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Abstract

Let F be a field of characteristic 2. Let Ωn
F be the F -space of differ-

ential forms over F . There is a homomorphism ℘ : Ωn
F −→ Ωn

F / dΩn−1

F

given by ℘
ş
x d x1

x1
∧ · · · ∧ d xn

xn

ť
= (x2−x) d x1

x1
∧· · ·∧ d xn

xn
mod dΩn−1

F . Let

Hn+1(F ) = coker(℘). If p =≪ a1, . . . , an; b]] is an anisotropic quadratic
Pfister form over F and F (p) the function field of the Pfister quadric {p =
0}, we compute the kernel Hn+1(F (p)/F ) = ker

č
Hn+1(F ) → Hn+1(F (p))

ď

for all m. Using Kato’s correspondence between differential and quadratic
forms we compute the kernels ImWq(F (p)/F ) = ker [ImWq(F ) → ImWq(F (p))],
where Wq(F ) denotes the Witt group of quadratic forms over F and IF

is the maximal ideal of the Witt ring W (F ) of symmetric bilinear forms
over F .

Keywords: Quadratic Forms, Bilinear forms, Pfister forms, Witt ring, Differen-
tial forms.

1 Introduction

We continue in this paper our previous work [Ar-Ba1] on the behavior of quadratic
and differential forms under function field of Pfister quadrics over fields with
2 = 0. In [Ar-Ba1] we considered bilinear Pfister quadrics, and in this paper
we will treat the case of quadratic Pfister quadrics. If F is a field with 2 = 0,

∗Corresponding author
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we will denote by W (F ) the Witt ring of non singular symmetric bilinear forms
over F and by Wq(F ) the W (F )- module of non singular quadratic forms over
F . Let IF ⊂ W (F ) be the maximal ideal of even dimensional forms (see [Sa],
[Ba], [Mi] for details). For ai ∈ F ∗ = F\{0}, 1 ≤ i ≤ n, we will denote
by < a1, . . . , an > the bilinear form with diagonal Gram-matrix and entries
a1, . . . , an on the diagonal. The quadratic form x2 + xy + ay2 will be denoted
by [1, a], a ∈ F . The maximal ideal IF ⊂ W (F ) is additively generated by the
forms ≪ a ≫=< 1, a >, a ∈ F ∗, so that the powers In

F are generated by the n-
fold bilinear Pfister forms ≪ a1, . . . , an ≫=≪ a1 ≫ · · · ≪ an ≫, ai ∈ F ∗. The
submodules InWq(F ) of Wq(F ) are generated by the n-fold quadratic Pfister
forms ≪ a1, . . . , an; a]] =≪ a1, . . . , an ≫ ·[1, a]. The graded objects In

F /In+1
F ,

resp. InWq(F )/In+1Wq(F ) will be denoted by In
F , resp. InWq(F ).

Let p be an anisotropic bilinear or quadratic n-fold Pfister form. Let F (p)
denote the function field of the quadric {p = 0} over F . In [Ar-Ba1] we computed

the kernels ker
[

ImWq(F ) −→ ImWq(F (p))
]

if p is a bilinear n-fold Pfister form

for all m ≥ 0. In this paper we will compute these kernels if p is a quadratic
n-fold Pfister form. The bilinear case implies the quadratic case for m ≤ n,
as it is shown in [Ar-Ba1]. Although the methods are similar, the arguments
we need in the latter case are much more delicate. Actually we will compute
the absolute kernels ker [ImWq(F ) −→ ImWq(F (p))] by a trick used in [Ar-Ba2]
(see the statements below).

As in [Ar-Ba1] we will use Kato’s correspondence between differential forms
and quadratic forms. We will work with differential forms and then translate
the results into the language of quadratic forms. Let us first introduce briefly
some notations and results. If Ω1

F denotes the F -vector space generated by the
symbols d a, a ∈ F , with the relations d(a + b) = d a + d b, d(ab) = b d a +

a d b, then let Ωn
F =

n
∧

Ω1
F and d : Ωn

F −→ Ωn+1
F be the differential operator

d(xd x1 ∧ · · · ∧ d xn) = dx ∧ d x1 ∧ · · · ∧ d xn. Then d2 = 0 and d extends the

derivation d : F −→ Ω1
F . The space Ω∗

F =
∞
⊕

n=0
Ωn

F (Ω0
F = F ) is a Z-graded

algebra with the exterior multiplication ∧ : Ωn
F × Ωm

F −→ Ωn+m
F . The usual

Artin-Schreier operator ℘ : F −→ F , ℘(x) = x2 − x extends to a well defined
homomorphism

℘ : Ωn
F −→ Ωn

F / d Ωn−1
F

through

℘

(

x
d x1

x1
∧ · · · ∧

d xn

xn

)

= (x2 − x)
d x1

x1
∧ · · · ∧

d xn

xn
.

