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Abstract

We present a set of generators of the full annihilator ideal for the Witt

ring of an arbitrary field of characteristic unequal to two satisfying a non-

vanishing condition on the powers of the fundamental ideal in the torsion

part of the Witt ring. This settles a conjecture of Ongenae and Van Geel.

This result could only be proved by first obtaining a new lower bound on

the 2-adic valuation of Stirling numbers of the second kind.

1 Introduction

In 1937, Witt already observed that the Witt ring was integral in the sense that
each element was annihilated by a monic integer polynomial. Fifty years later,
in 1987, Lewis was the first to give explicit examples of such polynomials [4].
He showed that the monic polynomial, pn(X), defined as

pn(X) = (X − n)(X − (n − 2)) . . . (X + (n − 2))(X + n)

annihilates every non-singular quadratic form of dimension n over every field F

of characteristic unequal to two.
Since then, many other polynomials in Z[X ] were found annihilating all or a
family of classes of nonsingular quadratic forms in the Witt ring and we refer
the reader to [3] for a nice survey of the main results on this topic.

Let F be a field of characteristic not 2. The object we want to consider here
is the torsion annihilator ideal

At(F ) = {f(X) ∈ Z[X ] | f(φ) = 0, ∀ φ ∈ It(F )}

where It(F ) = Wt(F ) ∩ I(F ), Wt(F ) the torsion part of the Witt ring and

I(F ) the ideal of all even-dimensional forms in the Witt ring. Since At(F ) is an

ideal in the noetherian ring Z[X ], it is finitely generated. The main problem is

to find a set of generators for this ideal.

We will prove the following result.

For fields F satisfying the conditions that 2rWt(F ) = 0 and 2r−1(It(F ))2k−1 6= 0

with k uniquely determined by r, the torsion annihilator ideal At(F ) is the ideal
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generated by the monomials

{2r−ν2((2i)!)X2i}0≤i≤k−1 ∪ {X2k},

where ν2 denotes the 2-adic valuation function.

In the case of a nonreal field F this theorem was conjectured (see Corollary
3.4 ) by Ongenae and Van Geel [5]. They gave a proof for fields with level
s(F ) ≤ 16 and using the same technique, you can check that the theorem holds
for all nonreal fields F with level s(F ) ≤ 64, but a general method was lacking.
The general method, used to prove the theorem, consists in evaluating a polyno-
mial f(X) ∈ Z[X ] in the even-dimensional forms ⊥n

i=1〈〈ai〉〉 with 1 ≤ n ≤ deg(f).
This evaluation can be rewritten as a linear combination of sums of m-fold Pfis-
ter forms and the coefficients that appear turn out to be related to the Stirling
numbers of the second kind.
The result about the (torsion) annihilator ideal could only be proved by first
obtaining a new lower bound for the 2-adic valuation of all Stirling numbers
S(n, k) of the second kind, namely

ν2(S(n, k)) ≥ d(k) − d(n), for 0 ≤ k ≤ n

where d(k) the sum of the binary digits in the binary representation of k.

2 Stirling numbers of the second kind

2.1 Preliminaries

Let n ∈ N . The Stirling numbers S(n, k) (k ∈ N) of the second kind are given
by

xn =

∞∑

k=0

S(n, k)(x)k,

where (x)k = x(x−1)(x−2) . . . (x−k+1) for k ∈ N\{0} and (x)0 = 1. Actually
S(n, k) is the number of ways in which it is possible to partition a set with n

elements in k classes.
The Stirling numbers of the second kind can be defined in several ways.

Proposition 2.1.

S(n, k) =
1

k!

k∑

i=0

(−1)i

(
k

k − i

)

(k − i)n,

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k)

with S(n, 0) = S(0, k) = 0 and S(0, 0) = 1

S(n, k) =
1

k!

∑

n1,n2,...,nk

(
n

n1, n2, ...nk

)

,

where n1, n2, ..., nk are non-zero and their sum equals n.
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Proof.
See [1] and [6].

2.2 2-adic valuation of Stirling numbers of the second kind

The 2-adic valuation of Stirling numbers of the second kind and other combi-
natorial numbers has been widely studied, but many problems in this area are
still unsolved. We will give a new lower bound for the 2-adic valuation of all
Stirling numbers of the second kind.

Denote by d(n) the sum of the digits in the binary representation of n and de-
fine the 2-adic valuation function ν2(n) for all non-zero integers n by ν2(n) = p,
where 2p|n and 2p+1 ∤ n.
Recall the following properties.

