (π,x).
According to Lemma 2.22 there exist elementsa1, . . . ,am ∈ K∗ and an odd numbern, such
that(xQR,πP) ∼ (π ∏m

s=1(a
2
s −xn),xPQR). Since(a2

s −xn,x) ∼ (a2
s − (x

n−1
2 )2x,x) ∼ 1, we have

(h,x) ∼ (∏m
s=1(a

2
s −xn),x) ∼ 1. This implies(π,x) ∼ (πh,x). Therefore

A∼ (xQR,πP)⊗ (π,x) ∼ (πh,xPQR)⊗ (πh,x) ∼ (πh,PQR),

as stated in the theorem. ¤

3. CONIC BUNDLE SURFACES OVERHENSELIAN DISCRETE VALUED FIELDS WITH REAL

CLOSED RESIDUE FIELDS.

As mentioned in part 1.2 of the introduction, the results onΩ-algebras overK(x) with K a
Henselian discrete valued field with real closed residue field discussed in section 2, especially
theorem 2.8 and theorem 2.13, yield information on the existence of relatively minimal conic
bundlesϕ : X → P1

K overK with prescribed local data. In this section we give the proper trans-
lation of these results.
Let K be a Henselian discrete valued field with real closed residuefield k. Let x be the generic
point of P1

K, thenK(x) is the function field ofP1
K. A closed pointy of P1

K such that its residue
field K(y) is a finite extension ofK(i), corresponds to a monic irreducible polynomialT which
is a sum of two squares inK[x]. We say thaty is of type (1), (2) or (3) ifT is of type (1), (2), (3)
respectively according to definition 2.12.
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Theorem 3.1. (1) Let S be a finite set of closed points y inP1
K, such that K(i)⊂ K(y). Then there

exists a relatively minimal conic bundleϕS : X → P1
K with S= {y∈ P1

K|ϕ degenerates in y} such
that the fibers Xz in the K-rational points z ofP1

K are isomorphic toP1
K.

Moreover a relatively minimal conic bundle with these properties is unique up to fiber preserving
birational isomorphisms, its local invariants are given by{Ly/K(y)}y∈S, where Ly is the unique
totally ramified quadratic extension of K(y).
(2) If S consists only of points of type (1), (2) or (3), then the generic fibre Xx of ϕS is isomorphic
to the conic given by an equation of the formπhx2

1 +PQRx22 = x2
3, where PQR is the product of

the monic irreducible polynomials associated to the closedpoints in S and h∈ K[x].

Proof: Lety∈S. Note that (by the transitivity of the norm) corK(y)/K(K(y)∗) = NK(y)/K(K(y)∗)⊂
NK(i)/K(K∗) ⊂ K∗2 + K∗2 = K∗2 (becauseK is pythagorean). It follows that any element in
⊕

y∈SH1(K(y),Z/2Z) has trivial image under the map∑cor in the exact sequence (FES). So
Faddeev’s exact sequence implies the existence of an algebra A which ramifies exactly in the
points ofS. Up to multiplying A with an algebra defined overK we may assumeA is anΩ-
algebra (using proposition 2.9). It follows from theorem 2.8 that A is a quaternion algebra.
Proposition 1.4 then yields the existence of a relative minimal conic bundleϕ : X → P1

K with
generic fiber corresponding to the conic associated toA and with local invariants exactly defined
in the points ofS. Letzbe aK-rational point ofP1

K. The fact thatA is anΩ-algebra implies (using
lemma 2.5,(a)) thatA⊗K(x) K(x)z is trivial. But A, being unramified inz, defines an element
in Br(Oz). This element must also be trivial since the canonical map Br(Oz) → Br(K(x)z) is
injective. The conic defined byA⊗Oz K(z) therefore contains a rational point. Proposition 1.4
then implies thatXz

∼= P1
K.