Let νF (m) = ker(℘), Hm+1(F ) = coker(℘), so that

0 −→ νF (m) −→ Ωm
F −→ Ωm

F / dΩm−1
F −→ Hm+1(F ) −→ 0

is exact. The groups νF (n) act on the groups Hm+1(F ) by exterior multiplica-
tion of forms

∧

: νF (n) × Hm+1 −→ Hn+m+1(F ).
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These groups behave functiorially with respect to field extensions. If F →֒ L
is a field extension we will denote by νL/F (m), resp. Hm+1(L/F ), the kernels
ker(νF (m) −→ νL(m)), resp. ker(Hm+1(F ) −→ Hm+1(L)). A basic lemma due
to Kato and stated below shows that νF (m) is additively generated by the pure
logarithmic differential forms d x1

x1
∧ · · · ∧ d xn

xn
, xi ∈ F ∗. Recall that a 2-basis

of F is a subset B = {ai, i ∈ I} such that the elements {aε =
∏

i∈I

aεi , ε =

(εi)i∈I , εi ∈ {0, 1}, εi = 0 for almost all i ∈ I} form a F 2-basis of F . Then or-

dering I, it is easy to see that for any n ≥ 1, {
d ai1

ai1
∧ · · · ∧

d ain

ain
, i1 < · · · < in}

is a F -basis of Ωn
F . Using such a basis we can define a B-depending Artin-

Schreier operator ℘ : Ωn
F −→ Ωn

F , ℘
(

∑

i1<···<in
ci1,··· ,in

d ai1

ai1
∧ · · · ∧

d ain

ain

)

=
∑

i1<···<in
℘ (ci1,··· ,in

)
d ai1

ai1
∧ · · ·∧

d ain

ain
. This operator ℘ is modulo d Ωn−1

F , well

defined, and we will use it some times when the 2-basis B is given. Moreover if we

set for η =
∑

i1<···<in
ci1,··· ,in

d ai1

ai1
∧ · · · ∧

d ain

ain
, η[2] =

∑

i1<···<in
c2
i1,··· ,in

d ai1

ai1
∧

· · · ∧
d ain

ain
, we get ℘(η) = η[2] − η. In fact the square operation η[2] is

well defined modulo d Ωn−1
F . Using this notation we can write Hm+1(F ) =

Ωm
F /

(

℘Ωm
F + d Ωm−1

F

)

. Another important operator on differential forms is the
Cartier operator. Given a 2-basis B ={ai, i ∈ I} of F we define

[Ωn
F ]

2
= {η[2]| η ∈ Ωn

F }

which is the subgroup of squares of Ωn
F (with respect to B). In [Ca] it is

shown that the space Zn
F = ker(d) ⊂ Ωn

F of closed n-forms satisfies Zn
F =

[Ωn
F ]

2 ⊕

d Ωn−1
F . Then we define the Cartier operator

C : Zn
F −→ Ωn

F

by
C(η[2] + dω) = η

C is well defined, and independent of the 2-basis B. This operator satisfies the
following rules:

• C

(

a2 d b

b

)

= a
d b

b
for all a, b ∈ F ∗

• C (d η) = 0 for all η ∈ Ωn−1
F

• C
(

a2w
)

= aw for all w ∈ Zn
F

• C (w ∧ λ) = C (w) ∧ C (λ) for all w ∈ Zn
F , λ ∈ Zm

F .

The elements of νF (n) are characterized by the following properties: for any
η ∈ Ωn

F it holds

η ∈ νF (n) if and only if η ∈ Zn
F and C(η) = η.

Moreover for η ∈ Ωn
F

η ∈ d Ωn−1
F if and only if η ∈ Zn

F and C(η) = 0.
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We will use these properties thoroughly in this paper without mentioning
any source. Let us state now Kato’s result (see [Ka]). To this end we need some
notation. Let B be a fixed 2-basis and take any fixed ordering on I. For any
n ≥ 1, let Σn,F denote the set of functions σ : {1, . . . , n} −→ I with σ(i) < σ(j)
whenever i < j. We order Σn,F lexicographically. For any α ∈ Σn,F we denote

by d aα

aα
the form

d aα(1)

aα(1)
∧ · · · ∧

d aα(n)

aα(n)
. Thus {daα

aα
, α ∈ Σn,F} is a F -basis of

Ωn
F . Let Ωn

F,α be the subspace generated by the forms
d aβ

aβ
, β ≤ α and Ωn

F,<α

the subspace generated by
d aβ

aβ
with β < α. For any i ∈ I we will also denote

by Fi the subfield F 2(aj | j ≤ i) and by F<i the subfield F 2(aj | j < i). Thus
Fi = F<i(ai). (If i0 is the first element in I, then F<i0 = F 2). Kato’s lemma
(see [Ka]) can be stated as follows:

Lemma (Kato [Ka]) Fix α ∈ Σn,F , y ∈ F and assume ℘(y d aα

aα
) ∈ Ωn

F,<α +

d Ωn−1
F . Then there exist v ∈ Ωn

F,<α and ci ∈ F ∗
α(i), 1 ≤ i ≤ n, such that

y
daα

aα
= v +

d c1

c1
∧ · · · ∧

d cn

cn
.