ν2(n!) = n − d(n) (Legendre)

ν2

((
n

k

))

= d(k) + d(n − k) − d(n) (Kummer)

for all k, n ∈ N with 0 ≤ k ≤ n.
A new lower bound on the 2-adic valuation of Stirling numbers of the second
kind can be obtained as follows.

Theorem 2.2. Let n, k ∈ N and 0 ≤ k ≤ n. Then

ν2 (S(n, k)) ≥ d(k) − d(n).

Proof.

By induction on n.

For n = 0, ν2(S(0, 0)) = ν2(1) ≥ d(0) − d(0).

Assume now that the above inequality is true for all i < n. We will prove
the theorem for n. Note that for k = 0 the result is obviously true.
Let 1 ≤ k ≤ n. The Stirling numbers of the second kind satisfy the well-known
’vertical’ recurrence relation

S(n, k) =

n−1∑

i=k−1

(
n − 1

i

)

S(i, k − 1).

Combining this with the ’triangular’ recurrence relation

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k)

we obtain

kS(n, k) =
n−1∑

i=k−1

(
n

i

)

S(i, k − 1).
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Thus

ν2(kS(n, k)) = ν2

(
n−1∑

i=k−1

(
n

i

)

S(i, k − 1)

)

≥ min
k−1≤i≤n−1

{ν2

((
n

i

))

+ d(k − 1) − d(i)}

(by the induction hypothesis)

= min
k−1≤i≤n−1

{d(n − i) + d(k − 1) − d(n)}

(by the Kummer identity)

= d(k − 1) − d(n) + 1.

So,

ν2(S(n, k)) ≥ d(k − 1) − ν2(k) + 1 − d(n)

= d(k) − d(n).

2.3 Relationship between Stirling numbers of the second

kind and quadratic forms

We can evaluate

f(X) = cdX
d + . . . + c1X + c0 ∈ Z[X ]

in classes of quadratic forms φ ∈ W (F ) by defining

f(φ) = cdφ
d ⊥ . . . ⊥ c1φ ⊥ c0〈1〉 ∈ W (F )

where ciφ = sign(ci) (φ ⊥ . . . ⊥ φ)
︸ ︷︷ ︸

|ci| times

and φi = φ ⊗ . . . ⊗ φ
︸ ︷︷ ︸

i times

.

For arbitrary k > 0 and a1, a2, . . . , ak ∈ F ∗ = F\{0} denote with 〈〈a1, a2, . . . , ak〉〉
the 2k-dimensional k-fold Pfister form

〈〈a1, a2, . . . , ak〉〉 := 〈1, a1〉 ⊗ 〈1, a2〉 ⊗ 〈1, ak〉.

Stirling numbers of the second kind turn up in a natural way by making calcu-
lations in the Witt ring.

Proposition 2.3. Let f(X) = cdX
d + . . . + c1X ∈ Z[X ].
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Then

f(⊥n
i=1〈〈ai〉〉) =

(
d∑

q=1

2q−11! S(q, 1)cq

)

(⊥n
i=1〈〈ai〉〉)

⊥

(
d∑

q=2

2q−22! S(q, 2)cq

)

(⊥n
i<j〈〈ai, aj〉〉)

⊥ . . .

⊥

(
d∑

q=n

2q−nn! S(q, n)cq

)

〈〈a1, . . . , an〉〉.

Proof.

The evaluation of the polynomial f(X) = cdX
d + . . . + c1X in sums of 1-fold

Pfister forms ⊥n
i=1〈〈ai〉〉 can be written in the following way.

f(⊥n
i=1〈〈ai〉〉) = A1(c1, . . . , cd)(⊥

n
i=1〈〈ai〉〉)

⊥ A2(c1, . . . , cd)(⊥
n
i<j〈〈ai, aj〉〉)

⊥ . . .

⊥ An(c1, . . . , cd)〈〈a1, . . . , an〉〉,

where the Ap(c1, . . . , cd) are expressions in c1, . . . , cd with natural numbers as
coefficients, i.e.

Ap(c1, . . . , cd) =

d∑

q=1

γp,qcq, with γp,q ∈ N.

The natural number γp,q is the coefficient of 〈〈a1, . . . , ap〉〉 in (⊥p
i=1〈〈ai〉〉)

q .

