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Abstract

Let F be a field of characteristic not 2 whose virtual cohomological dimen-

sion is at most 2. Let G be a semisimple group of adjoint type defined over

F . Let RG(F ) denote the normal subgroup of G(F ) consisting of elements

R-equivalent to identity. We show that if G is of classical type not containing

a factor of type Dn, G(F )/RG(F ) = 0. If G is a simple classical adjoint group

of type Dn, we show that if F and its multi-quadratic extensions satisfy strong

approximation property, then G(F )/RG(F ) = 0. This leads to a new proof

of the R-triviality of F -rational points of adjoint classical groups defined over

number fields.
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Introduction

In [Ma, Chapter II, §14] Manin introduced the notion of R-equivalence on a variety

X over a field F as follows : two points x, y ∈ X(F ) are R-equivalent if there exist

x = x0, x1, x2, · · · , xn = y ∈ X(F ) and F -rational maps fi : P1
99K X; 1 ≤ i ≤ n,

regular at 0 and 1 such that fi(0) = xi−1 and fi(1) = xi. If X is the underlying

variety of a connected algebraic group G, then the set of elements of G(F ) which are
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R-equivalent to 1, is a normal subgroup RG(F ) of G(F ). We denote the quotient

G(F )/RG(F ) by G(F )/R. A connected algebraic group is called R-trivial, if for all

field extensions E of F , we have G(E)/R = 0. Colliot-Thélène and Sansuc [CTS]

proved that if the variety of a connected algebraic group G is stably rational then G

is R-trivial. For example, if G is an adjoint classical group of type 1An, 2A2n [VK,

pp. 240] or Bn, then G is rational, and hence R-trivial.

Let G be a classical group of adjoint type defined over a number field. The

group G(F )/R is then trivial. If G̃ is a simply connected cover of G, the triviality

of G(F )/R can be deduced from the following results:

(i) [Y] If G̃ is of type 2An then G̃(F )/R = 0.

(ii) [PR, Theorem 9.5] The group G̃(F ) is projectively simple provided G̃ does not

contain a factor of type An. In particular the non-central normal subgroup

RG̃(F ) coincides with G̃(F ).

(iii) [G, pp. 222] and [CTGP, proof of Cor. 4.11] The natural map G̃(F )/R →
G(F )/R is surjective.

Number fields are examples of fields of virtual cohomological dimension two.

The aim of this paper is to study the group G(F )/R where G is a classical group of

adjoint type defined over a field of virtual cohomological dimension two.

Let ΓF be the Galois group Gal(Fs/F ), where Fs is the separable closure of

F . The cohomological dimension of F is the least positive integer n such that for

all discrete torsion ΓF -modules M , the Galois cohomology groups H i(ΓF , M) are

zero for all i ≥ n + 1. A field F is said to have virtual cohomological dimension

n if the cohomological dimension of F (
√
−1) is n. We write cd(F ) to denote the

cohomological dimension and vcd(F ) to denote the virtual cohomological dimension

of F . We prove that G(F )/R = 0 for adjoint groups G of type 2An and Cn over a

field F of virtual cohomological dimension at most 2. For classical groups of type Dn,

we prove that if the cohomological dimension of F is at most 2 then G(F )/R = 0.
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Further, if the virtual cohomological dimension of F is at most 2, then we show that

G(F )/R = 0, provided F satisfies certain approximation properties. These results,

in particular, lead to a new proof of the triviality of G(F )/R for adjoint classical

groups over number fields.

The main ingredients in the proof of the our results are Merkurjev’s computation

of G(F )/R for all adjoint groups of classical type [Me2, Th. 1], as well as results

on the classification of hermitian forms over division algebras with involution over

fields of virtual cohomological dimension two [BP2].

1 Some known results

In this section, we record some known results which are used in the paper. Let F

be a field with char(F ) 6= 2. Let Z = F , or a quadratic extension of F . Let A be

a central simple algebra over Z and σ be an involution on A of either kind. If σ is

of second kind, then let Zσ = F . An element a ∈ A∗ is said to be a similitude of

(A, σ) if σ(a)a ∈ F ∗. The similitudes of (A, σ) form a group which we denote by

Sim(A, σ). The map µ(a) = σ(a)a is a homomorphism µ : Sim(A, σ) → F ∗ whose

image is denoted by G(A, σ). Elements of G(A, σ) are called multipliers. Let σ be

adjoint to a hermitian form h. Then λ ∈ G(A, σ) if and only if λh ≃ h [KMRT,

Prop. 12.20]. Let Sim(A, σ) denote the algebraic group whose F rational points

are given by Sim(A, σ). Let Sim+(A, σ) be the connected component of identity of

Sim(A, σ). Let Sim+(A, σ) denote the F -rational points of Sim+(A, σ). Elements

of Sim+(A, σ) are called proper similitudes. We denote the group µ(Sim+(A, σ))

by G+(A, σ). Let RZ/F denote the Weil restriction to F . The group of projective

similitudes is the quotient group

Sim(A, σ)/RZ/F (Gm)

which we denote by PSim(A, σ). The group of F -rational points of PSim(A, σ) is

Sim(A, σ)/Z∗. The connected component of the identity of the group PSim(A, σ)

is denoted by PSim+(A, σ)
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Let N(Z) = F ∗2 or NZ/F (Z∗) according as σ is of first kind or second kind,

respectively. Let Hyp(A, σ) be the subgroup of F ∗ generated by the norms from all

those finite extensions of F , where the involution σ becomes hyperbolic. If A is split,

the involution σ is adjoint to a quadratic form q over F . The group G+(A, σ) is then

denoted by G+(q) and the group G(A, σ) is denoted by G(q). In fact G+(q) = G(q),

because of the existence of hyperplane reflections in the orthogonal group.

Theorem 1.1 ([Me2, Th. 1]) With the notation as above, N(Z). Hyp(A, σ) is a

subgroup of G+(A, σ) and further,

PSim+(A, σ)(F )/R ≃ G+(A, σ)/N(Z). Hyp(A, σ).

¤

We now record a lemma due to Dieudonné.

Lemma 1.2 (Dieudonné, [KMRT, Lemma 13.22]) Let q be a quadratic form of

even rank and d = disc(q). Let L = F (
√

d). Then G(q) ⊆ NL/F (L∗). ¤

The following result of Merkurjev-Tignol extends Dieudonné’s lemma.

Lemma 1.3 ([MT, Th. A]) Let A be a central simple algebra of even degree with

an orthogonal involution σ. Let d = disc(σ) and let L = F (
√

d). Then G+(A, σ) ⊆
NL/F (L∗). ¤

Let q be a non-degenerate quadratic form of rank r over F . Let τq be the adjoint

involution on Mr(F ). Then Hyp(Mr(F ), τq) = Hyp(q), the subgroup of F ∗ generated

by NL/F (L∗); L varying over finite extensions of F where q becomes hyperbolic. If

r is odd, then Hyp(q) = 1.

Theorem 1.4 ([Me2, pp. 200]) Let A be a central simple algebra of odd degree with

an orthogonal involution σ. Let q be a quadratic form over F such that σ is adjoint

to q. Then G+(A, σ) = G(q) = Hyp(q).F ∗2 = Hyp(A, σ).F ∗2 = F ∗2. ¤
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We now record a result due to Knebusch which describes the group of spinor

norms of a quadratic form. Let q be a quadratic form over F and sn(q) denote the

subgroup of F ∗ generated by F ∗2 and representatives of the square classes in the

image of the spinor norm map sn : SO(q) → F ∗/F ∗2. For a central simple algebra

A over F , let Nrd : A → F denote the reduced norm map. For S ⊆ F ∗, we denote

by
〈

S
〉

, the subgroup generated by S in F ∗.

Theorem 1.5 (Knebusch’s norm principle, [L, Theorem VII.5.1]) For a quad-

ratic form q over F we have:

sn(q) =
〈

{NL/F (L∗) : L/F is a quadratic extension over F and qL is isotropic}
〉

.

¤

The two results recorded below describe the group G(A, σ) in the case when σ

is unitary or symplectic under further assumptions on the degree of A.

Theorem 1.6 ([Me2, §2]) Let F be a field with char(F ) 6= 2. Let A be a central

simple algebra over Z of odd degree with an involution σ of second kind with Zσ = F .

Then G+(A, σ) = G(A, σ) = Hyp(A, σ) = N(Z). ¤

Theorem 1.7 ([Me2, §2, Lemma 3]) Let F be a field with char(F ) 6= 2. Let A

be a central simple algebra over F of degree 2n with n odd. Let σ be a symplectic

involution on A. Then G+(A, σ) = G(A, σ) = Hyp(A, σ) = Nrd(A). ¤

Next results we record are local criteria for elements to be reduced norms or

spinor norms for formally real fields F with vcd(F ) ≤ 2.

Theorem 1.8 ([BP2, Theorem 2.1]) Let F be a formally real field with vcd(F ) ≤ 2.

Let Ω denote the set of orderings on F . Let A be a central simple algebra over F

and Av = A ⊗F Fv, Fv denoting the real closure of F at v. Let λ ∈ F ∗ be such that

λ >v 0 at those orderings v ∈ Ω where Av is non-split. Then λ ∈ Nrd(A∗). ¤

Theorem 1.9 ([BP2, Cor. 7.10]) Let F be a formally real field with vcd(F ) ≤ 2.

Let q be a quadratic form over F . Then sn(q) consists of elements of F ∗ which are

positive at each v ∈ Ω such that q is definite at Fv. ¤
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We say that a quadratic form q over F is locally isotropic if over each real closure

Fv, v ∈ Ω, the form q is isotropic.

Corollary 1.10 With the notation as in 1.9, if q locally isotropic, then sn(q) = F ∗. ¤

Let ΓF denote the Galois group Gal(Fs/F ). For a discrete ΓF -module M , let

Hn(F, M) denote the Galois cohomology group Hn(Gal(Fs/F ), M). We now record

some results of Arason which we shall use in the paper.

Theorem 1.11 (Corollar 4.6, [A1]) Let Z = F (
√

δ) be a quadratic extension of F .

Then we have a long exact sequence of abelian groups

· · · → Hn(F, µ2)
res−→ Hn(Z, µ2)

cores−→ Hn(F, µ2)

S

n,1(δ)
−→ Hn+1(F, µ2) → · · ·

where res and cores denote the restriction and corestriction maps respectively. ¤

In view of 1.11 and the isomorphism H2(F, µ2) ≃ 2 Br(F ), we have the following

Proposition 1.12 Let Z = F (
√

δ) be a quadratic extension of F and let A be a central

simple algebra over Z with exp(A) = 2 and coresZ/F ([A]) = 0 ∈ H2(F, µ2). Then

there exists a central simple algebra A0 over F such that A0⊗F Z is Brauer equivalent

to A. ¤

We say that a field extension L/F is a quadratic tower over F if there exist fields

Fi such that F = F0 ⊆ F1 ⊆ · · · ⊆ Fr = L and each Fi/Fi−1 is a quadratic extension

for 1 ≤ i ≤ r. We denote by F2(F ) the set of quadratic towers of F in an algebraic

closure of F . Let I(F ) denote the fundamental ideal of the Witt ring W (F ) of F .

For each n ≥ 1, we denote by In(F ) to denote the ideal I(F )n.

Lemma 1.13 ([A1, Satz 3.6]) Let I3(F ) = 0 and L/F be a quadratic tower. Then

I3(L) = 0. ¤

Theorem 1.14 ([A2, Prop. 2]) Let F be a field with cd(F ) ≤ 2. Then I3(F ) = 0.

¤
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A non-trivial element χ ∈ Hr(F, µ2) is called (−1)-torsion-free if for every s ≥ 1,

the element χ∪ (−1)∪ (−1)∪ · · ·∪ (−1) ∈ Hr+s(F, µ2) is non-trivial. The following

is a consequence of 1.11

Proposition 1.15 Let F be a field with vcd(F ) ≤ n. Then Hn+1(F, µ2) is (−1)-

torsion-free. ¤

The following lemma relates the conditions vcd(F ) ≤ 2 and I3(F ) being torsion-

free.

Lemma 1.16 ([BP2, Lemma 2.4]) Let F be a field with virtual cohomological

dimension at most two. Then I3(F ) is torsion-free.