This implies in particular, that any η ∈ νF (n) can be written as

η =
∑

β≤α

εβ
d fβ

fβ

for some α ∈ Σn,F , fβ(i) ∈ F ∗
β(i), εβ ∈ {0, 1} and

d fβ

fβ
=

d fβ(1)

fβ(1)
∧ · · · ∧

d fβ(n)

fβ(n)
.

In [Ar-Ba2] we have shown the following result, which we quote here for the
sake of completeness, since we will use it several times in the future.

Lemma 1.1 Let B = {ai, i ∈ I} be a 2-basis of F with a given ordering on I.

Let α ∈ Σn,F and let ω =
∑

γ≤α cγ
d aγ

aγ
∈ Ωn

F be a differential form with cα 6= 0.

If ω ∈ d Ωn−1
F , then there exist elements Mi ∈ F<α(i), 1 ≤ i ≤ n such that

cα = aα(1)M1 + · · · + aα(n)Mn.

After these preliminaries we proceed now to formulate our main result. Let
p =≪ a1, . . . , an; b]] be an anisotropic quadratic n-fold Pfister form over F .
Since we can alter b modulo ℘(F ) we may assume b ∈ F 2. Moreover since
≪ a1, . . . , an ≫ is anisotropic, a1, . . . ,an are part of a 2-basis of F . Let F (p)
be the function field of the quadric {p = 0} over F . Then the main result in
this paper is

Theorem 1.2 For all m ≥ 0 it holds

Hm+1(F (p)/F ) =







0 if m < n

νF (m − n) ∧ bda1

a1
∧ · · · ∧ d an

an
if m ≥ n.
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This result follows easily from (4.1) (5.4) in [Ar-Ba1] for n = 0 and for
m ≤ n, n ≥ 1. Thus we can assume n ≥ 1 and m ≥ n. Using Kato’s
correspondence (1.2) reads

Theorem 1.3 For all m, n ≥ 0

ImWq(F (p)/F ) =







0 if m < n

Im−n
F · p if m ≥ n.

We give now the full graded version of this result

Theorem 1.4 Let p =≪ a1, . . . , an; b]] be an anisotropic quadratic n-fold Pfis-
ter form over F . Then for all m ≥ 0

ImWq(F (p)/F ) =







W (F ) · p if m < n

Im−n
F · p if m ≥ n

(here we write W (F ) instead of I0
F ).

Remark 1.5 In [Ar-Ba1] we computed ImWq(F (φ)/F ) for φ =≪ a1, . . . , an ≫.
The corresponding full graded version of the main result of [Ar-Ba1] is now

ImWq(F (φ)/F ) =







φ · Wq(F ) if m < n

φ · Im−nWq(F ) if m ≥ n
(1.6)

Since the proofs of (1.4) and (1.6) are very similar and rely on the same
principle, we will derive only (1.4) from (1.3).

Proof of (1.4). Let p =≪ a1, . . . , an; b]] be anisotropic. Let us first assume
that the field F has a finite 2-basis B = {a1, . . . , aN}. Then (see [Mi]) IN+1

F = 0.
Take q ∈ ImWq(F (p)/F ) i.e. q ∈ ImWq(F ) and q ⊗ F (p) ∼ 0. Assume q 6= 0.

Then q ∈ ImWq(F (p)/F ) and hence if m ≥ n, q ∈ Im−n · p, i.e. q = φ1p + q1

with φ1 ∈ Im−n
F and q1 ∈ Im+1Wq(F ). Since q⊗F (p) = 0, p⊗F (p) = 0 it follows

q1 ⊗ F (p) = 0. Thus q1 = φ2p + q2 with φ2 ∈ Im+1−n
F and q2 ∈ Im+2Wq(F ).