For p ≤ q we can write

γp,q =

q1+q2+...+qp=q
∑

q1,q2,...,qp≥1

(
q

q1, q2, ..., qp

)

2q1−12q2−1... 2qp−1

= 2q−p

q1+q2+...+qp=q
∑

q1,q2,...,qp≥1

(
q

q1, q2, ..., qp

)

= 2q−pp! S(q, p).

If p > q then clearly no p-fold Pfister form can occur in (⊥p
i=1〈〈ai〉〉)

q .
So,

γp,q =

{

2q−pp! S(q, p) if p ≤ q,

0 otherwise.
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Applying this to the coefficients Ap(c1, . . . , cd) we obtain

f(⊥n
i=1〈〈ai〉〉) =

(
d∑

q=1

2q−11! S(q, 1)cq

)

(⊥n
i=1〈〈ai〉〉)

⊥

(
d∑

q=2

2q−22! S(q, 2)cq

)

(⊥n
i<j〈〈ai, aj〉〉)

⊥ . . .

⊥

(
d∑

q=n

2q−nn! S(q, n)cq

)

〈〈a1, . . . , an〉〉.

Corollary 2.4. Let f(X) = cdX
d+. . .+c1X+c0 ∈ Z[X ] and φ ≃ 〈a1, a2, . . . an〉

a quadratic form of dimension n. If f(n) := f(n〈1〉) = 0 then

f(φ) =

(
d∑

q=1

d∑

t=q

2q−11! S(q, 1)

(
t

q

)

(−n)t−qct

)

(⊥n
i=1〈〈ai〉〉)

⊥

(
d∑

q=2

d∑

t=q

2q−22! S(q, 2)

(
t

q

)

(−n)t−qct

)

(⊥n
i<j〈〈ai, aj〉〉)

⊥ . . .

⊥

(
d∑

q=n

d∑

t=q

2q−nn! S(q, n)

(
t

q

)

(−n)t−qct

)

〈〈a1, . . . , an〉〉

Proof.
Note that for all

φ ≃ 〈a1, a2, . . . an〉

we have
φ ≃ ⊥n

i=1〈〈ai〉〉 − n〈1〉.

We can also rewrite f(X) as

f(X) = g(X − n) =
d∑

q=1

d∑

t=q

(
t

q

)

(−n)t−qct(X − n)q.

The condition f(n) = 0 implies that the constant term in g(Y ) with Y = X −n

vanishes. The result follows from the previous proposition applied to g(Y ).

Lemma 2.5. Let f(X) = cdX
d + . . . + c1X ∈ Z[X ]. If f(⊥k

i=1〈〈aσ(i)〉〉) = 0,

for all 1 ≤ k ≤ n, σ ∈ Sd then

(
d∑

q=n

2q−nn! S(q, n)cq

)

〈〈aτ(1), . . . aτ(n)〉〉 = 0, for all τ ∈ Sd.
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Proof.
By induction on n.
For n = 1,

0 = f(〈〈ai〉〉)

= cd〈〈ai〉〉
d + cd−1〈〈ai〉〉

d−1 + . . . + c1〈〈ai〉〉

= (2d−1cd + 2d−2cd−1 + . . . + c1)〈〈ai〉〉

=

(
d∑

q=1

2q−11! S(q, 1)cq

)

〈〈ai〉〉

since S(q, 1) = 1 for all q ≥ 1.
Assume now that the lemma is true for all i < n. We will prove the lemma for
n.
Let σ ∈ Sd.

0 = f(⊥n
i=1〈〈aσ(i)〉〉)

=

(
d∑

q=1

2q−11! S(q, 1)cq

)

(⊥n
i=1〈〈aσ(i)〉〉)

⊥

(
d∑

q=2

2q−22! S(q, 2)cq

)

(⊥n
i<j〈〈aσ(i), aσ(j)〉〉)

⊥ . . .

⊥

(
d∑

q=n

2q−nn! S(q, n)cq

)

〈〈aσ(1), . . . , aσ(n)〉〉

by Proposition 2.3.
Note that for every subset U ⊂ {1, . . . , d} of k ≤ d elements, there exists a
permutation τ ∈ Sd such that U = {τ(1), . . . , τ(k)}.
So,

0 =

(
d∑

q=1

2q−11! S(q, 1)cq

)

(⊥τ∈X1⊂Sd
〈〈aτ(1)〉〉)

⊥

(
d∑

q=2

2q−22! S(q, 2)cq

)

(⊥τ∈X2⊂Sd
〈〈aτ(1), aτ(2)〉〉)

⊥ . . .