Proof Since vcd(F ) ≤ 2, by [AEJ] the invariants er : Ir(F ) → Hr(F, µ2) have

kernel Ir+1(F ) for each r ≥ 0 and Hr(F (
√
−1), µ2) = 0 for r ≥ 3. Then it is

evident from Arason exact sequence 1.11 for the quadratic extension F (
√
−1)/F

that Hr(F, µ2)
S

(−1)−→ Hr+1(F, µ2) is an isomorphism for r ≥ 3. Let q ∈ I3(F ) be a

torsion-element. Then 2s.q = 0 ∈ W (F ) for some integer s ≥ 0. As a consequence

e3(q)∪(−1)∪(−1)∪· · ·∪(−1) = 0 ∈ H3+s(F, µ2). Since Hr(F, µ2)
S

(−1)−→ Hr+1(F, µ2),

r ≥ 3, are isomorphisms, we conclude that e3(q) = 0; i.e. q ∈ ker(e3) = I4(F ). By a

similar argument q ∈ Ir(F ) for each r ≥ 3 and hence q ∈
⋂

r Ir(F ). By a theorem

of Arason-Pfister [L, Cor. X.3.2], q = 0 ∈ W (F ) and hence I3(F ) is torsion-free. ¤

The following result is a weaker form of [Se, Prop. 10, §II.4.1].

Theorem 1.17 Let F be a field and cd(F ) 6= vcd(F ). Then F has orderings. ¤

2 Some norm principles

Let F be a field with char(F ) 6= 2 and I3(F ) = 0. Let A be a central simple algebra

with exp(A) = 2. Then by [Me1], there are quaternion algebras Hi; 1 ≤ i ≤ r, such

that A ∼ H1 ⊗H2 ⊗ · · ·⊗Hr. We define an integer r(A) associated to A as follows:

r(A) := min{r : A ∼ H1 ⊗ H2 ⊗ · · · ⊗ Hr}.
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If A is split, then we define r(A) = 0. Given a central simple algebra B over a field

Z with [Z : F ] ≤ 2 and a field extension L of F , we set: BL = B ⊗F L.

Proposition 2.1 Let I3(F ) = 0 and A be a central simple algebra over F . If exp(A)

is a power of 2 then

F ∗ =
〈

{NL/F (L∗) : L is a quadratic tower of F with AL split}
〉

= Nrd(A∗)

In fact, for each λ ∈ F ∗ there is a quadratic tower L/F and α ∈ L∗ such that

λ = NL/F (α).

Proof By the classical norm principle for reduced norms, over any field we have

the inclusion

〈

{NL/F (L∗) : L is a quadratic tower of F with AL split}
〉

⊆ Nrd(A∗)

Thus to complete the proof, it suffices to show that under the assumption I3(F ) = 0,

F ∗ ⊆
〈

{NL/F (L∗) : L is a quadratic tower of F with AL split}
〉

. (1)

Let exp(A) = 2m. We prove the lemma by induction on m. Suppose m = 1. Then

exp(A) = 2 and hence by Merkurjev’s Theorem [Me1], we write A ∼ H1⊗H2⊗· · ·⊗
Hr, where r = r(A) and each Hi is a quaternion algebra over F . We proceed further

by induction on r. If r = 1 the result holds by [BP2, Prop. 2.7]. Let r ≥ 2 and

λ ∈ F ∗. By [BP2, Prop. 2.7] there exists a quadratic extension L of F which splits

H1 and λ ∈ NL/F (L∗). Then r(AL) < r and by 1.13 we have I3(L) = 0. Induction

on r leads to (1).

Suppose that m ≥ 2. Then exp(A ⊗F A) = 2m−1. Let λ ∈ F ∗. By induction,

there exists a quadratic tower L over F and α ∈ L∗ such that λ = NL/F (α) and

(A ⊗F A)L is split. Then exp(AL) = 2 and by 1.13, I3(L) = 0. By the previous

case, there exists a quadratic tower M of L with α ∈ NM/L(M∗) and AM is split.

Thus M is a quadratic tower of F such that λ ∈ NM/F (M∗) and AM is split. This

completes the proof. ¤
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Proposition 2.2 Let I3(F ) = 0 and Z be a quadratic extension of F . Let A be a

central simple algebra over Z such that coresZ/F (A) = 0 and exp(A) = 2m. Then

for each λ ∈ F ∗, there exists a quadratic tower L/F such that λ ∈ NL/F (L∗) and

AL is split.

Proof We prove this by induction on m. Suppose m = 1. Since exp(A) = 2 and

coresZ/F (A) = 0, by 1.12 there exists a central simple algebra A0 of exponent 2 over

F such that A ∼ A0 ⊗F Z. Let λ ∈ F ∗. Since I3(F ) = 0, by 2.1, there exists

a quadratic tower L/F such that (A0)L is split and λ ∈ NL/F (L∗). Clearly the

extension L splits A and the proposition follows.

Suppose m ≥ 2. Let λ ∈ F ∗. Since exp(A ⊗Z A) = 2m−1, by induction there

exists a quadratic tower L/F such that λ = NL/F (α) for some α ∈ L∗, and (A⊗Z A)L

splits. Clearly exp(AL) = 2, and by the previous case we have a quadratic tower

M/L such that AM splits and α ∈ NM/L(M∗). Then M/F is a quadratic tower such

that λ ∈ NM/F (M∗) and AM is split. This completes the proof. ¤

We shall now describe norm principles for fields F with vcd(F ) ≤ 2. If F has no

orderings by 1.17, cd(F ) ≤ 2, and the results follow from the previous discussion.

We shall assume in the rest of the section that F has orderings. We denote by Ω,

the set of orderings on F . If A is a central simple algebra over F then A is said to

be locally split if A ⊗F Fv = Av is split for each v ∈ Ω.

Proposition 2.3 Let vcd(F ) ≤ 2 and A be a central simple algebra over F with

exp(A) = 2m. Then

F ∗ =
〈

{NM/F (M∗) : M ∈ F2(F ) and index(AM) ≤ 2}
〉

.

Proof We prove the proposition by induction on m. Let m = 1. Then exp(A) = 2

and we proceed by further induction on r(A). The statement is obvious if r(A) ≤ 1.

Let r(A) ≥ 2 and A ∼ H1 ⊗ H2 ⊗ · · · ⊗ Hr with r = r(A) and Hi, 1 ≤ i ≤ r,

quaternion algebras over F . Let H1 = (a, b) and H2 = (c, d). Then to the algebra

H1 ⊗ H2 is associated the Albert form (cf. [KMRT, §16.A])

q = 〈−a,−b, ab, c, d,−cd〉.
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Since disc(q) = 1 and dim(q) = 6, the form q is isotropic at Fv for each v ∈ Ω. Thus

by 1.10, sn(q) = F ∗ and by 1.5 we have

F ∗ = sn(q) =
〈

{NL/F (L∗) : L is a quadratic extension of F and qL is isotropic}
〉

Let L be a quadratic extension of F with qL isotropic. By Albert’s Theorem [KMRT,

Th. 16.5], we have r((H1 ⊗ H2)L) ≤ 1. Thus r(AL) < r(A) and by induction we

have,

L∗ =
〈

{NM/L(M∗) : M ∈ F2(L) and index(AM) ≤ 2}
〉

.

and therefore taking norms from L to F we have,

F ∗ = sn(q) =
〈

{NL/F (L∗) : L is a quadratic extension of F and qL is isotropic}
〉

⊆
〈

{NM/F (M∗) : M ∈ F2(F ) and index(AM) ≤ 2}
〉

.

This completes the case m = 1. Now let m ≥ 2. Then exp(A ⊗F A) = 2m−1 and by

induction

F ∗ =
〈

{NL/F (L∗) : L ∈ F2(F ) and index((A ⊗F A)L) ≤ 2}
〉

. (2)

Let L ∈ F2(F ) be such that index((A ⊗F A)L) ≤ 2. Since the Brauer group of a

real-closed field is isomorphic to Z/2Z, it follows that (A ⊗F A)L is locally split.

Thus by 1.8, Nrd((A ⊗F A)L) = L∗. Since index((A ⊗F A)L) ≤ 2, we have

Nrd((A ⊗F A)L) (3)

⊆
〈

{NN/L(N∗) : N is a quadratic extension of L and (A ⊗F A)N is split}
〉

.

Let N be a quadratic extension of L such that (A⊗F A)N is split. Then exp(AN) = 2

and by the case m = 1

N∗ =
〈

{NM/N (M∗) : M ∈ F2(N) and index((AM) ≤ 2}
〉

. (4)

Now it is clear from (2), (3) and (4) that

F ∗ =
〈

{NM/F (M∗) : M ∈ F2(F ) and index(AM) ≤ 2}
〉

.

¤

We refine 2.3 to the following:
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Proposition 2.4 Let F be a field with vcd(F ) ≤ 2. Let A be a central simple algebra

over F with exp(A) = 2m for some m ≥ 1. Then,

F ∗ =
〈

{NM/F (M∗) : M ∈ F2(F ) and AM ∼ (−1,−x) for some x ∈ M∗}
〉

.

Proof Let L be a quadratic tower over F such that index(AL) ≤ 2. Then AL ∼
(a, b), a, b ∈ L∗. Let ΩL denote the set of orderings on L. For each w ∈ ΩL, the

quadratic form q′ =
〈

− 1,−a,−b, ab
〉

is isotropic over Lw, where Lw denotes the

real closure of L at w. Therefore by [BP2, Prop. 7.7] we have sn(q′) = L∗. Thus, in

view of 1.5 we have:

L∗ =
〈

{NM/L(M∗) : M is a quadratic extension of L and q′M is isotropic }
〉

.

Let M be a quadratic extension of L such that q′M is isotropic. Then the form
〈

− a,−b, ab
〉

M
represents 1, and we can write:

〈

− a,−b, ab
〉

M
≃

〈

1, x, y
〉

M
; with

x, y ∈ M∗. Comparing the discriminants, we have
〈

− a,−b, ab
〉

M
≃

〈

1, x, x
〉

M
.

Thus
〈

1,−a,−b, ab
〉

M
≃

〈

1, 1, x, x
〉

M
and (a, b)M ≃ (−1,−x). Thus,

L∗ =
〈

{NM/L(M∗) : M is a quadratic extension of F and q′M is isotropic }
〉

⊆
〈

{NM/L(M∗) : M ∈ F2(L) and AM ∼ (−1,−x) for some x ∈ M∗}
〉

and

NL/F (L∗) ⊆
〈

{NM/F (M∗) : M ∈ F2(F ) and AM ∼ (−1,−x) for some x ∈ M∗}
〉

.

This together with 2.3 gives

F ∗ ⊆
〈

{NM/F (M∗) : M ∈ F2(F ) and AM ∼ (−1,−x) for some x ∈ M∗}
〉

.

This completes the proof. ¤

Corollary 2.5 Let vcd(F ) ≤ 2. Let A1 and A2 be central simple algebras over F with

exp(Ai) a power of 2 for i = 1, 2. Then we have:

F ∗ =
〈

{NM/F (M∗) : M ∈ F2(F ) and A1M ∼ (−1,−x),

A2M ∼ (−1,−y) for some x, y ∈ M∗}
〉

¤
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The following is a refinement of the surjectivity of the reduced norm (Theorem

1.8) for locally split algebras with centre a quadratic extension of F .

Proposition 2.6 Let vcd(F ) ≤ 2 and F has orderings. Let Ω denote the set of

orderings on F . Let Z = F (
√

δ) be a quadratic extension of fields. Let A be a central

simple Z-algebra which is split at each v ∈ Ω. Further assume that exp(A) = 2m for

some integer m and coresZ/F (A) = 0. Then for each λ ∈ F ∗, there exist extensions

Ei over F and λi ∈ E∗
i such that each A ⊗F Ei is split and λ =

∏

i NEi/F (λi).

Proof We proceed by induction on m. Let m = 1. Since coresZ/F (A) = 0, by 1.12

there is a central simple algebra A0 over F with exp(A0) = 2 and A ∼ A0 ⊗F Z.

By [Me1], there are quaternion algebras Hi; 1 ≤ i ≤ r = r(A0) over F such that

A0 ∼ H1⊗H2⊗· · ·⊗Hr. Suppose r = 1. Then A0 ∼ H1 = (a, b) for some a, b ∈ F ∗.

Let q denote the quadratic form 〈1,−a,−b, abδ〉 over F . Then by [CTSk, Prop.

2.3] we have sn(q) = Nrd((H1 ⊗F F (
√

δ))∗) ∩ F ∗. Since A is locally split, by 1.8

Nrd((H1 ⊗F F (
√

δ))∗) = Nrd(A∗) = Z∗. Therefore sn(q) = F ∗. Thus by 1.5, for

each λ ∈ F ∗, there exist quadratic extensions Ei/F and λi ∈ E∗
i such that each qEi

is isotropic and λ =
∏

i NEi/F (λi). Further A ⊗F Ei ∼ (a, b) ⊗Ei
Ei(

√
δ) and the

norm form of (a, b) ⊗Ei
Ei(

√
δ) is isometric to qEi(

√
δ), which is isotropic. It follows

therefore that each A⊗F Ei is split. Thus F ∗ is generated by the norms from those

extensions of F where the algebra A is split.