Iterating this procedure M ≥ N +1−m times and using IN+1 = 0 we arrive at
an equation q = (φ1 + φ2 + · · ·+φM )p ∈ Im−n

F · p. This proves the claim in this
case. In the general case we have the relation q ⊗ F (p) = 0 and this relation
involves finitely many elements a1, . . . , aN ∈ B. Let B0 = {a1, . . . , aN} ⊂ B
and set F0 = F 2(a1, . . . , aN ). Then there exist forms q0, p0 over F0, p0 =≪
a1, . . . , an; b]], such that q = q0 ⊗ F , p = p0 ⊗ F and q0 ⊗ F (p0) = 0. From the
first part we conclude q0 ∈ Im−n

F0
· p0, and extending scalars to F we obtain

q ∈ Im−n
F · p. This proves the claim in the case m ≥ n. If m < n, then in

the first case we would obtain q ∈ Im+1Wq(F ) and iterating, we may assume
m = n, i.e. q ∈ W (F ) · p. The rest of the proof is the same. This concludes the
proof of (1.4) and also of (1.6).
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We proceed now to describe briefly the plan of the paper. In section 2 we
reduce the computation of Hm+1(F (p)/F ) to study for a form w ∈ Ωm

F the
equation w = ℘u+d v+Tη, where u ∈ Ωm

F ⊗M , v ∈ Ωm−1
F ⊗M , η ∈ νM (m)

and T is the polynomial (2.1). Here M denotes the field F
(

X2
µ, Y 2

µ , µ ∈ Sn

)

,
Xµ, Yµ are variables for µ ∈ Sn = set of maps µ : {1, . . . , n} → {0, 1}, µ 6= 0
(see (2.8)).

The main idea is now to reduce this equation to one without variables, so
that during this process the form η changes and successively it gets factors of

the form
d ai

ai
, thereby at the end of the reduction process we get an equation

w = ℘u0 + d v0 + b
d a1

a1
∧ · · · ∧

d an

an
∧ ξ

with ξ ∈ νF (m−n), u0, v0 ∈ ΩF , which is the content of theorem (1.2). This
reduction process is achieved in section 4 and 6. Section 3 is of preparatory
character (see also [Ar-Ba1]), and we analyze here the decomposition in partial
fractions (= p-components) of forms contained in νN(Y 2)(m) for some field N ,
where Y is a variable over N (see (3.6)). We show that the p−components are
also forms contained in groups ν•(m). In section 5, we characterize the forms
η ∈ νN(Y 2)(m) with the property that aση ∈ d Ωm−1

M(Y 2) for all σ ≤ τ ∈ Sn,

where a1, . . . , an ∈ M are part of a 2-basis of N (see (5.1)). This property,
called good shape, plays a crucial role during the reduction process done in
section 6 (see main lemma (6.1)).

2 First reduction step in the proof of (1.2)

Let F be a field with 2 = 0 and let p =≪ a1, . . . , an; b]] be an anisotropic
quadratic n-fold Pfister form over F with function field F (p). We may assume
without restriction b ∈ F 2. Let Sn be the set of maps µ : {1, . . . , n} −→ {0, 1},
µ 6= 0, and let B be a 2-basis of F , which we may assume contains a1, . . . , an

as the first elements in some ordering of the index set I of B. Let Σn,F be
the set of maps σ : {1, . . . , n} −→ I with σ(i) < σ(j) whenever i < j. For
any µ ∈ Sn we take a pair of independent variables Xµ, Yµ and we form the
field L = F (Xµ, Yµ, µ ∈ Sn). For m < n we will identify Sm ⊂ Sn in the
obvious way. Let T0 = b+

∑

µ∈Sn
aµY 2

µ (b+Xµ +X2
µ) be the generic polynomial

representing the pure part of p. Here aµ = a
µ(1)
1 · · · a

µ(n)
n . Then F (p) = L(z0)

with z2
0 + z0 = T0. We can change T0 modulo ℘F [Xµ, Yµ, µ ∈ Sn], so that we

will work in this paper with the polynomial

T = b +
∑

µ∈Sn

aµY 2
µ (b + X2

µ) +
∑

µ∈Sn

(

aµY 2
µ

)2
X2

µ

=
∏

µ∈Sn

(

1 + aµY 2
µ

) (

b + aµY 2
µ X2

µ

)

(2.1)

and F (p) = L(z), z2 + z = T .
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The 2-basis B of F extends to the 2-basis BL = B ∪{Xµ, Yµ, µ ∈ Sn} of
L, where we order the X ′s, Y ′s lexicographically. Since F (p)/L is a separable
quadratic extension then BL remains a 2-basis of F (p). This is consequence of
the following

Lemma 2.2 If E/F is a finite separable extension, then any 2-basis of F is
also a 2-basis of E. Thus Ω∗

E = Ω∗
F ⊗F E.