To prove uniqueness up to fiber preserving birational isomorphism, we first note that the setS
determines the local invariants. Lety∈ S thenK(y) is a finite extension ofK(i). Therefore (cf.
page 6) there is a unique quadratic extension ofK(y), given byK(y)( 2n

√
π), with n= [K(y) : K(i)].

This means thatSdefines a unique set of local invariants.
Now letB be an other quaternion algebra overK(x) with ramification locusS. Then Fadeev’s ex-
act sequence (FES) implies thatA⊗K(x) B is a constant algebra, i.e.A⊗K(x) B is Brauer equivalent
to an algebra defined overK, or equivalentlyB∼ A⊗K(x) (−1,ε)K(x) with ε ∈ {1,−1,π,−π}. It
follows that eitherB is isomorphic toA, in the caseε = 1, orB⊗K(x) K(x)∞ ∼ (−1,ε)K(x)∞ with
ε = −1,π or −π. In the later caseB⊗K(x) K(x)∞ is a division algebra. The fiber at the point at
infinity of the conic bundle corresponding toB will be the conicu2+v2−εw2, (ε = −1,π,−π),
overK, which is a conic without a rational point. So if the relativeminimal conic bundle over
K with degenerate fibers exactly in the points ofShas a fiber at infinity which is isomorphic to
P1

K it must be a conic bundle corresponding to the quaternion algebraA. It follows from propo-
sition 1.4 that such a relative minimal conic bundle is uniquely determined up to fiber preserving
birational isomorphism.
The second part of the theorem follows immediately from proposition 1.4 and theorem 2.13.¤

Remark3.2. (1) In theorem 3.1 the condition on the fibers in theK-rational points can be replaced
by the same condition for one fiber in aK-rational point. This follows from the fact that in
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the characterization ofΩ-algebras (proposition 2.9). The property thatA⊗K(x)∞ is trivial is
equivalent to saying thatA⊗K(x)z, wherez is any rational point ofP1

K, is trivial.
(2) One can ask whether theorem 3.1 could be replaced by a stronger version stating thatS
determines four essentially different relative minimal conic bundles overK, one corresponding to
theΩ-algebraA with Ram(A) = Sand three others corresponding toA⊗ (−1,−1), A⊗ (−1,π),
andA⊗ (−1,−π) respectively . This is not possible in general since these three algebras are not
always of index 2, but rather could be of index 4 overK(x). We illustrate this with two examples
overK = R((t)).
(a) The quaternion algebraH1 = (1+ x2, t)K(x) is a division algebra since it is ramified in the
point corresponding to the irreducible polynomial 1+x2, (its ramification is equal tot which is
not a square in the residue fieldK(i)((t))). It is also anΩ-algebra since one of the entries is
a sum of squares. The biquaternion algebraH1⊗ (−1,−1)K(x) corresponds to the Albert form
〈1+ x2, t,−t(1+ x2),1,1,1〉. This quadratic form is anisotropic over the fieldR(x)((t)); as in
the proof of lemma 2.3, this can be seen by considering the residue forms overR(x). So it
is certainly anisotropic over the smaller fieldK(x) = R((t))(x), implying that the biquaternion
algebraH1⊗ (−1,−1)K(x) is a division algebra and therefore of index 4 overK(x).
(b) The quaternion algebraH2 = (1+x2,−(1+ t +x2))K(x) is a division algebra since it is ram-
ified in the point corresponding to the irreducible polynomial 1+x2 ∈ K[x], (the ramification in
that point is equal tot, which is not a square in the residue fieldK(i)((t))). H2 is also anΩ-algebra
since one of the entries is a sum of squares. (Note thatH2 is also equal to(1+x2,1+t +x2)K(x), a
quaternion algebra with both entries equal to a sum of two squares.) In this case the biquaternion
algebraH2⊗ (−1,−1)K(x) is equivalent to(−(1+ x2),−(1+ t + x2))K(x), so it is an algebra of
index 2.
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