Now suppose r ≥ 2. Then by 2.3 we have

F ∗ =
〈

{NL/F (L∗) : index((A0)L) ≤ 2}
〉

.

The proposition follows immediately from the case r = 1.

Let m ≥ 2. Then exp(A ⊗Z A) = 2m−1 and at each v ∈ Ω the algebra

(A ⊗Z A) ⊗F Fv is split since Br(Fv) = Z/2Z. Thus by induction, F ∗ is generated

by norms from extensions Mi over F such that the algebra (A ⊗Z A) ⊗F Mi splits.

It is clear that exp(A⊗F Mi) = 2. Thus by the exponent 2 case, it follows that each

M∗
i is generated by norms from extensions Ei of Mi such that A ⊗F Ei is split. We

conclude therefore, that F ∗ is generated by norms from those extensions of F where

A splits. ¤

12



3 Fields with cd(F ) ≤ 2

In this section, we prove that if cd(F ) ≤ 2, then for adjoint classical groups G of type
2An, Cn and Dn, G(F )/R = 0. We begin with the result leading to the triviality of

G(F )/R in the Cn case.

Theorem 3.1 Let F be a field with char(F ) 6= 2 and I3(F ) = 0. Let A be a central

simple algebra of degree 2n over F and σ be a symplectic involution on A. Then

Hyp(A, σ) = F ∗.

Proof Let λ ∈ F ∗. Since exponent of A is 2 and I3(F ) = 0, by 2.1, there exists

a quadratic tower L/F such that L splits A and λ ∈ NL/F (L∗). The involution

σL is adjoint to a skew-symmetric form hL over L which is hyperbolic. Therefore

λ ∈ Hyp(A, σ). ¤

Let q be a quadratic form over F of rank 2n. Let σ be the involution on M2n(F )

which is adjoint to q. We denote by C(q) the Clifford invariant of q.

Proposition 3.2 If I3(F ) = 0, then G(q) ⊆ Hyp(q).

Proof We first assume that the discriminant of q is trivial. Let λ ∈ F ∗. The

algebra C(q) has exponent 2 and by 2.1, there exists a quadratic tower M of F

such that C(q) ⊗F M is split and λ ∈ NM/F (M∗). By 1.13, I3(M) = 0. Since qM

is an even dimensional quadratic form with trivial discriminant and trivial Clifford

invariant, in view of [EL, Th. 3] qM is hyperbolic and hence λ ∈ Hyp(q). Thus

Hyp(q) = F ∗.

Now suppose that disc(q) is non-trivial, d ∈ F ∗ a representative of the square

class of disc(q) in F ∗/F ∗2 and L = F (
√

d). Let λ ∈ G(q). By 1.2, λ ∈ NL/F (L∗).

Since disc(qL) = 1, by the previous case L∗ = Hyp(qL). Taking norms we get

NL/F (L∗) ⊆ Hyp(q). Thus G(q) ⊆ Hyp(q). ¤

We prove a similar result when A is not split.
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Theorem 3.3 Let I3(F ) = 0. Let A be a central simple algebra with an involution σ

of orthogonal type. Let d be the discriminant of σ and L = F [X]/(X2 − d). Then

we have G+(A, σ) = Hyp(A, σ) = NL/F (L∗).

Proof Since A supports an involution of first kind, exp(A) ≤ 2. Suppose first that

disc(σ) is trivial. Let M be a quadratic tower of F which splits A. By the proof of 3.2

we have M∗ = Hyp(AM , σM ). Thus NM/F (M∗) ⊆ Hyp(A, σ). This, together with

2.1 implies that F ∗ = Nrd(A∗) ⊆ Hyp(A, σ). Hence F ∗ = Hyp(A, σ) = G+(A, σ).

Since L = F×F , we have NL/F (L∗) = F ∗. Thus G+(A, σ) = Hyp(A, σ) = NL/F (L∗).

Suppose that disc(σ) is not trivial. Let d ∈ F ∗ represent the class of disc(σ)

in F ∗/F ∗2. Let λ ∈ G+(A, σ). Then by 1.3, we have λ ∈ NL/F (L∗) where

L = F (
√

d). Clearly disc(σL) = 1 and by previous case L∗ = Hyp(AL, σL). Thus

λ ∈ NL/F (L∗) ⊆ Hyp(A, σ). Thus G+(A, σ) ⊆ NL/F (L∗) ⊆ Hyp(A, σ). By 1.1,

Hyp(A, σ).F ∗2 ⊆ G+(A, σ). Hence G+(A, σ) = Hyp(A, σ) = NL/F (L∗). ¤

Let Z be a quadratic extension of F and A be a central simple algebra over Z

with an involution σ of second kind such that Zσ = F . In the next lemma, we

consider the case where A splits and the involution σ is adjoint to a Z/F -hermitian

form h. In view of 1.6, we further assume that h has even rank; i.e. deg(A) is even.

Lemma 3.4 Let I3(F ) = 0, let A be split and σ be an involution of second kind on

A such that Zσ = F . Then Hyp(A, σ) = F ∗.

Proof Let Z = F (
√

δ). Let qh be the quadratic form over F defined by qh(x) =

h(x, x). Then qh ≃ 〈1,−δ〉 ⊗ q [S, pp. 349, Remark 1.3] for some quadratic form

q over F having the same rank as h, which is even. Therefore qh ∈ I2(F ) and by

a theorem of Jacobson [MH, pp. 114], the form h is hyperbolic over an extension

M of F if and only if the quadratic form qh is hyperbolic over M . Let C denote

the Clifford invariant of qh. Let λ ∈ F ∗. By 2.1, there exists a quadratic tower M

over F such that such that CM is split and λ ∈ NM/L(M∗). Since I3(M) = 0, by

[EL, Th. 3], (qh)M is hyperbolic and hence the hermitian form hM is hyperbolic.

Therefore NM/F (M∗) ⊆ Hyp(A, σ). Thus Hyp(A, σ) = F ∗. ¤
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Theorem 3.5 If I3(F ) = 0 and exp(A) = 2m then Hyp(A, σ) = F ∗.

Proof Since A supports an involution σ of second kind, by [S, Th. 9.5] we have

coresZ/F (A) = 0. Therefore by 2.2, given λ ∈ F ∗ there exists a quadratic tower L/F

such that AL splits and λ ∈ NL/F (L∗). Since AL is split, by 3.4, L∗ = Hyp(AL, σL).

Taking norms we conclude that λ ∈ Hyp(A, σ). Therefore Hyp(A, σ) = F ∗. ¤

Theorem 3.6 Let cd(F ) ≤ 2 and Z be a quadratic extension of F . Let A be a central

simple algebra of even degree over Z with an involution σ of second kind such that

Zσ = F . Then Hyp(A, σ).F ∗2 = F ∗.

Proof By [BP1, Lemma 3.3.1], there exists an odd degree extension L over F such

that exp(A⊗F L) is a power of 2. Since the condition cd(F ) ≤ 2 is preserved under

finite extensions of fields [Ar, Th 2.1], we have cd(L) ≤ 2. By 1.14 I3(L) = 0 and

by 3.5, Hyp(AL, σL) = L∗. Hence NL/F (L∗) ⊆ Hyp(A, σ). Let λ ∈ F ∗ and [L : F ] =

2s + 1. Then λ2s+1 = NL/F (λ) ∈ Hyp(A, σ) and we have λ ∈ Hyp(A, σ).F ∗2. This

implies that Hyp(A, σ).F ∗2 = F ∗. ¤

Theorem 3.7 If cd(F ) ≤ 2 and G an adjoint group of classical type defined over F ,

then G(F )/R = 0.

Proof A classical adjoint group G is a direct product of groups RLi/F (Gi), where

Li/F are finite extensions and Gi are absolutely simple adjoint groups of classical

type defined over Li [T, 3.1.2]. Moreover, Gi(Li)/R = RLi/F (Gi)(F )/R and R-

equivalence commutes with direct products [CTS, pp. 195]. In view of this, it

suffices to prove the theorem for an absolutely simple classical adjoint group G

defined over F . By [We] such an algebraic group is isomorphic to PSim+(A, σ) for

a central simple algebra A over a field Z, [Z : F ] ≤ 2, with an involution σ. In view

of 1.1 and 1.14, the result follows in 2An case from 3.6 and 1.6, in Bn case from 1.4

in Cn case from 3.1 and 1.7, and in Dn case from 3.3. ¤
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Remark Theorem 3.7 for groups of type An and Cn also follows from [CTGP,

Cor. 4.11], using the fact that G(F )/R = 0 if G is simply connected of type An or

Cn, and [G, pp. 222].

4 Fields with vcd(F ) ≤ 2 : Symplectic groups

In this section F denotes a formally real field with vcd(F ) ≤ 2, and Ω, the set of

orderings on F . Let A be a central simple algebra over F of degree 2n and σ be an

involution of symplectic type on A. In view of 1.7, we assume that n is even. We

say that σ is locally hyperbolic if for each v ∈ Ω, the involution σv on Av = A⊗F Fv

is hyperbolic, Fv denoting the real closure of F at v.

Proposition 4.1 Let A be a central simple algebra over F of degree 2n, where n is an

even integer. Let σ be a symplectic involution on A. If σ is locally hyperbolic then

Hyp(A, σ) = F ∗.

Proof First assume that A = Mn(H), where H is a quaternion algebra over F .

Let bar denote the canonical involution on H and h a hermitian form of rank n over

(H,−) such that σ is adjoint to h. Since σ is locally hyperbolic, so is h and hence

sgn(h) = 0. Thus h has even rank and trivial signature and by [BP2, Th. 6.2], the

form h itself is hyperbolic. Thus Hyp(A, σ) = F ∗.

Suppose A is arbitrary. Since A supports an involution, exp(A) = 2 [S, Th. 8.4]

and by 2.3, we have

F ∗ =
〈

{NM/F (M∗) : index(AM) ≤ 2}
〉

(∗)
Let M be a finite extension of F such that index(AM) ≤ 2. Then AM ≃ Mn(H)

where H is a quaternion algebra over M . Since σ is locally hyperbolic, so is σM and

by the previous case, M∗ = Hyp(AM , σM). Therefore NM/F (M∗) ⊆ Hyp(A, σ) and

in view of (∗) we get Hyp(A, σ) = F ∗. ¤

Theorem 4.2 Let F be a formally real field with vcd(F ) ≤ 2. Let A be a central

simple algebra over F of degree 2n and σ be a symplectic involution on A. Then

G(A, σ) ⊆ Hyp(A, σ).
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Proof In view of 1.7, we assume that n is even. Let λ ∈ G(A, σ) and K =

F (
√
−λ). Let ΩK denote the set of orderings on K. For each w ∈ ΩK , λ ≡ −1

modulo K∗2
w is a similarity factor for σK and hence sgn(σK) = 0. Further deg(A)

is divisible by 4 and hence the involution σK is locally hyperbolic. Thus by 4.1, we

have Hyp(AK , σK) = K∗. Therefore

λ = NK/F (
√
−λ) ∈ NK/F (K∗) = NK/F (Hyp(AK , σK)) ⊆ Hyp(A, σ).

¤

5 Fields with vcd(F ) ≤ 2 : Unitary groups

Let F be an arbitrary field with char(F ) 6= 2. Let Z = F (
√

δ) be a quadratic

extension of F . Let A be a central simple algebra over Z and σ be an involution on

A such that Zσ = F . In view of 1.6, we assume throughout this section that A has

even degree.

Let deg(A) = 2m and D = D(A, σ) denote the discriminant algebra of (A, σ) (cf.

[KMRT, §10.E]). The algebra D is a central simple algebra over F and carries an

involution σ of first kind, which is of symplectic type if m is odd and of orthogonal

type if m is even [KMRT, Prop. 10.30]. For 1 ≤ i ≤ 2m, let ∧iA be the ith ∧-power

of A (cf. [KMRT, §10 (10.4)]). By [KMRT, Prop. 14.3], there is a homogeneous

polynomial map ∧i : A → ∧iA of degree i, 1 ≤ i ≤ 2m. If A = EndF (V ) then

∧iA = EndF (ΛiV ) and ∧i(f) = Λi(f), the ith exterior power of the linear map

f ∈ EndF (V ).

Theorem 5.1 Let F be a field with char(F ) 6= 2. Let A be a central simple algebra

of degree 2m over a field Z with m odd. Let σ be an involution of second kind on

A such that Zσ = F . Let D = D(A, σ) be the discriminant algebra of (A, σ). Then

G(A, σ) ⊆ Nrd(D∗).NZ/F (Z∗).