In particular we obtain Ωn
F (p) = Ωn

L ⊗L F (p) for all n ≥ 1, and BF ∪{Xµ,

Yµ, µ ∈ Sn} is 2-basis of F (p).
Take now w ∈ Hm+1(F (p)/F ), i.e. w ∈ Ωm

F satisfies

w = ℘(u) + d v (2.3)

with u ∈ Ωm
F (p), v ∈ Ωm−1

F (p) . Thus u, v are forms generated over L(z) = L + Lz

by the differentials d ai, i ∈ I, dXµ, dYµ, µ ∈ Sn.

Lemma 2.4 The forms u, v in (2.3) can be chosen in Ωm
F ⊗ F (X2

µ, Y 2
µ , µ ∈

Sn)(z).

Proof. Let us represent w, u and d v in the 2-basis BL = {bj, j ∈ J} of F (p)

introduced above, i.e. they are generated by the differentials d ai

ai
, ai ∈ BF ,

d Xµ

Xµ
,

d Yµ

Yµ
over F (p). Let γ ∈ Σm,F be the maximal multi-index occurring in w, and

δ ∈ Σm,L the maximal one occurring in u. Then the maximal multi-index of d v
is ≤ max{γ, δ}. If γ < δ then we have from (2.3)

℘

(

uδ
d bδ

bδ

)

≡ 0 mod
(

d Ωm−1
F (p) + Ωm

F (p),<δ

)

(2.5)

where uδ
d bδ

bδ
is the maximal (6= 0) element in the expansion of u. Using Kato’s

lemma we can write

uδ
d bδ

bδ
=

d f1

f1
∧ · · · ∧

d fm

fm
+ u′

with fi ∈ F (p)δ(i), 1 ≤ i ≤ m, and u′ ∈ Ωm
F (p),<δ. Thus we get

w = ℘u + d v

with u ∈ Ωm
F (p),<δ. Hence we can assume γ = δ. In particular u belongs to

Ωm
F ⊗ F (p) and let wγ

d aγ

aγ
be the maximal term in w as well as uγ

d aγ

aγ
the

maximal term of u. Using lemma ( 3.3) of [Ar-Ba2] we conclude

wγ = ℘uγ +

m
∑

i=1

aγ(i)Mγ(i) (2.6)

with Mγ(i) ∈ F (p)<γ(i), 1≤ i ≤ m. In particular Mγ(i) is contained in F (X2
µ, Y 2

µ )(z)
for all 1 ≤ i ≤ m. Then (2.6) implies ℘uγ ∈ F (X2

µ, Y 2
µ )(z) and hence also

7



uγ ∈ F (X2
µ, Y 2

µ )(z), i.e. uγ does not contain odd powers of Xµ, Yµ in its 2-basis

expansion. Thus ℘(u) = ℘(uγ)
d aγ

aγ
+ ℘(u<γ) with u<γ ∈ Ωm

F (p),<γ and ℘(uγ) ∈

F (X2
µ, Y 2

µ )(z). We claim now that there is a decomposition v = vγ + v<γ ,
where d vγ is free from d Xµ, dYµ’s and its coefficients lie in F (X2

µ, Y 2
µ )(z), and

d v<γ ∈ Ωm−1
F (p),<γ . To see this we set d v = hγ

d aγ

aγ
+ v′ with v′ ∈ Ωm

F (p),<γ .

Using lemma (3.2) of [Ar-Ba2] again, we have hγ =
∑m

i=1 aγ(i)Mγ(i) with
Mγ(i) ∈ F (X2

µ, Y 2
µ )(z) for 1 ≤ i ≤ m (see above remarks). Thus

d v =

(

m
∑

i=1

aγ(i)Mγ(i)

)

d aγ(1)

aγ(1)
∧ · · · ∧

d aγ(m)

aγ(m)
+ v′

=

m
∑

i=1

aγ(i)Mγ(i)

d aγ(1)

aγ(1)
∧ · · · ∧

d aγ(i)

aγ(i)
∧ · · · ∧

d aγ(m)

aγ(m)
+ v′

=

m
∑

i=1

d

(

aγ(i)Mγ(i)

d aγ(1)

aγ(1)
∧ · · · ∧

i
∨ ∧ · · · ∧

d aγ(m)

aγ(m)

)

+ aγ(i)Mγ(i)

d aγ(1)

aγ(1)
∧ · · · ∧

d Mγ(i)

Mγ(i)
∧ · · · ∧

d aγ(m)

aγ(m)
+ v′.