⊥

(
d∑

q=n

2q−nn! S(q, n)cq

)

〈〈aσ(1), . . . , aσ(n)〉〉

=

(
d∑

q=n

2q−nn! S(q, n)cq

)

〈〈aσ(1), . . . , aσ(n)〉〉

by the induction hypothesis.

7



3 Polynomials annihilating the Witt Ring

3.1 Preliminaries

The fundamental ideal I(F ) of W (F ) is the ideal consisting of all even dimen-
sional forms of W (F ). Put It(F ) := I(F ) ∩ Wt(F ).
A field F is called nonreal if −1 is a sum of squares in F . The natural number

s(F ) := min{n ∈ N a2
1 + a2

2 + . . . + a2
n = −1, ai ∈ F}

is called the level of F .
A field F is called (formally) real if −1 is not a sum of squares in F . In this
case we define the level s(F ) = ∞.
It is a well-known fact that s(F ) is a power of two, if F is nonreal ([7] or [2]).
The height of F is the smallest two-power h(F ) = 2d such that 2dWt(F ) = 0.
If no such power exists then h(F ) := ∞. If F is nonreal then h(F ) = 2s(F ).

We define the torsion annihilator ideal At(F ) in Z[X ] by

At(F ) = {f(X) ∈ Z[X ] f(ϕ) = 0 for all ϕ ∈ It(F )}.

For F nonreal, define the full annihilator ideal A(F ) in Z[X ] by

A(F ) = {f(X) ∈ Z[X ] f(ϕ) = 0 for all ϕ ∈ W (F )},

the even annihilator ideal by

Ae(F ) = {f(X) ∈ Z[X ] f(ϕ) = 0 for all even dimensional ϕ ∈ W (F )}

and the odd annihilator ideal by

Ao(F ) = {f(X) ∈ Z[X ] f(ϕ) = 0 for all odd dimensional ϕ ∈ W (F )}.

In what follows, let k = k(r) be the natural number uniquely determined by
ν2((2k − 2)!) < r ≤ ν2((2k)!) (see [5]).

We define the ideals

Je,r = ({2r−ν2((2i)!)X2i}0≤i≤k−1) + (X2k)

= (2r, 2r−1X2, 2r−3X4, ..., 2r−ν2((2i)!)X2i, ..., 2r−ν2((2k−2)!)X2k−2, X2k),

Jo,r = ({2r−ν2((2i)!)(X − 1)2i}0≤i≤k−1) + ((X − 1)2k)

= (2r, 2r−1(X − 1)2, 2r−3(X − 1)4, ..., 2r−ν2((2i)!)(X − 1)2i, ..., 2r−ν2((2k−2)!)(X − 1)2k−2, (X − 1)2k)

and

Jr = ({2r−ν2((2i)!)X2i(X − 1)2i}0≤i≤k−1) + (X2k(X − 1)2k)

= (2r, 2r−1X2(X − 1)2, 2r−3X4(X − 1)4, ...,

2r−ν2((2i)!)X2i(X − 1)2i, ..., 2r−ν2((2k−2)!)X2k−2(X − 1)2k−2, X2k(X − 1)2k).
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Example 3.1.

Je,1 = (2, X2),

Je,2 = (4, 2X2, X4),

Je,3 = (8, 4X2, X4),

Je,4 = (16, 8X2, 2X4, X6),

Je,5 = (32, 16X2, 4X4, 2X6, X8).

Je,6 = (64, 32X2, 8X4, 4X6, X8).

3.2 Generators for the full annihilator ideal

Since Z[X ] is noetherian, the ideals Ae(F ), Ao(F ), A(F ) and At(F ) are finitely
generated. Under certain conditions we give a set of generators.
The following lemma is proved in [5]. We will give an alternative proof, using
Stirling numbers of the second kind.

Lemma 3.2. Let F be a field for which 2rWt(F ) = 0 then

Je,r ⊆ At(F ).

Proof.
Let f(X) = 2r−ν2((2i)!)X2i be one of the generators of Je,r and φ ≃ 〈a1, a2, . . . , an〉
an arbitrary even dimensional element of Wt(F ).

Since n is even, we have f(n〈1〉) = 2r−ν2((2i)!)+2i
(

n
2

)2i
〈1〉 = 2r+d(2i)

(
n
2

)2i
〈1〉 =

0.
By Corollary 2.4

f(φ) =

(
d∑

q=1

2q−11! S(q, 1)

(
2i

q

)

(−n)2i−q2r−ν2((2i)!)