Proof Let x ∈ G(A, σ) and g ∈ Sim(A, σ) be such that µ(g) = σ(g)g = x. Then

NZ/F (Nrd(g)) = µ(g)2m and by Hilbert Theorem-90, there exists α ∈ Z∗ such that
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µ(g)−m Nrd(g) = α−1α, where bar denotes the non-trivial automorphism of Z over

F . By [KMRT, Lemma 14.6], we have

σ(α−1 ∧m g)α−1 ∧m g = NZ/F (α)−1µ(g)m.

Since m is odd, x = µ(g) ∈ G(D, σ).NZ/F (Z∗). Thus

G(A, σ) ⊆ G(D, σ).NZ/F (Z∗) (∗)

Let y ∈ G(D, σ) be arbitrary and h ∈ Sim(D, σ) be such that µ(h) = σ(h)h = y.

Since m is odd, the involution σ is of symplectic type and by [KMRT, Prop. 12.23]

we have µ(h)m = Nrd(h). Again, since m is odd, we have y = µ(h) ∈ Nrd(D∗).F ∗2.

Thus

G(D, σ) ⊆ Nrd(D∗).F ∗2 (∗∗)

and combining the inclusions (∗) and (∗∗) above, we get

G(A, σ) ⊆ Nrd(D∗).NZ/F (Z∗).

This completes the proof. ¤

In this section, from now onwards we assume that vcd(F ) ≤ 2, and F has

orderings and denote by Ω, the set of orderings on F . A quadratic form q over F is

called locally hyperbolic if q is hyperbolic at every real closure Fv, v ∈ Ω.

Lemma 5.2 If q is a locally hyperbolic quadratic form of even rank and trivial dis-

criminant over F , Hyp(q) = F ∗.

Proof Since q is locally hyperbolic the Clifford algebra C(q) of q is locally split.

Thus by 1.8 we have Nrd(C(q)∗) = F ∗. Let λ ∈ F ∗ and let L/F be a finite

extension such that λ ∈ NL/F (L∗) and C(q)L is split. Then qL has even dimension,

trivial discriminant, trivial Clifford invariant and sgn(qL) = 0. Therefore by [EL,

Th. 3], the form qL is hyperbolic and λ ∈ NL/F (L∗) ∈ Hyp(q). ¤
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Proposition 5.3 Let Z = F (
√

δ) be a quadratic extension. Let A = Mr(Z), where

r is an even positive integer, support a locally hyperbolic Z/F -involution σ. Then

Hyp(A, σ) = F ∗.

Proof Let the involution σ be adjoint to a Z/F -hermitian form h. Then the rank

of h is r. Let qh be the quadratic form over F given by qh(x) = h(x, x). Then

qh ≃ 〈1,−δ〉⊗ q [S, pp. 349, Remark 1.3], where q is a quadratic form over F of the

same rank as that of h, which is even. Therefore qh ∈ I2(F ). By Jacobson’s theorem

[MH, p. 114], the form hM is hyperbolic if and only if the quadratic form (qh)M

is hyperbolic. It follows that Hyp(A, σ) = Hyp(qh). Since h is locally hyperbolic,

the form qh is locally hyperbolic as well. By 5.2, we have Hyp(qh) = F ∗. Thus

Hyp(A, σ) = Hyp(qh) = F ∗. ¤

The following is a consequence of 5.3 and 2.6.

Proposition 5.4 Let A be a locally split central simple Z-algebra and σ be a locally

hyperbolic Z/F -involution on A. Let exp(A) = 2m. Then Hyp(A, σ) = F ∗.

Proof Since A supports an involution σ of second kind with Zσ = F , by [S, Th.

9.5], coresZ/F (A) = 0. Thus by 2.6 we have

F ∗ =
〈

{NL/F (L∗) : AL is split }
〉

.

Let L/F be an extension which splits A. By 5.3, Hyp(AL, σL) = L∗ and taking

norm from L/F , we conclude that Hyp(A, σ) = F ∗. ¤

Proposition 5.5 Let A be a central simple algebra over Z of degree 2m, where m is

odd. Let σ be a Z/F -involution on A with sgn(σ) = 0. Let D = D(A, σ) be the

discriminant algebra of (A, σ). Then Nrd(D∗) ⊆ Hyp(A, σ).F ∗2. Further

G(A, σ) = Nrd(D∗).NZ/F (Z∗) = Hyp(A, σ).NZ/F (Z∗).
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Proof We first show that Nrd(D∗) ⊆ Hyp(A, σ).F ∗2. Assume first that exp(A)

is a power of 2. Since deg(A) = 2m with m odd, index(A) = exp(A) = 2 and

A = Mm(H) for some quaternion algebra H over Z. By [KMRT, §10.4], [KMRT,

Prop. 10.30] and the hypothesis that m is odd, it follows that

D ⊗F Z ≃ ∧m(Mm(H)) ∼ H⊗m ∼ H.

Thus if M is a finite extension of F such that DM is split, then HM is split and

sgn(σM ) = 0. Thus by 5.3, Hyp(AM , σM) = M∗ and taking norms, NM/F (M∗) ⊆
Hyp(A, σ). In view of the classical norm principle for reduced norms, Nrd(D∗) ⊆
Hyp(A, σ).

Now suppose that exp(A) is arbitrary. By [BP1, Lemma 3.3.1], there exists an

odd degree extension L/F such that exp(AL) is a power of 2. Let λ ∈ Nrd(D∗).

Then λ ∈ Nrd(D∗
L). By the previous case, λ ∈ Hyp(AL, σL). Taking norm from

L/F and using the hypothesis that m is odd, we conclude that λ ∈ Hyp(A, σ).F ∗2.

This proves the first assertion of 5.5. It follows immediately that

Nrd(D∗).NZ/F (Z∗) ⊆ Hyp(A, σ).NZ/F (Z∗) (∗)

From 5.1, it is clear that

G(A, σ) ⊆ Nrd(D∗).NZ/F (Z∗) (∗∗)

and further by 1.1, Hyp(A, σ).NZ/F (Z∗) ⊆ G(A, σ). In view of this and the inclu-

sions (∗) and (∗∗) we conclude that

G(A, σ) = Nrd(D∗).NZ/F (Z∗) = Hyp(A, σ).NZ/F (Z∗).

¤

Theorem 5.6 Let F be a field with vcd(F ) ≤ 2 and Z be a quadratic extension of F .

Let A be a central simple algebra over Z of degree 2m, where m is odd. Let σ be a

Z/F -involution on A. Then G(A, σ) = Hyp(A, σ).NZ/F (Z∗).

Proof Let λ ∈ G(A, σ). Let D = D(A, σ) be the discriminant algebra of (A, σ).

By 5.1, λ ∈ Nrd(D∗).NZ/F (Z∗). Let λ1 ∈ Nrd(D∗) and α ∈ NZ/F (Z∗) be such that
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λ = λ1α. Since NZ/F (Z∗) ⊆ Hyp(A, σ) ⊆ G(A, σ), it follows that λ1 ∈ G(A, σ).

Let K = F (
√
−λ1). Then sgn(σK) = 0 and by 5.5, Nrd(D∗

K) ⊆ Hyp(AK , σK).K∗2.

Further, since λ1 ∈ Nrd(D∗
K) and λ1 ≡ −1 mod K∗2, DK is locally split and by 1.8,

Nrd(D∗
K) = K∗. Thus Hyp(AK , σK).K∗2 = K∗. Taking norms, we get

λ1 ∈ NK/F (K∗) = NK/F (Hyp(AK , σK)) ⊆ Hyp(A, σ).

Thus λ = λ1α ∈ Hyp(A, σ).NZ/F (Z∗). This completes the proof. ¤

Let Σ(F ) denote the set of elements of F which are positive at all orderings of

F .

Lemma 5.7 Let α, δ ∈ F ∗. Then we have:

F ∗ =
〈

{NL/F (L∗) :L/F is a quadratic extension such that there exists

uL ∈ L(
√

δ) with NL(
√

δ)/L(uL) = 1 and αuL ∈ Σ(L(
√

δ))}
〉

.

Proof Since the quadratic form φ = 〈1, δ,−α, δα〉 is locally isotropic, by 1.5 and

1.10,

F ∗ = sn(φ) =
〈

{NL/F (L∗)〉 : L is a quadratic extension of F such that φL is isotropic}
〉

(∗)

At an extension L/F where φ is isotropic, we choose a, b, c, d ∈ L∗ such that

a2+δb2−αc2+δαd2 = 0. If c2+δd2 = 0 or a2+δb2 = 0, clearly L(
√

δ) has no ordering

and thus Σ(L(
√

δ)) = L(
√

δ)∗. In this case, we may take uL = 1. Otherwise, we let

θ = c+d
√

δ and uL = θ−1θ, where θ = c−d
√

δ. It is immediate that TrL(
√

δ)/L(uL) =

2(c2 + δd2)(c2 − δd2)−1 and NL(
√

δ)/L(uL) = 1. Since a2 + δb2 − αc2 + δαd2 = 0 and

both c2 + δd2 and c2 − δd2 are units, it follows that

α =
(

(a2 + δb2)(c2 + δd2)−1
) (

(c2 + δd2)(c2 − δd2)−1
)

Thus

2αTrL(
√

δ)/L(uL) =
(

(a2 + δb2)(c2 + δd2)−1
)

(

TrL(
√

δ)/L(uL)
)2

∈ NL(
√
−δ)/L(L(

√
−δ))

and hence the quaternion algebra
(

2αTrL(
√

δ)/L(uL),−δ
)

over L is split.
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Let v be an ordering on L which extends to an ordering w on L(
√

δ). Then δ >v 0

and hence 2αTrL(
√

δ)/L(uL) >v 0. Let bar denote the non-trivial automorphism of

L(
√

δ) over L. Since αuLαuL = α2 >v 0, both αuL and αuL have same sign at w.

But αTrL(
√

δ)/L(uL) = α(uL + uL) >v 0. Thus αuL >w 0. This is true for every

ordering of L(
√

δ). Thus αuL ∈ Σ(L(
√

δ)) and NL(
√

δ)/L(uL) = 1. This completes

the proof of the lemma. ¤

Let D be a division algebra with centre Z and τ be an involution on D of the

second kind. Let Zτ = F . Let (V, h) be a non-degenerate hermitian space over

(D, τ). Then the integer dimD(V ) is said to be the rank of h and is denoted by

rank(h). Let rank(h) = n. For a choice {e1, e2, · · · , en} of a D-basis of V , the

form h determines a matrix Mh = (h(ei, ej)) ∈ Mn(D). The matrix Mh is τ -

hermitian symmetric. Let r = n deg(D). We define the discriminant of h to be

(−1)r(r−1)/2 Nrd(Mh) ∈ F ∗/NZ/F (F ∗) and denote it by disc(h).

We refine the notion of discriminant to the notion of Discriminant as follows:

Let Mh ∈ Mn(D) be a matrix as above, representing the hermitian form h. Let

M ′
h ∈ Mn(D) also represent h. Then there exists an invertible matrix T ∈ Mn(D)

such that

Nrd(M ′
h) = Nrd(Mh) Nrd(T )τ(Nrd(T ))

Thus we have the following well defined notion of Discriminant:

Disc(h) = (−1)r(r−1)/2 Nrd(Mh) ∈ F ∗/NZ/F (Nrd(D∗))

where r = n deg(D).

We now quote a classification result for hermitian forms over division algebras

with an involution of second kind over fields with vcd(F ) ≤ 2.

Theorem 5.8 ([BP2, Theorem 4.8]) Let F be a field with vcd(F ) ≤ 2 and D be

a division algebra with an involution τ of second kind such that (centre(D))τ = F .
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Let h be a hermitian form over (D, τ), Then h is hyperbolic if and only if rank(h)

is even, Disc(h) is trivial and h has trivial signature. ¤

Lemma 5.9 Let D be a central division algebra over Z, τ be a Z/F -involution over

D and h be a hermitian of rank 2s over (D, τ). Let disc(h) = 1. Then

F ∗ =
〈

{NM/F (M∗) : Disc(hM) = 1}
〉

.

Proof Let Mh ∈ M2s(D) be a matrix representing h. Since disc(h) = 1 ∈
F ∗/NZ/F (Z∗), we have Nrd(Mh) = d ∈ NZ/F (Z∗). Let z ∈ Z be such that d =

NZ/F (z). Let β = TrZ/F (z) and γ = zβ−1. Let w be an ordering on Z which extends

an ordering v of F such that Dw is not split. Then Nrd(Mh) = d = NZ/F (z) >w 0.

Thus TrZ/F (z) = β >w 0 if and only if z >w 0. This implies that γ = zβ−1 >w 0

and thus by 1.8, γ ∈ Nrd(D∗). Let x ∈ D∗ be such that Nrd(x) = γ. Let

M ′
h =











1

1

.

x











Mh











1

1

.