Since λ = aγ(i)Mγ(i)
d aγ(1)

aγ(1)
∧ · · · ∧

d Mγ(i)

Mγ(i)
∧ · · · ∧

d aγ(m)

aγ(m)
+ v′ ∈ Ωm−1

F (p),<γ and

from the last relation we see that λ is exact, we conclude λ = d(v<γ) for some
v<γ ∈ Ωm−1

F (p) . Hence we have d v = d vγ + d(v<γ), where

vγ =
m

∑

i=1

aγ(i)Mγ(i)

d aγ(1)

aγ(1)
∧ · · · ∧

d aγ(i−1)

aγ(i−1)
∧

d aγ(i+1)

aγ(i+1)
∧ · · · ∧

d aγ(m)

aγ(m)

belongs to Ωm−1
F ⊗ F (X2

µ, Y 2
µ )(z). Inserting all of this in (2.3) it follows

w + ℘(uγ) + d vγ = ℘(u<γ) + d (v<γ)

where the left hand side of this equation is in Ωm
F ⊗F (X2

µ, Y 2
µ )(z). Repeating the

above arguments for this relation we finally arrive at an equation w = ℘(u)+d v
in Ωm

F ⊗ F (X2
µ, Y 2

µ )(z) which proves the lemma.
Let us now consider the equation (2.3) with u, v ∈ Ωm

F ⊗ F (X2
µ, Y 2

µ )(z).
We write u = u0 + u1z, v = v0 + v1z with u0, u1 ∈ Ωm

F ⊗ F (X2
µ, Y 2

µ ), v0, v1 ∈

Ωm−1
F ⊗ F (X2

µ, Y 2
µ ). Then

w = ℘(u0 + u1z) + d(v0 + v1z)

= ℘u0 + Tu
[2]
1 + zu

[2]
1 + zu1 + d v0 + z d v1 + v1 ∧ d T

i.e.

w = ℘u0 + d v0 + Tu
[2]
1 + v1 ∧ d T

0 = ℘u1 + d v1.
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The second equation implies (with L = F (Xµ, Yµ))

u1 ∈ νL(m) ∩ Ωm
F ⊗ F (X2

µ, Y 2
µ )

i.e.
u1 ∈ νF (X2

µ,Y 2
µ )(m)

according to lemma (2.9) below. Inserting u
[2]
1 = u1 + d v1 in the first equation,

we get
w = ℘u0 + d v0 + Tu1 + T d v1 + v1 ∧ d T

and we finally obtain an equation for w ∈ Ωm
F

w = ℘u + d v + Tη (2.7)

with u ∈ Ωm
F ⊗F (X2

µ, Y 2
µ ), v ∈ Ωm−1

F ⊗F (X2
µ, Y 2

µ ) and η ∈ νF (X2
µ,Y 2

µ )(m). Here

we have set u = u0, v = v0 + Tv1, η = u1. Equation (2.7) will be the basic
relation which will be used in the proof of theorem (1.2). Thus we summarize
the above results in

Proposition 2.8 Let w ∈ Hm+1(F ). Then w ∈ Hm+1(F (p)/F ) if and only if
there exist u ∈ Ωm

F ⊗ F (X2
µ, Y 2

µ ), v ∈ Ωm−1
F ⊗ F (X2

µ, Y 2
µ ) and η ∈ νF (X2

µ,Y 2
µ )(m)

such that
w = ℘u + d v + Tη.

In the proof of the above result we have used the following

Lemma 2.9

νF (Xµ,Yµ)(m) ∩ Ωm
F ⊗ F (X2

µ, Y 2
µ ) = νF (X2

µ,Y 2
µ )(m).

Proof. The contention ⊇ is trivial. Write L = F (Xµ, Yµ) and M = F (X2
µ, Y 2

µ ).
Take now λ ∈ νL(m) ∩ Ωm

F ⊗ F (X2
µ, Y 2

µ ), and write

λ = cγ
d aγ

aγ
+ λ<γ

with λ<γ ∈ Ωm
F,<γ ⊗ M . Since ℘λ ∈ d ΩL, it follows

℘(cγ)
d aγ

aγ
∈ d Ωm−1

L + Ωm
L,<γ .

Applying now Kato’s lemma, we obtain

cγ
d aγ

aγ
=

d fγ

fγ
+ λ′

<γ

where fγ(i) ∈ L2(aj , j ≤ γ(i)), 1 ≤ i ≤ m and λ′
<γ ∈ Ωm

L,<γ . Thus

λ =
d fγ

fγ
+ λ<γ + λ′

<γ .

9



In particular, since
d fγ

fγ
∈ νM (m), we get λ′ = λ<γ + λ′

<γ ∈ νL(m) ∩ ΩF ⊗ M ,

but now λ′ ∈ ΩL,<γ is in a lower filtration. We proceed with λ′ as above and
after finitely many steps we obtain λ ∈ νF (X2

µ,Y 2
µ )(m). This proves the lemma.

Similarly we can prove the following result, which we will need later.