)

(⊥n
i=1〈〈ai〉〉)

⊥

(
d∑

q=2

2q−22! S(q, 2)

(
2i

q

)

(−n)2i−q2r−ν2((2i)!)

)

(⊥n
i<j〈〈ai, aj〉〉)

⊥ . . .

⊥

(
d∑

q=n

2q−nn! S(q, n)

(
2i

q

)

(−n)2i−q2r−ν2((2i)!)

)

〈〈a1, . . . , an〉〉.
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For all j ≤ q we have

ν2

(

2q−jj! S(q, j)

(
2i

q

)

(−n)2i−q2r−ν2((2i)!)

)

= q − j + ν2(j!) + ν2(S(q, j)) + ν2

((
2i

q

))

+ (2i − q)ν2(n) + r − ν2((2i)!)

= q − j + j − d(j) + ν2(S(q, j)) + d(q) + d(2i − q) − d(2i)

+ (2i − q)ν2(n) + r − 2i + d(2i)

(by Kummer and Legendre)

≥ q − d(j) + d(j) − d(q) + d(q) + d(2i − q)

+ (2i − q)ν2(n) + r − 2i

(by Theorem 2.2)

≥ q + d(2i − q) + (2i − q) + r − 2i

(since n is even)

≥ r

Since 2rWt(F ) = 0 it follows that

f(φ) = 0

or equivalently that
f(X) ∈ At(F ).

This brings us to the main result of this paper:

Theorem 3.3. Let F be a field such that 2rWt(F ) = 0 and 2r−1(It(F ))2k−1 6= 0
with k uniquely determined by ν2((2k − 2)!) < r ≤ ν2((2k)!) . Then

Je,r = At(F ).

Proof.

Let F be a field such that 2rWt(F ) = 0 and 2r−1(It(F ))2k−1 6= 0. Let k

be the unique natural number such that ν2((2k − 2)!) < r ≤ ν2((2k)!).

Since X2k ∈ Je,r annihilates every even quadratic form, we will have to prove
that every polynomial of degree 2k − 1,

f(X) = c2k−1X
2k−1 + ... + c1X + c0, with ci ∈ Z,
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annihilating every even quadratic torsion form, lies in Je,r.

It(F ) is generated by the elements 〈〈a〉〉 ∈ It(F ) . The condition on the power
of the fundamental ideal implies the existence of elements a1, . . . , a2k−1 ∈ F ∗

such that the form 2r−1〈〈a1, . . . , a2k−1〉〉 is not zero.
Fix such elements.

We will evaluate the polynomial f(X) in the even quadratic forms of the
form

⊥n
i=1〈〈aσ(i)〉〉

where 1 ≤ n ≤ 2k − 1, σ ∈ S2k−1.

Since f(0) = c0〈1〉 has to vanish and 2rWt(F ) = 0, it follows that c0 = b02
r for

some b0 ∈ Z. By Lemma 2.5 we get the following set of equations in the Witt
ring:

(
2k−1∑

q=n

2q−nn! S(q, n)cq

)

〈〈a1, . . . an〉〉 = 0, 1 ≤ n ≤ 2k − 1. (1)

For n = 2k − 1, this becomes

0 =(2k − 1)! S(2k − 1, 2k − 1)c2k−1〈〈a1, . . . , a2k−1〉〉

=(2k − 1)! c2k−1〈〈a1, . . . , a2k−1〉〉.

Since
2r−1〈〈a1, . . . , a2k−1〉〉 6= 0,

and 2rWt(F ) = 0 it follows that

(2k − 1)! c2k−1 = b2k−12
r for some b2k−1 ∈ Z,

and since ν2((2k − 1)!) = ν2((2k − 2)!) < r that

c2k−1 = 2r−ν2((2k−1)!)b2k−1 for some b2k−1 ∈ Z.

For n = 2k − 2 , (1) becomes

((2k − 2)! c2k−2 + 2(2k − 2)! S(2k − 1, 2k − 2)c2k−1)〈〈a1, . . . , a2k−1〉〉 = 0. (2)
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The second term 2(2k− 2)!S(2k− 1, 2k− 2)c2k−1〈〈a1, . . . , a2k−2〉〉 vanishes since

ν2(2(2k − 2)! S(2k − 1, 2k − 2)c2k−1) = 1 + ν2((2k − 2)!)