τ(x)











t

Then Nrd(M ′
h) = (dβ−1)2 and we conclude that for a suitable choice of a matrix Mh

representing the hermitian form h, Nrd(Mh) = α2, α ∈ F ∗. Let λ ∈ F ∗. By 5.7,

there exist quadratic extensions Li/F , λi ∈ L∗
i and ui ∈ Li(

√
δ), 1 ≤ i ≤ r, such

that λ =
∏

i NLi/F (λi), αui ∈ Σ(L(
√

δ)) and NLi(
√

δ)/L(ui) = 1. Then

α2 = NLi(
√

δ)/Li
(αui) ∈ NLi(

√
δ)/Li

(Nrd(DLi(
√

δ)))

and hence Disc(hLi
) = 1 for 1 ≤ i ≤ r. Thus λ ∈

〈

{NM/F (M∗) : Disc(hM) = 1}
〉

and we conclude that F ∗ =
〈

{NM/F (M∗) : Disc(hM) = 1}
〉

. ¤

The following propositions are used in the proof of 5.13, which is the main result

of this section.

Proposition 5.10 Let A ≃ Mr(D) where D is a division algebra over Z and r is even.

Let σ be a locally hyperbolic Z/F -involution on A. Then Hyp(A, σ) = F ∗.
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Proof Let σ be adjoint to a hermitian form h of rank r. Let d ∈ F ∗/NZ/F (Z∗)

denote the discriminant of h. Since σ is locally hyperbolic, for each v ∈ Ω, the

quaternion algebra (δ, d) splits at Fv. Thus by 1.8, Nrd((δ, d)) = F ∗. Let λ ∈ F ∗.

There exists a finite extension E/F such that λ ∈ NE/F (E∗) and (δ, d) splits over

E. Then disc(hE) is trivial. By 5.9 we have

E∗ =
〈

{NM/E(M∗) : Disc(hM) = 1}
〉

(∗)

Let M/E be an extension such that and Disc(hM) = 1. Since σ is locally hyperbolic,

sgn(hM ) = 0. Thus by 5.8, the form hM is hyperbolic and Hyp(hM) = M∗. Hence

by (∗), Hyp(hE) = E∗ and

λ ∈ NE/F (E∗) = NE/F (Hyp(hE)) ⊆ Hyp(h) = Hyp(A, σ)

which implies that Hyp(A, σ) = F ∗. This completes the proof. ¤

Proposition 5.11 Let A be a central simple algebra over Z with deg(A) ≡ 0(4). Let

exp(A) = 2m for some positive integer m. Let σ be a locally hyperbolic Z/F -

involution on A. Then Hyp(A, σ) = F ∗.

Proof Suppose m = 1. Since coresZ/F (A) = 0, by 1.12 A ∼ A0 ⊗F Z for some

central simple F -algebra A0 with exp(A0) = 2. Let M be a finite extension of F such

that A0M ∼ H for some quaternion algebra H over M . Then AM = Mr(H ⊗F Z).

Since deg(A) ≡ 0(4), the integer r is even. Thus by 5.10, Hyp(AM , σM) = M∗. In

view of 2.4 we have

F ∗ =
〈

{NM/F (M∗) : A0M ∼ H for some quaternion algebra H over M}
〉

.

It follows that Hyp(A, σ) = F ∗.

Suppose m ≥ 2. Since Br(Zw) = Z/2Z for each ordering w ∈ ΩZ , the algebra

A ⊗Z A splits locally. Clearly exp(A ⊗Z A) = 2m−1 and coresZ/F (A ⊗Z A) = 0. Let

λ ∈ F ∗. By 2.6, there exist extensions Li/F , 1 ≤ i ≤ s and λi ∈ L∗
i such that each

(A ⊗Z A) ⊗F Li is split and λ =
∏

i NLi/F (λi). Then exp(A ⊗F Li) = 2 for each i

and by the case m = 1, λi ∈ Hyp(ALi
, σLi

). Hence

λ =
∏

i

NLi/F (λi) ∈
∏

i

NLi/F (Hyp(ALi
, σLi

)) ⊆ Hyp(A, σ)
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and it follows that Hyp(A, σ) = F ∗. ¤

Proposition 5.12 Let A be a central simple algebra over Z with deg(A) ≡ 0(4). Let

σ be a locally hyperbolic Z/F -involution on A. Then we have Hyp(A, σ).F ∗2 = F ∗.

Proof By [BP1, Lemma 3.3.1], there exists an odd degree extension M of F such

that exp(AM) is a power of 2 and by 5.11, Hyp(AM , σM) = M∗. Taking norm from

M/F and using that [M : F ] is odd, we conclude that Hyp(A, σ).F ∗2 = F ∗. ¤

Theorem 5.13 Let F be a field with vcd(F ) ≤ 2 and let Z be a quadratic extension

over F . Let A be a central simple algebra over Z and σ be a Z/F -involution on A.

Then, G(A, σ) ⊆ Hyp(A, σ).NZ/F (Z∗).

Proof The cases where deg(A) is odd or deg(A) ≡ 2(4) are covered by 1.6 and 5.6

respectively. We assume that deg(A) ≡ 0(4). Let λ ∈ G(A, σ). At each v ∈ Ω, the

involution σv is adjoint to an even rank hermitian form which is hyperbolic if and

only if sgn(σv) = 0. Therefore λ >v 0 at those v ∈ Ω, where σv is not hyperbolic.

Let K = F (
√
−λ). Then deg(AK) ≡ 0(4) and σK is locally hyperbolic. Thus by

5.12, we have Hyp(AK , σK).K∗2 = K∗. Let
√
−λ = αβ2, where α ∈ Hyp(AK , σK)

and β ∈ K∗. Then λ = NK/F (
√
−λ) = NK/F (α)(NK/F (β))2. But NK/F (α) ∈

NK/F (Hyp(AK , σK)) ⊆ Hyp(A, σ). Thus λ ∈ Hyp(A, σ).F ∗2. This completes the

proof. ¤

6 Fields with vcd(F ) ≤ 2 : Orthogonal groups

Let F be an arbitrary field with char(F ) 6= 2. Let D be a central division algebra

over F with an orthogonal involution τ . We first recall from [BP2], certain invariants

associated to hermitian forms over (D, τ).

Discriminant: Let D and τ be as above and h be a hermitian form of even rank

over (D, τ). Let rank(h) = 2m and let Mh ∈ M2m(D) represent the hermitian form

h. Let

Disc(h) = (−1)r(r−1)/2 Nrd(Mh) ∈ F ∗/(Nrd(D∗))2,
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where r = 2m deg(D). If M ′
h ∈ M2m(D) is another matrix representing h then

there exists an invertible matrix T ∈ M2m(D) such that Mh = TMh(τ(T )t). Thus

Nrd(M ′
h) = Nrd(Mh) Nrd(T )2 and Disc(h) is well defined. We call Disc(h) the

Discriminant of h.

Clifford invariant: We recall from [KMRT, §8.B], the notion of the Clifford algebra

C(A, σ) associated to a central simple algebra A over a field F with an involution σ

of orthogonal type. If A is split and σ is adjoint to a quadratic form q then C(A, σ) is

the even Clifford algebra C0(q) of the quadratic form q. If disc(σ) is trivial, C(A, σ)

decomposes into a product C+(A, σ)×C−(A, σ), each of the factors being a central

simple algebra over F such that

[C+(A, σ)] + [C−(A, σ)] = [A] ∈ Br(F ).

Let D, τ and h be as above. Let disc(h) be trivial and A = M2m(D). Let τh

be the orthogonal involution on A which is adjoint to h. We define the Clifford

invariant of h as follows:

Cℓ(h) = [C+(M2m(D), τh)] ∈ Br(F )/[D]

Let H2m denote the matrix

(

0 Im

Im 0

)

∈ M2m(D) where Im is the identity

matrix of size m. The matrix H2m represents the hyperbolic form of rank 2m

over (D, τ). Let U2m(D, τ), SU2m(D, τ) and Spin2m(D, τ) denote respectively, the

unitary, special unitary group and spin group with respect to the hyperbolic form

H2m over (D, τ). We have an exact sequence

1 → µ2 → Spin2m(D, τ) → SU2m(D, τ) → 1

from which one gets the exact sequence of pointed sets

→ H1(F, Spin2m(D, τ)) → H1(F, SU2m(D, τ))
δ→ H2(F, µ2)

Let S denote the set of ordered pairs (X, a), where X ∈ GL2m(D) and a ∈ F ∗

satisfy τ(X) = X t and Nrd(X) = Nrd(H2m)a2. The elements of H1(F, SU2m(D, τ))
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are equivalence classes of S under the following equivalence relation: (X, a) ∼
(X ′, a′) if and only if there exists Y ∈ GL2m(D) with X ′ = Y XY

t
and a′ = Nrd(Y )a.

Let h be a hermitian form over (D, τ) with rank(h) = 2m and disc(h) = 1.

Let Mh be a matrix which represents h and Nrd(Mh) = a2, a ∈ F ∗. The two

elements ξa = (Mh, a) and ξ−a = (Mh,−a) in H1(F, SU2m(D, τ)) map to [h] under

H1(F, SU2m(D, τ)) → H1(F, U2m(D, τ)). Let C+(h) = δ(ξa) and C−(h) = δ(ξ−a).

We recall the following lemma from [BMPS, Lemma 3.1].

Lemma 6.1 If F is a formally real field and v is an ordering on F such that Dv is

not split, then the algebra C+(h) is split at v if and only if a >v 0. ¤

Rost invariant: Let h be a hermitian form over (D, τ) with rank(h) = 2m, trivial

discriminant and trivial Clifford invariant. Consider the exact sequence

1 → SU2m(D, τ) → U2m(D, τ) → µ2 → 1.

This gives rise to the following exact sequence of pointed sets

→ U2m(D, τ)(F ) → {±1} → H1(F, SU2m(D, τ)) → H1(F, U2m(D, τ)) →

Since Cℓ(h) = 0, there exists ξ ∈ H1(F, SU2m(D, τ)) mapping to [h] ∈ H1(F, U2m(D, τ))

such that δ(ξ) = 0. Let ξ̃ ∈ H1(F, Spin2m(D, τ)) be a preimage of ξ ∈ H1(F, SU2m(D, τ)).

Let G = Spin2m(D, τ) and RG : H1(F, G) → H3(F, Q/Z(2)) denote the Rost

invariant of G [Me3]. The Rost invariant of h is defined as follows: [BP2, pp.

664]

R(h) = RG(ξ̃) ∈ H3(F, Q/Z(2))

F ∗ ∪ [D]

The element RG(ξ̃) takes values in H3(F, Z/4) [BP2, Remark 1], where Z/4 has

the trivial Galois module structure. We now recall a proposition which we shall use

often.

Proposition 6.2 ([BP2, Cor. 2.6]) Let F be a formally real field and let I3(F ) be

torsion-free. Let Ω be the set of orderings on F . Then the natural map

H3(F, Z/4) →
∏

v∈Ω

H3(Fv, Z/4)

27



is injective. ¤

We now record a classification result for hermitian forms over central division

algebras with orthogonal involutions over fields with vcd(F ) ≤ 2.

Theorem 6.3 ([BP2, Th. 7.3]) Let F be a field with vcd(F ) ≤ 2 and D be a central

division algebra over D with an orthogonal involution τ . Let h be a hermitian form

over (D, τ). Then h is hyperbolic if and only if h has even rank, trivial Discriminant,

trivial Clifford and Rost invariant and trivial signature. ¤

Let F be a field with vcd(F ) ≤ 2 and (A, σ) be a central simple algebra over

F with orthogonal involution. If A is split, deg(A) is even, σ is locally hyperbolic

and disc(σ) = 1, so that by 5.2 we have Hyp(A, σ) = F ∗. We now consider the case

where A is locally split.

Lemma 6.4 Let vcd(F ) ≤ 2 and A be a central simple algebra of even degree over F .

Let σ be an orthogonal involution on A. If A is locally split then

G+(A, σ) = Hyp(A, σ).F ∗2.

Proof Let λ ∈ G+(A, σ) and K = F (
√
−λ). Clearly λ ∈ NK/F (K∗). Let

disc(σ) = d and L = F (
√

d). By 1.3, λ ∈ NL/F (L∗). Let M = F (
√
−λ,

√
d).

Using [W, Lemma 2.14] for the biquadratic extension M/F , there exist x ∈ M∗

and y ∈ F ∗ such that λ = NM/F (x)y2. Further AM is locally split and by 1.8,

Nrd(AM) = M∗. Let E/M be an extension such that x = NE/M(α) for some α ∈ E∗

and AE be split. Clearly disc(σE) = 1, σE is locally hyperbolic and AE is split.