Lemma 2.10 Let F ⊆ M be fields and Y a variable over M . Assume d M ⊆
Ω1

F ⊗ M . Then,
νM(Y 2)(m) ∩ Ωm

F M [Y 2] = νM (m)

(we will apply this result for M = F (X2
µ, Y 2

µ ) for certain variables Xµ, Yµ, µ ∈
Sn).

Proof. Since dM ⊆ Ω1
F ⊗ M , the contention ⊇ is clear. Let us show now ⊆.

Let η ∈ νM(Y 2)(m) ∩ Ωm
F M [Y 2] and write

η =
∑

γ

d fγ(1)

fγ(1)
∧ · · · ∧

d fγ(m)

fγ(m)
=

∑

α

cα
d aα

aα

with cα ∈ M [Y 2], fγ(i) ∈ Mγ(i)(Y
2), 1 ≤ i ≤ m (according to Kato’s lemma).

Choose γ to be the maximal multi-index on the left hand side. Expanding the

term d fγ/fγ , we see that d fγ/fγ =

(

m
∏

i=1

aγ(i)Dγ(i)(fγ(i))

)

/

(

m
∏

i=1

fγ(i)

)

d aγ/aγ+terms

of lower filtration. On the right the maximal term is cγ d aγ/aγ , thus we obtain

cγ =

m
∏

i=1

aγ(i)Dγ(i)(fγ(i))

m
∏

i=1

fγ(i)

with cγ ∈ M [Y 2] and all fγ(i) ∈ M [Y 2]. Moreover we can assume that the fγ(i)

have only irreducible factors of multiplicity one. We want to show fγ(i) ∈ M
for all i. Let k = max{i | fγ(i) /∈ M} and consider an irreducible monic factor
p of fγ(k) (which has without restriction multiplicity one). From the lemma
(2.11) below, we know that filtration(p)=γ(k) =filtration of fγ(k). In particular
(loc.cit.) p ∤ fγ(i) for all i < k. Thus (2.11) implies p|Dγ(k)(fγ(k)), because
filtration(Dγ(i)fγ(i)) ≤ filtration(fγ(i)) and for i > k, all fγ(i) ∈ M . Let us
write fγ(k) = p · h with (p, h) = 1 in M [Y 2]. Then Dγ(k)(fγ(k)) = pDγ(k)(h) +
hDγ(k)(p) and hence p|Dγ(k)(p) which is a contradiction since p being monic,
deg(Dγ(k)(p)) < deg(p). This proves fγ(i) ∈ M for all i and the lemma follows.

Lemma 2.11 Let f(Y ) ∈ Ml[Y ] be a polynomial with filtration l and whose
irreducible monic factors have multiplicity 1. Assume that all of these factors
have filtration ≥ l. Then all such factors have exactly filtration = l.

10



Proof. Let p|f be a monic irreducible factor such that filtration(p) = k is
maximal among all such factors. Write p = p0 + akp1 with fil(p0), fil(p1) < k.
By assumption k ≥ l. We have (p0 + akp1)h = f in M [Y ], where fil(f) = l ≤ k.
Then fil(h) ≤ k, otherwise we get a contradiction. Let r = fil(h) ≤ k, and set
h = h0 + arh1, fil(hi) < r, i = 1, 2. Obviously p1, h1 6= 0. Assume now k > l.
We have

f = (p0 + akp1)(h0 + arh1)

= p0h0 + akp1h0 + arh1(p0 + akp1).

If r < k, then the term akp1(h0 + arh1) has filtration = k, because fil(p1) < k,
and hence fil(f) = k > l, contradiction. Then necessarily r = k and we can
write

f = p0h0 + a2
kp1h1 + ak(p1h0 + h1p0).

Since fil(p1h1) < k, the last term dominates if it is 6= 0. But l < k implies

p1h0 + h1p0 = 0

and this means, since (p0, p1) = 1, that p1|h1, p0|h0 and

h1

p1
=

h0

p0
= t ∈ M [Y ]

is a certain polynomial. Thus h = t · p and hence p2|f , contradicting our
assumption on the multiplicity. This shows k = l.

3 p-components of differential forms

Our basic equation (2.7) holds in Ωm
F ⊗ F (X2

µ, Y 2
µ , µ ∈ Sn). More generally fix

some index µ ∈ Sn, and let M = F (X2
ν , Y 2

λ | ν > µ, λ ≥ µ) and set X = Xµ.
Assume that we have a form u ∈ Ωm

F ⊗ M(X2). The p-component of this form
u arise from the partial fraction decomposition in M(X) of the coefficients of
the form. We will call the subgroup Ωm