+ν2(S(2k − 1, 2k − 2)) + ν2(c2k−1)

= 1 + 2k − 2 − d(2k − 2)

+ν2(S(2k − 1, 2k − 2)) + ν2(c2k−1)

(by Legendre)

≥ 2k − 1 − d(2k − 2)

+d(2k − 2) − d(2k − 1) + ν2(c2k−1)

(by Theorem 2.2)

≥ 2k − 1 − d(2k − 1) + r − (2k − 1) + d(2k − 1)

= r

and 2rWt(F ) = 0.

Equation (2) is thus equivalent to

(2k − 2)! c2k−2〈〈a1, . . . , a2k−2〉〉 = 0

and it follows, since ν2((2k − 2)!) = ν2((2k − 1)!) < r that

c2k−2 = 2r−ν2((2k−2)!)b2k−2 for some b2k−2 ∈ Z.

Using the same technique and observing that

ν2(2
q−nn! S(q, n)cq) = q − n + ν2(n!) + ν2(S(q, p)) + ν2(cq)

= q − d(n) + ν2(S(q, n)) + ν2(cq)

(by Legendre)

≥ q − d(n) + d(n) − d(q) + r − q + d(q)

(by Theorem 2.2)

= r

for all n < q and that ν2(n!) < r for all 1 ≤ n ≤ 2k − 1, the set of equations (1)
is equivalent to the set of equations

n! cn〈〈a1, . . . , an〉〉 = 0 , where n = 1, . . . , 2k − 1.

The solutions are,

cn = 2r−ν2(n!)bn for some bn ∈ Z.

We can thus rewrite,

f(X) = c2k−1X
2k−1 + ... + c1X + c0
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as

f(X) = 2r−ν2((2k−1)!)b2k−1X
2k−1 + 2r−ν2((2k−2)!)b2k−2X

2k−2 +

. . . + 2r−ν2((2j+1)!)b2j+1X
2j+1 + b2j2

r−ν2((2j)!)X2j + . . . + 2r−ν2(1!)b1X + 2r−ν2(0!)b0

= 2r−ν2((2k−2)!)X2k−2(b2k−1X + b2k−2) + . . . + 2r−ν2((2j)!)X2j(b2j+1X + b2j) + . . . + 2r(b1X + b0)

or equivalently,

f(X) ∈ Je,r

i.e.

At(F ) ⊂ Je,r

and using the other inclusion of the previous lemma

At(F ) = Je,r.

Corollary 3.4. Let F be a nonreal field of finite level s(F ) = 2r−1 such that
s(F )(I(F ))2k−1 6= 0, where k = k(r) is uniquely determined by ν2((2k − 2)!) <

r ≤ ν2((2k)!). Then
A(F ) = Jr.

Proof. Since s(F ) = 2r−1, we have that 2rW (F ) = 0. Moreover, if F is a
nonreal field, It(F ) = I(F ). The non-vanishing condition on the power of the
fundamental ideal implies that

Ae(F ) = Je,r.

If φ is an odd-dimensional form in W (F ), then φ ⊥ −〈1〉 is an even-dimensional
form in W (F ). This implies that

Ao(F ) = Jo,r.

And finally, since Je,r and Jo,r are comaximal ideals, we get

A(F ) = Ae(F ) ∩ Ao(F ) = Je,r ∩ Jo,r = Je,r · Jo,r = Jr.

Corollary 3.5. Let F be a real field of finite height h(F ) = 2r such that
1
2h(F )(Wt(F ))2k−1 6= 0, where k = k(r) is uniquely determined by ν2((2k −
2)!) < r ≤ ν2((2k)!). Then

At(F ) = Je,r.

Proof. By the definition of the height h(F ) = 2r, we have that 2rW (F ) = 0.
Moreover, if F is a real field, It(F ) = Wt(F ). The non-vanishing condition on
the power of the torsion ideal implies that

At(F ) = Je,r.
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Remark 3.6. In [5], examples are given of non-real fields F satisfying the
conditions of Corollary 3.4.
Examples of real fields of arbitrary height h(F ) = 2r satisfying the conditions of
Corollary 3.5 can be found. These results will be published later.

Remark 3.7. One can show that, for a field F , satisfying 2rW (F ) = 0, but
not satisfying the non-vanishing condition 2r−1(It(F ))2k−1 6= 0, the torsion
annihilator ideal At(F ) always differs from Je,r.

A set of generators for the ideal At(F ) in these cases is, in general, not known.
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