Thus by 5.2, Hyp(AE , σE) = E∗ and hence x = NE/M(α) ∈ Hyp(AM , σM). Thus

λ = NM/F (x)y2 ⊆ Hyp(A, σ).F ∗2. We conclude that G+(A, σ) ⊆ Hyp(A, σ).F ∗2. In

view of 1.1 we have G+(A, σ) = Hyp(A, σ).F ∗2. ¤

We continue with some lemmas which will be used in the proofs of the main

results of this section.

Lemma 6.5 Let vcd(F ) ≤ 2 and χ ∈ H3(F, µ2). Then

F ∗ =
〈

{NL/F (L∗) : L ∈ F2(F ) and χL = (−1) ∪ (−1) ∪ (−x) for some x ∈ L∗}
〉

.
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Proof Since vcd(F ) ≤ 2, H3(F (
√
−1), µ2) = 0 and in view of the Arason exact

sequence 1.11, the map H2(F, µ2)
∪(−1)−→ H3(F, µ2) is surjective. Let ξ ∈ H2(F, µ2)

be such that (−1) ∪ ξ = χ. Let Dξ be a central division algebra over F , whose

Brauer class is represented by ξ. Then exp(Dξ) = 2. Let L ∈ F2(F ) be such that

(Dξ)L ∼ (−1) ∪ (−x) for some x ∈ L. Then

χL = (−1) ∪ ξL = (−1) ∪ (Dξ)L = (−1) ∪ (−1) ∪ (−x).

In view of this and 2.4, we have that

F ∗ =
〈

{NL/F (L∗) : L ∈ F2(F ) and (Dξ)L = (−1) ∪ (−x) for some x ∈ L∗}
〉

⊆
〈

{NL/F (L∗) : L ∈ F2(F ) and χL = (−1) ∪ (−1) ∪ (−x) for some x ∈ L∗}
〉

¤

For χ ∈ Hr(F, µ2), we set N(χ) = 〈{NL/F (L∗) : χL = 0}〉.

Lemma 6.6 Let vcd(F ) ≤ 2 and χ ∈ Hr(F, µ2), r ≥ 2. Then following three groups

coincide:

(i) N(χ)

(ii) {λ ∈ F ∗ : λ >v 0 at those v ∈ Ω where χv 6= 0}.

(iii) {λ ∈ F ∗ : (λ) ∪ χ = 0}.

Proof Since vcd(F ) ≤ 2, in view of 1.15 the cohomology groups Hr+1(F, µ2) are

(−1)-torsion-free for r ≥ 2 and thus the groups (ii) and (iii) coincide. We show

that N(χ) ⊆ {λ ∈ F ∗ : (λ) ∪ χ = 0}. Let λ ∈ N(χ) be such that λ = NL/F (µ) for

an extension L/F with χL = 0. Then ((µ) ∪ χ)L = 0 and thus we have

coresL/F ((µ) ∪ χ)L = (λ) ∪ χ = 0.

Hence N(χ) ⊆ {λ ∈ F ∗ : (λ) ∪ χ = 0}. To complete the proof, we show that

{λ ∈ F ∗ : λ >v 0 at those v ∈ Ω where χv 6= 0} ⊆ N(χ). Let λ ∈ F ∗ be

such that λ >v 0 at those v ∈ Ω where χv 6= 0. Let L = F (
√
−λ). Then it
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follows that χw = 0 for each ordering w of L. It follows from [Ar, Th. 2.1] that

vcd(L) ≤ 2 and thus by 1.15, H3(L, µ2) is (−1)-torsion-free. Therefore χL = 0.

Thus λ = NL/F (
√
−λ) ∈ N(χ). This completes the proof. ¤

In 6.7, 6.8 and 6.9 below, the only restriction on F is that char(F ) 6= 2. Let D

be a central division algebra over F and τ be an orthogonal involution on D. Let

h be a hermitian form of rank 2m and trivial discriminant over (D, τ). Let a ∈ F ∗

be such that Nrd(Mh) = a2, where Mh is a matrix representing the form h. Since

disc(h) = 1, we recall from [MT, Prop. 1.12] that G+(h) = G(h).

Lemma 6.7 Let D be a central division algebra over a field F of characteristic dif-

ferent from 2 with an orthogonal involution τ . Let h and h′ be two even rank

hermitian forms of trivial discriminant over (D, τ). Then we have the following

additive property for Clifford invariants:

Cℓ(h ⊥ h′) = Cℓ(h) + Cℓ(h′) ∈ H2(F, µ2)/[D].

Proof We extend the scalars to the function field of the Brauer-Severi variety of

D. Using the fact that the invariant e2 of quadratic forms is additive on forms of

trivial discriminant and that the kernel of the scalar extension map H2(F, µ2) →
H2(F (XD), µ2) is generated by the class of D in H2(F, µ2) [MT, Cor. 2.7], the

lemma follows. ¤

From this lemma and the fact that two similar hermitian forms with even rank

and trivial discriminant have the same Clifford invariants [BP1, pp. 204], we

immediately have

Corollary 6.8 Let D, τ and h be as in 6.7. Then for each λ ∈ F ∗, the Clifford

invariant Cℓ(h ⊥ −λh) is trivial. ¤

In the following lemma, we compute the Rost invariant of the hermitian form

h ⊥ −λh, where h is as in 6.7 and λ ∈ F ∗ is an arbitrary scalar.
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Lemma 6.9 Let D be a central division algebra of even degree over a field F of

characteristic different from 2. Let τ be an orthogonal involution on D and h be

a hermitian form over (D, τ) of even rank and trivial discriminant. Let λ ∈ F ∗.

Then,

R(h ⊥ −λh) = (λ) ∪ [C+(h)] ∈ H3(F, Q/Z(2))/F ∗ ∪ [D].

Proof Let rank(h) = 2m and A = M2m(D). Let τh be the involution on A which

is adjoint to h. We denote by PGO+(h) the group PSim+(A, τh) of similitudes.

We have an exact sequence

1 → µ2 → SU(h) → PGO+(h) → 1

which induces a map on the cohomology sets H1(F, µ2) → H1(F, SU(h)). We claim

that under this map (λ) ∈ H1(F, µ2) is mapped to an element ξλ ∈ H1(F, SU(h))

which corresponds to the class of the hermitian form λh in H1(F, U(h)). In fact,

the cocycle (λ) ∈ Z1(F, µ2) given by s 7→ s(
√

λ)(
√

λ)−1 for s ∈ Gal(Fs/F ), when

treated as a cocycle with values in U(h), represents [λh] in H1(F, U(h)).

Since deg(A) ≡ 0(4), the centre of Spin(h) is µ2 × µ2 and the kernel of the map

Spin(h) → SU(h) is (ǫ, ǫ), where ǫ = ±1. The quotient of µ2 × µ2 by µ2 under the

diagonal embedding maps isomorphically onto the centre of SU(h). By [MPT, Th.

1.14], the Rost invariant of the image ξ̃λ of (1, λ) ∈ H1(F, µ2×µ2) in H1(F, Spin(h))

is (λ) ∪ [C+(h)]. Thus ξ̃λ ∈ H1(F, Spin(h)) maps to ξλ ∈ H1(F, SU(h)), which in

turn maps to the class of λh in H1(F, U(h)) as is seen above. Thus we conclude

that the hermitian form λh admits a lift ξ̃λ such that R(ξ̃λ) = (λ) ∪ [C+(h)].

We now compute R(h ⊥ −λh). Let i : Spin(−h) → Spin(−h ⊥ h) be the

natural map and ĩ : H1(F, Spin(−h)) → H1(F, Spin(−h ⊥ h)) the induced map on

the cohomology sets. In view of [BP2, Lemma 3.6], R(̃i(ξ)) = R(ξ) for every ξ ∈
H1(F, Spin(−h)). The group Spin(−h ⊥ h) maps isomorphically onto Spin4m(D, τ)

preserving the Rost invariant. Further, the image of (1, λ) in the cohomology set

H1(F, Spin(−h)) maps to the isometry class of −λh in H1(F, U(h)) and to the

isometry class of −λh ⊥ h in H1(F, U4n(D, τ)). This implies that the Rost invariant

R(h ⊥ −λh) is equal to (λ) ∪ [C+(h)] ∈ H3(F, Q/Z(2))/F ∗ ∪ [D]. This completes
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the proof. ¤

From now on, we assume that vcd(F ) ≤ 2. Let L/F be a formally real extension

and ΩL be the set of orderings on L. Let h be a hermitian form over (D, τ) - a central

division algebra D over F with an orthogonal involution τ . We define Sℓ,L(h) as

follows:

Sℓ,L(h) = {λ ∈ L∗ : hLw
≃ λhLw

for all w ∈ ΩL}.

If L = F then we simply write Sℓ(h) to denote Sℓ,F (h). In 6.10 - 6.14 below,

h denotes an even rank hermitian form over (D, τ) with trivial discriminant and

a ∈ F ∗ denotes a scalar which satisfies Nrd(Mh) = a2 for a choice Mh of a matrix

representing h. Further, for z ∈ F ∗ and a central simple algebra B over F with

exp(B) = 2, we denote by z ∪ B the element (z) ∪ [B] ∈ H3(F, µ2).

Proposition 6.10 We have (N(a ∪ D)N(−a ∪ D)) ∩ Sℓ(h).

Proof We first prove that (N(a ∪ D)N(−a ∪ D)) ∩ Sℓ(h) ⊆ G(h). Let λ ∈
(N(a ∪ D)N(−a ∪ D)) ∩ Sℓ(h). We show that h ⊥ −λh is hyperbolic. It is clear

that h ⊥ −λh has even rank. Further Nrd(M(h ⊥ −λh)) = a4, and since a2 is

totally positive, by 1.8 it belongs to Nrd(D∗). Thus it follows that h ⊥ −λh has

trivial Discriminant. Moreover since disc(h) is trivial, by 6.8, it follows that the

Clifford invariant of h ⊥ −λh is trivial. Since λ ∈ Sℓ(h), the form h ⊥ −λh has

trivial signature as well.

By 6.9 we see that the Rost invariant R(h ⊥ −λh) = [(λ) ∪ C+(h)]. We show

that [(λ) ∪ C+(h)] is trivial in H3(F, Z/4)/F ∗ ∪ [D]. Let x ∈ F ∗ be such that

x ∈ N(−a ∪D) and λx−1 ∈ N(a ∪D). We claim that (λ) ∪ [C+(h)] = (x) ∪ [D]. In

view of 6.2, it suffices to check that at each v ∈ Ω, we have (λ)∪[C+(h)v] = (x)∪[Dv].

Suppose v ∈ Ω is such that λ >v 0 and x >v 0. In this case (λ) ∪ [C+(h)v] and

(x) ∪ [Dv] are both trivial.

Suppose λ >v 0 and x <v 0. Then λx−1 <v 0. Since λx−1 ∈ N(a ∪ D) and

x ∈ N(−a ∪ D), in view of 6.6 both (a) ∪ [D] and (−a) ∪ [D] are split at v. Thus

−1 ∈ Nrd(Dv) and hence D is split at v. Thus both (λ) ∪ [C+(h)v] and (x) ∪ [Dv]

are trivial in this case as well.
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Now suppose that λ <v 0 and Dv is split. Since λ ∈ Sl(h), we conclude that hv

is hyperbolic. Thus the Clifford invariant Cℓ(h)v = 0. Further, since Dv is split and

hv is hyperbolic, we have C+(h)v = C−(h)v = 0. Thus we conclude that C+(h)v is

split and thus (λ) ∪ [C+(h)v] and (x) ∪ [Dv] are both zero.

Next, suppose that λ <v 0, Dv is not split and x <v 0. Since x ∈ N(−a ∪ D),

by 6.6 (−a) ∪ [Dv] = 0; i.e. −a ∈ Nrd(Dv). Hence a <v 0. Since Dv is not split

and a <v 0, by 6.1 C+(h)v is not split. Thus we conclude in this case that both

(λ) ∪ [C+(h)v] and (x) ∪ [Dv] are non-zero and hence equal.

Now the only remaining case is when λ <v 0, Dv is not split and x >v 0. In that

case, λx−1 <v 0 and since λx−1 ∈ N(a ∪ D), by 6.6 we have that (a) ∪ [Dv] = 0.

Thus a ∈ Nrd(Dv) and hence a >v 0. Since Dv is non-split, by 6.1 C+(h)v is split.

Thus both (λ) ∪ [C+(h)v] and (x) ∪ [Dv] are zero in this case.

We conclude therefore that (λ) ∪ [C+(h)v] = (x) ∪ [Dv] for all v ∈ Ω. Thus by

6.2, we have (λ) ∪ [C+(h)] = (x) ∪ [D] and

R(h ⊥ −λh) = (λ) ∪ [C+(h)] = 0 ∈ H3(F, Z/4)/F ∗ ∪ [D].

Since vcd(F ) ≤ 2, by 6.3 we have that h ⊥ −λh is hyperbolic. Thus λ ∈ G(h).

We now show the inclusion G(h) ⊆ (N(a ∪ D)N(−a ∪ D)) ∩ Sℓ(h). It is clear

that G(h) ⊆ Sℓ(h). We thus show that G(h) ⊆ N(a∪D)N(−a∪D). Let λ ∈ G(h).

Then the the form h ⊥ −λh is hyperbolic and hence its Rost invariant (λ)∪ [C+(h)]

is trivial. Thus there exists x ∈ F ∗ such that (λ) ∪ [C+(h)] = (x) ∪ [D]. By reading

this equality locally at each v ∈ Ω and observing the sign pattern, we conclude that

x ∈ N(−a ∪ D) and λx ∈ N(a ∪ D). Therefore, λ ∈ N(a ∪ D)N(−a ∪ D). This

completes the proof. ¤

The following lemma will be used in the proof of 6.12.

Lemma 6.11 Let D be a central division algebra over F and let τ be an orthogonal

involution on D. Let h be an even rank locally hyperbolic hermitian form over (D, τ)

with Disc(h) = 1 and Cℓ(h) = 0. Then Hyp(h) = F ∗.
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Proof Since the hermitian form h has even rank, trivial discriminant and triv-

ial Clifford invariant, there exists ξ̃ ∈ H1(F, Spin2m(D, τ)) which maps to [h] ∈
H1(F, U2m(D, τ)). Let R(ξ̃) ∈ H3(F, µ2) be the Rost invariant of ξ̃. Let L ∈ F2(F )

be such that R(ξ̃L) = (−1) ∪ (−1) ∪ (−x) for some x ∈ L∗. We claim that

R(ξ̃L) = (−x) ∪ DL.

Let ΩL be the set of orderings on L and w ∈ ΩL be such that DLw is split. Then

R(ξ̃Lw) = e3(hLw), where e3 is the Arason invariant of quadratic forms. Since hw

is hyperbolic by hypothesis, we have e3(hLw) = 0. Thus R(ξ̃L) and (−x) ∪ DL are

both zero at w.

Now suppose DLw is not split. Then DLw = (−1) ∪ (−1) and thus R(ξ̃Lw) =

(−1) ∪ (−1) ∪ (−x) = (−x) ∪ DLw. Thus R(ξ̃L) = (−x) ∪ DL at each w ∈ ΩL and

by 6.2, R(hL) = 0. Therefore hL is a locally hyperbolic form with even rank, trivial

Discriminant, trivial Clifford invariant and trivial Rost invariant. By 6.3 the form

hL is hyperbolic. In view of this and 6.5 we conclude that Hyp(h) = F ∗. ¤

The following proposition gives an explicit description of the group Hyp(h).

Proposition 6.12 We have Hyp(h) = (N(a ∪ D) ∩ Sℓ(h)).(N(−a ∪ D) ∩ Sℓ(h)).

Proof We first prove that Hyp(h) ⊆ (N(a ∪ D) ∩ Sℓ(h)).(N(−a ∪ D) ∩ Sℓ(h)).

Let L/F be a finite extension such that hL is hyperbolic. Then Disc(hL) is trivial

in L∗/ Nrd(D∗
L)2 and hence either a ∈ Nrd(D∗

L) or −a ∈ Nrd(D∗
L); i.e. either

N(a ∪ DL) = L∗ or N(−a ∪ DL) = L∗. We clearly have Sℓ,L(h) = L∗. Thus

(N(a ∪ DL) ∩ Sℓ,L(h)).(N(−a ∪ DL) ∩ Sℓ,L(h)) = L∗.

Clearly NL/F (N(a∪DL)) ⊆ N(a∪D) and NL/F (N(−a∪DL)) ⊆ N(−a∪D). Further

as in [KMRT, Prop. 12.21], NL/F (Sℓ,L(h)) ⊆ Sℓ(h). Thus

NL/F (L∗) ⊆ NL/F ((N(a ∪ DL) ∩ Sℓ,L(h)).(N(−a ∪ DL) ∩ Sℓ,L(h)))

⊆ (N(a ∪ D) ∩ Sℓ(h)).(N(−a ∪ D) ∩ Sℓ(h)).

Since NL/F (L∗) generate Hyp(h) as L runs over extensions where h is hyperbolic, it

follows that Hyp(h) ⊆ (N(a ∪ D) ∩ Sℓ(h)).(N(−a ∪ D) ∩ Sℓ(h)).
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To complete the proof, we show that N(a∪D)∩Sℓ(h) ⊆ Hyp(h). The inclusion

N(−a ∪ D) ∩ Sℓ(h) ⊆ Hyp(h) follows in the similar manner. Let λ ∈ N(a ∪ D) ∩
Sℓ(h). By 6.10, λ ∈ G(h). Let K = F (

√
−λ). Since λ ∈ N(a ∪ D), by 6.6

(λ) ∪ (a) ∪ [D] = 0 ∈ H4(F, µ2). Thus (−1) ∪ (a) ∪ [DK ] = 0 ∈ H4(K, µ2). By 1.15,

(a) ∪ [DK ] = 0 ∈ H3(K, µ2). Hence a ∈ Nrd(DK) and Disc(h)K = 1.

Let w be an ordering on K. Since λ <w 0 and λ ∈ G(hK), the form hK is

locally hyperbolic. Thus the Clifford invariant Cℓ(h)K is trivial at w. Therefore, if

DKw is split, then C+(h)Kw = C−(h)Kw = 0. If DKw is not split, then in view of

1.8, a >w 0 as a ∈ Nrd(DK). By 6.1, C+(h)Kw is split. We have thus shown that

C+(hK) is locally split. By 1.8, it follows that Nrd(C+(hK)) = K∗. Let L/K be a

finite extension and α ∈ L∗ be such that
√
−λ = NL/K(α) and C+(hL) = 0. Then

hL is an even rank locally hyperbolic form with Disc(hL) = 1 and C+(hL) = 0. By

6.11, Hyp(hL) = L∗. Thus

√
−λ = NL/K(α) ∈ NL/K(Hyp(hL)) ⊆ Hyp(hK).

Taking norm from K/F we have λ ∈ Hyp(h). Thus N(a ∪D) ∩ Sℓ(h) ⊆ Hyp(h). ¤

With the notation as above, we have following corollaries.

Corollary 6.13 If h is locally hyperbolic then

Hyp(h) = N(a ∪ D).N(−a ∪ D) = G(h).

Proof Since h is locally hyperbolic, Sℓ(h) = F ∗. From 6.10 and 6.12, it is clear

that Hyp(h) = N(a ∪ D).N(−a ∪ D) = G(h). ¤

Corollary 6.14 If h has trivial Discriminant, then Hyp(h) = Sℓ(h) = G(h).

Proof Since Disc(h) = 1, it follows that either N(a∪D) = F ∗ or N(−a∪D) = F ∗.

In either case, it is immediate from 6.10 and 6.12, that Hyp(h) = Sℓ(h) = G(h). ¤

Let A be a central simple algebra over F with an orthogonal involution σ.

Suppose disc(σ) = 1 and C(A, σ) = C+(A, σ) × C−(A, σ). We have the following

extension of 6.13
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Proposition 6.15 Let F be a field with char(F ) 6= 2. Let (A, σ) be a central simple

algebra of even degree over F with an orthogonal involution. Let deg(A) ≡ 0(4) and

disc(σ) = 1. Then Hyp(A, σ) ⊆ Nrd(C+(A, σ)) Nrd(C−(A, σ)). Further if vcd(F ) ≤
2 and σ is locally hyperbolic then

Hyp(A, σ) = Nrd(C+(A, σ)) Nrd(C−(A, σ)) = G(A, σ).

Proof The first assertion follows from the fact that over any extension L/F where

σ is hyperbolic, either C+(AL, σL) or C−(AL, σL) is split [KMRT, Prop. 12.21].

Suppose vcd(F ) ≤ 2 and σ locally hyperbolic. Let λ ∈ Nrd(C+(A, σ)). Let L/F

be a finite extension such that λ ∈ NL/F (L∗) and C+(AL, σL) is split. We show that

Hyp(AL, σL) = L∗. In view of 2.3, replacing L by a quadratic tower, we may assume

that AL ≃ M2r(H) for some quaternion algebra H over L. Let τ be an orthogonal

involution on H and h be a hermitian form over (H, τ) such that σL is adjoint to

h. Let Mh ∈ M2r(H) represent h and Nrd(Mh) = a2 for some a ∈ L∗. Let w be

an ordering on L such that Hw is not split. Since C+(h) = C+(AL, σL) is split, by

6.1 a >w 0. Thus (a) ∪ [H ] = 0 ∈ H3(L, µ2) and N(a ∪ H) = L∗. In view of 6.13,

Hyp(AL, σL) = Hyp(h) = N(a ∪ H).N(−a ∪ H) = L∗. Thus Hyp(AL, σL) = L∗.

Taking norms from L/F we have λ ∈ NL/F (L∗) = NL/F (Hyp(AL, σL)) ⊆ Hyp(A, σ).

Thus Nrd(C+(A, σ)) ⊆ Hyp(A, σ).

The inclusion Nrd(C−(A, σ)) ⊆ Hyp(A, σ) follows from a similar argument. We

therefore conclude that Hyp(A, σ) = Nrd(C+(A, σ)) Nrd(C−(A, σ))

To complete the proof we show that G(A, σ) ⊆ Nrd(C+(A, σ)) Nrd(C−(A, σ)).

Let λ ∈ G(A, σ). Then the hermitian form
〈

1,−λ
〉

is hyperbolic. Hence the

Rost invariant R(
〈

1,−λ
〉

) is trivial. As in the proof of 6.9, R(
〈

1,−λ
〉

) = (λ) ∪
[C+(A, σ)]. Since the Rost invariant is trivial, there exists x ∈ F ∗ such that

(λ) ∪ [C+(A, σ)] = (x) ∪ [A]. If for an ordering v on F , the algebra Av is split,

then hv being hyperbolic, C+(A, σ)v and C+(A, σ)v are both split. If Av is not

split and x <v 0 then C+(A, σ)v is not split. Hence C−(A, σ)v is split. Thus

x ∈ Nrd(C−(A, σ)) and a similar argument gives λx ∈ Nrd(C+(A, σ)). Hence

λ = λx.x−1 ∈ Nrd(C+(A, σ)) Nrd(C+(A, σ)). We have thus shown that

G(A, σ) ⊆ Hyp(A, σ) = Nrd(C+(A, σ)) Nrd(C−(A, σ)).
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The inclusion Hyp(A, σ) ⊆ G(A, σ) follows from 1.1 and this completes the proof.

¤

Theorem 6.16 Let vcd(F ) ≤ 2 and let A be a central simple algebra over F with

deg(A) even and an involution σ of orthogonal type. If disc(σ) = 1 and σ is locally

hyperbolic then G(A, σ) = Hyp(A, σ).F ∗2.

Proof Let deg(A) = 2n. Suppose n is odd. Since σ is locally hyperbolic, the

algebra A is locally split and by 6.4 the results holds. We can thus assume that n

is even. In this case we are through by 6.15. ¤

7 Fields with vcd(F ) ≤ 2 satisfying SAP

Let F be a field with orderings and let Ω denote the set of orderings on F . Given

a ∈ F ∗, we define the corresponding Harrison set Ωa as follows:

Ωa := {v ∈ Ω : a >v 0}.

The set Ω has Harrison topology for which {Ωa : a ∈ F ∗} is a sub-basis. With this

topology, Ω is a Hausdorff, compact and totally disconnected space. We say that F

has strong approximation property (SAP), if every closed and open set of Ω is of the

form Ωa for some a ∈ F ∗. A quadratic form q is said to be weakly isotropic, if for

some positive integer s, the s-fold orthogonal sum s.q =⊥s q is isotropic. Combining

[ELP, Th. C] and [P, Satz. 3.1] we have the following

Theorem 7.1 A field F with orderings has SAP if and only if for every a, b ∈ F ∗,

the quadratic form
〈

1, a, b,−ab
〉

is weakly isotropic. ¤

In what follows, for a1, a2, · · · , ar ∈ F ∗ the notation
〈〈

a1, a2, · · · , ar

〉〉

will denote

the r-fold Pfister form
〈

1,−a1

〉

⊗
〈

1,−a2

〉

⊗ · · · ⊗
〈

1,−ar

〉

. For a quadratic form

q, we denote by D(q) the set of elements of F ∗ represented by q. We remark that if

q =
〈

1,−a,−b, ab
〉

then D(q) = Nrd(H∗), where H is the quaternion algebra (a, b)

over F . Set Ω(H) = {v ∈ Ω : H ⊗F Fv is split }. The following lemma is recorded

in [Ga].
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Lemma 7.2 Let F be a field with orderings. Let a, b ∈ F ∗. Let q1 =
〈〈

− 1,−a
〉〉

,

q2 =
〈〈

− 1, a
〉〉

and H = (a, b). Suppose there does not exist c ∈ F ∗ such that

Ωc = Ω(H), then −b /∈ D(q1)D(q2).

Proof Suppose −b ∈ D(q1)D(q2) and let x1 ∈ D(q1) and x2 ∈ D(q2) be such that

−b = x1x2. Then q1 ⊥ bq2 is isotropic and hence 2
〈

1, a, b,−ab
〉

≃ q0 ⊥ H for some

Albert form q0 and H ≃
〈

1,−1
〉

. We have

C(q0) = C(q1 ⊥ bq2) = (−1,−1) = C(4
〈

1
〉

⊥ H) ∈ Br(F ).

Therefore by [KMRT, Prop. 16.3], q0 ≃ 4
〈

c
〉

⊥ H for some c ∈ F ∗. It is easy to see

that Ωc = Ω(H), which contradicts the hypothesis. Thus −b /∈ D(q1)D(q2). ¤

Lemma 7.3 Let F be a field for which I3(F ) is torsion-free. Let a, b ∈ F ∗. Let

q1 =
〈〈

− 1,−a
〉〉

, q2 =
〈〈

− 1, a
〉〉

and H = (a, b). If −b /∈ D(q1)D(q2) then there

is no element c ∈ F ∗ with Ωc = Ω(H).

Proof Suppose there is an element c ∈ F ∗ such that Ωc = Ω(H). Let q′ =
〈

1, a, b,−ab,−c,−c
〉

. For v ∈ Ω if c <v 0, then by the choice of c we have a <v 0

and b <v 0. This implies that the form q′ is hyperbolic at v. If c >v 0, then again by

the choice of c, either a >v 0 or b >v 0 and in either case q′ is hyperbolic at v. We

thus conclude that q′ is locally hyperbolic. Clearly q′ ∈ I2(F ), therefore 2q′ ∈ I3(F ).

Since 2q′ is an even rank quadratic form with trivial signature, it is hyperbolic at

each Fv, v ∈ Ω. Thus by Pfister’s local-global principle [L, Th. VIII.4.1], 2q′ is

a torsion element in the Witt group W (F ). By the hypothesis, I3(F ) is torsion-

free. Thus 2q′ = 2
〈

1, a, b,−ab,−c,−c
〉

is hyperbolic. Therefore the form q1 ⊥ bq2

is isotropic, which implies that −b ∈ D(q1)D(q2). This is a contradiction to the

hypothesis. ¤

Combining 7.2 and 7.3 above, we get the following

Corollary 7.4 Let I3(F ) be torsion-free. Let a, b ∈ F ∗ and q1 =
〈〈

− 1,−a
〉〉

, q2 =
〈〈

− 1, a
〉〉

and H = (a, b). Then −b ∈ D(q1)D(q2) if and only if there exists c ∈ F ∗

such that Ωc = Ω(H). ¤
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Using the results above, we have thus derived

Corollary 7.5 Let F be a field with I3(F ) torsion-free. Then the following statements

are equivalent:

(i) For all a ∈ F ∗ we have D
(〈〈

− 1,−a
〉〉)

D
(〈〈

− 1, a
〉〉)

= F ∗.

(ii) The field F has SAP.

(iii) Given a quaternion algebra H = (a, b) over F , there exists an element c ∈ F ∗

such that Ωc = Ω(H). ¤

From now on, in this section the field F satisfies vcd(F ) ≤ 2. We say that a field

F satisfies SAP for quadratic towers if each quadratic tower L ∈ F2(F ) has SAP.

Lemma 7.6 Let vcd(F ) ≤ 2, F has orderings and has SAP for quadratic towers.

Then for every a, b ∈ F ∗ we have Nrd(a, b)∗. Nrd(−a, b)∗ = F ∗.

Proof Let H1 = (a, b) and H2 = (−a, b). Let L ∈ F2(F ) be such that (a, b)L =

(−1,−x) and (−a, b)L = (−1,−y) for some x, y ∈ L∗. It is clear that at a given

w ∈ ΩL at least one of H1Lw
and H2Lw

is split, which means either x <w 0 or

y <w 0. Thus if −x <w 0 then y <w 0. In other words, if (−1,−x)Lw
is non-split

then so is (−1, y)Lw
. Thus by 1.8, we have Nrd(−1, y)∗ ⊆ Nrd(−1,−x)∗. Thus

Nrd(−1, y)∗ Nrd(−1,−y)∗ ⊆ Nrd(−1,−x)∗ Nrd(−1,−y)∗. Since F has SAP for

quadratic towers, L has SAP and thus by 7.5, we have Nrd(−1,−y)∗ Nrd(−1, y)∗ =

L∗. Therefore,

Nrd(H1L)∗ Nrd(H2L)∗ = Nrd(−1,−x)∗ Nrd(−1,−y)∗ = L∗.

In view of this and 2.5 we have that Nrd(H1)
∗. Nrd(H2)

∗ = F ∗. This completes

the proof. ¤

Proposition 7.7 Let vcd(F ) ≤ 2 and F has SAP for quadratic towers. Let h be a

locally hyperbolic hermitian form of even rank over a central-division algebra D with

an orthogonal involution τ . Let disc(h) = 1. Then we have Hyp(h) = F ∗.
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Proof Let L ∈ F2(F ) be such that DL ∼ (−1,−x) for some x ∈ L∗. Since hL

is locally hyperbolic, by 6.13 we have Hyp(hL) = N(a ∪ DL).N(−a ∪ DL). Clearly

N(a ∪ DL) = Nrd(a,−x)∗ and N(−a ∪ DL) = Nrd(−a,−x)∗. Since F has SAP for

quadratic towers, so does L. Thus by 7.6, we have

Nrd(a,−x)∗. Nrd(−a,−x)∗ = L∗

and we conclude that Hyp(hL) = L∗. In view of this and 2.4 we have Hyp(h) = F ∗.

¤

Proposition 7.8 Let vcd(F ) ≤ 2 and F has SAP with respect to quadratic towers.

Let A be a central simple algebra of even degree over F and σ be a locally hyperbolic

involution on A with disc(σ) = 1. Then Hyp(A, σ) = F ∗.

Proof Let L ∈ F2(F ) be such that AL ∼ (−1,−x) for some x ∈ L∗. Let H =

(−1,−x). Then AL = Mr(H) for some positive integer r. Let τ be an orthogonal

involution on H and h be a hermitian form over (H, τ) such that σL is adjoint to h.

Then Hyp(AL, σL) = Hyp(h).

First assume that r is even. Then it follows from [KMRT, Prop. 7.3(1)] that

disc(σL) = disc(h) = 1. Since σL is locally hyperbolic, the hermitian form h is locally

hyperbolic. Thus h is a locally hyperbolic form of even rank and trivial discriminant

over (H, τ). Therefore in view of 7.7 we have Hyp(AL, σL) = Hyp(h) = L∗.

Now suppose r is odd. Since σL is locally hyperbolic, the hermitian form h is

locally hyperbolic. Thus the quaternion algebra H is locally split and by 1.8 we

have Nrd(H)∗ = L∗. Let λ ∈ L∗. Let Li ∈ F2(L) be such that each HLi
is split and

λ =
∏

i NLi/L(λi), where λi ∈ L∗
i . Then hLi

is a locally hyperbolic quadratic form

over Li with even rank and trivial discriminant. Thus by 5.2, we have Hyp(hLi
) = L∗

i .

Therefore

λ ∈
∏

i

NLi/L(Hyp(HLi
)) ⊆ Hyp(h)

and hence Hyp(h) = L∗.

Thus it follows that if L ∈ F2(F ) is such that AL ∼ (−1,−x) for some x ∈ L∗

then Hyp(AL, σL) = Hyp(h) = L∗. Therefore in view of 2.4, we have Hyp(A, σ) =

F ∗. This completes the proof. ¤

40



Theorem 7.9 Let vcd(F ) ≤ 2 and F has SAP for quadratic towers. Let A be a

central simple algebra of degree 2n over F and σ be an orthogonal involution on A

with disc(σ) = 1. Then Hyp(A, σ).F ∗2 = G+(A, σ).

Proof Let λ ∈ G+(A, σ). Then λ = σ(a)a for some a ∈ A∗ with Nrd(a) = λn. Let

K = F (
√
−λ). First suppose that n is odd. Then λ ∈ Nrd(A∗) and thus λ >v 0 at

those v ∈ Ω where Av is not split. If Av is split then λ >v 0 at those v ∈ Ω where

sgn(σv) 6= 0. Then AK is locally split and σK is locally hyperbolic.

Now suppose that n is even let and v ∈ Ω is such that σv is not hyperbolic. Then

by (Theorem 3.7, Chapter 10, [S]), Av is split and σv is adjoint to a non-hyperbolic

quadratic form q over Fv such that q ≃ λq. Thus we conclude that λ >v 0 at those

orderings v ∈ Ω where σv is not hyperbolic. Then σK is locally hyperbolic.

Thus in either case, by 7.8 we have that Hyp(AK , σK) = K∗. Taking norm

of
√
−λ from K/F , we conclude that λ ∈ Hyp(A, σ) and therefore G+(A, σ) ⊆

Hyp(A, σ). By 1.1 we have Hyp(A, σ).F ∗2 ⊆ G+(A, σ), and hence we conclude that

G+(A, σ) = Hyp(A, σ).F ∗2. ¤

Theorem 7.10 Let vcd(F ) ≤ 2 and (A, σ) be an algebra of type 2Dn over F . Let F

have SAP for quadratic towers. Then we have G+(A, σ) = Hyp(A, σ).F ∗2.

Proof Let disc(σ) = d. Let λ ∈ G+(A, σ). By 1.3, we have G+(A, σ) ⊆ NL/K(L∗),

where L = F (
√

d). As in the proof of the 7.9, σF (
√
−λ) is locally hyperbolic. Let

M = L(
√
−λ). By the biquadratic lemma [W, Lemma 2.14], it follows that there

exist x ∈ M∗ and y ∈ F ∗ such that λ = NM/F (x)y2. It is clear that disc(σM ) = 1

and σM is locally hyperbolic. Thus by 7.8 we have Hyp(AM , σM) = M∗ and we

easily see that λy−2 ∈ Hyp(A, σ). Thus G+(A, σ) ⊆ Hyp(A, σ).F ∗2. Since by 1.1

Hyp(A, σ).F ∗2 ⊆ G+(A, σ), we conclude that G+(A, σ) = Hyp(A, σ).F ∗2. ¤

Corollary 7.11 Let vcd(F ) ≤ 2, F has SAP for quadratic towers and let PSim+(A, σ)

be of type 1Dn or 2Dn. Then PSim+(A, σ)(F )/R = 0. ¤

Since number fields satisfy the conditions of 7.11, we have

Corollary 7.12 Let F be a number field and let PSim+(A, σ) be of type 1Dn or 2Dn.

Then PSim+(A, σ)(F )/R = 0. ¤
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Remark It is a well known fact that SAP is not preserved under field extensions.

As Detlev Hoffmann has pointed out to us, there are examples of fields F with

vcd(F ) = 2 and quadratic extensions E/F such that F satisfies SAP but not E.

Thus the condition ‘SAP with respect to quadratic towers’ is not redundant in 7.10.

Hoffmann’s example is the following: One can construct a formally real field k

with the following properties: (i) k has no extension of odd degree. (ii) There is

only one ordering on k. (iii) The u-invariant of k is 2. Let α ∈ k∗\k∗2 be a sum of

two squares. Let F = k((X)) and E = F (
√

α). Then vcd(F ) = 2 and F has SAP

but not E.

Combining together the results of §4, §5 and §7, we have

Theorem 7.13 Let F be a field with vcd(F ) ≤ 2. Let G is a classical group of adjoint

type defined over F . Then,

(i) If G does not contain a factor of type Dn then G(F )/R = 0.

(ii) If F satisfies SAP for quadratic towers then G(F )/R = 0.

Proof If F does not have orderings, by 1.17 we have cd(F ) ≤ 2 and we are through

by 3.7. Thus we assume that F has orderings. As in the proof of 3.7, it suffices

the prove the theorem for absolutely simple adjoint groups defined over F . In view

of 1.1, the Assertion (i) follows from 1.4, 4.2 and 5.13. The Assertion (ii) of the

theorem follows immediately from Assertion (i) and 7.11. ¤
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