F M [X2] the integral forms and for any
irreducible monic polynomial p ∈ M [X ] set

p−∞Ωm
F M [X2] =

{

v

ps
| v ∈ Ωm

F M [X2], s ≥ 1, degX v < s degX p

}

(3.1)

if p ∈ M [X2] and

p−∞Ωm
F M [X2] =

{

w

p2s
|w ∈ Ωm

F M [X2], s ≥ 1, degX v < 2s degX p

}

if p /∈ M [X2]. Here we set degX w = 2t whenever we have w = w0 + w1X
2 +

· · · + wtX
2t, wt 6= 0 and wi ∈ Ωm

F . Then using partial fraction decomposition
in M(X) we obtain

Ωm
F M(X2) = Ωm

F M [X2] ⊕
⊕

p

p−∞Ωm
F M [X2]. (3.2)

11



It is shown in [Ar-Ba1] that this decomposition is compatible with the operators
d and ℘. If u ∈ Ωm

F M(X2), then u = u0 +
∑

p up, and the forms up (including
u0) are called the p-components of u.

Let us consider the p-decomposition of the form η ∈ νL(m) where L =
F (Xµ, Yµ, µ ∈ Sn). Assume η ∈ νM(X2)(m) where M and X are as above.
Then η = ηE +

∑

p ηp is the p-decomposition of η, ηE ∈ Ωm
F M [X2] and ηp ∈

p−∞Ωm
F M [X2]. We claim

Lemma 3.3 (i) ηE ∈ νM(X2)(m) ∩ Ωm
F M [X2] = νM (m)

(ii) ηp ∈ νM(X2)(m) ∩ p−∞Ωm
F M [X2].

Proof. We use d η = 0 (since η ∈ ν(m)) and the compatibility of the p-
decomposition with d to get from d ηE +

∑

p d ηp = 0 necessarily

d ηE = 0, d ηp = 0 for all p.

Now we apply the Cartier operator to η to obtain from η = C(η)

ηE +
∑

p

ηp = C(ηE) +
∑

p

C(ηp)

and hence

ηE = C(ηE)

ηp = C(ηp)

i.e. ηE ∈ νM (m), ηp ∈ νM(X2)(m). This proves (i) and (ii).

The equality
νM(X2)(m) ∩ Ωm

F M [X2] = νM (m)

has been shown in (2.10). We give here a shorter proof of it. The contention ⊇
is clear. Let α ∈ νM(X2)(m)∩Ωm

F M [X2] and write α = α0 +α1X
2+ · · ·+αsX

2s

with αi ∈ Ωm
F M . From dα = 0 it follows dαi = 0 for all 0 ≤ i ≤ s and the

relation C(α) = α implies

α0 + α1X
2 + · · · + αsX

2s = C(α0) + C(α1)X + · · · + C(αs)X
s

which holds only if s = 0, α = α0 ∈ Ωm
F M . But dα0 = 0 and C(α0) = α0 imply

α0 ∈ νM (m). This shows (2.10) again.

Let us now study the intersection

νM(X2)(m) ∩ p−∞Ωm
F M [X2] (3.4)

and take ηp contained in it.

We can write ηp = ξ
p2t or ηp = ξ

p2t+1 where ξ ∈ Ωm
F M [X2], p ∤ ξ and

deg ξ < 2t deg p, resp. deg ξ < (2t + 1) deg p, with t ≥ 1, resp. t ≥ 0. We set

ξ = ξ0 + ξ1X
2 + · · · + ξsX

2s
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with ξi ∈ Ωm
F M , 0 ≤ i ≤ s, and we choose s and t in the above representations

to be minimal. We have d ηp = 0, C(ηp) = ηp because ηp ∈ νM(X2). The first
equation implies d ξi = 0 for all i and the second one means

C(ξ0) + C(ξ1)X + · · · + C(ξs)X
s

pt
=

ξ0 + ξ1X
2 + · · · + ξsX

2s

p2t

and this implies s = 0, t = 0 i.e. ηp = 0. Thus only the second case can occur.

We have ηp =
pξ

p2t+2
and from d ηp = 0, C(ηp) = ηp it follows d (pξi) = 0 for all

i and
C(pξ)

pt+1
=

ξ

p2t+1
.

Thus ξ = ptC(pξ). Since p ∤ ξ we conclude t = 0, i.e.

ηp =
ξ

p
(3.5)

with ξ ∈ Ωm
F M [X2], degξ < deg p. Thus we have shown that the p-component

ηp of a form η ∈ νM(X2)(m) is of the form (3.5). Furthermore we claim that
ηp 6= 0 only if p ∈ M [X2]. Assume p /∈ M [X2] and set p = p0 + Xp1 with p0,
p1 ∈ M [X2], p1 6= 0. Then ξ = p0ηp + Xp1ηp. Since ηp ∈ ΩF M(X2), it follows
Xp1ηp ∈ ΩF M(X2) with p1 ∈ M [X2]. This is impossible if p1 6= 0. Therefore
p = p0 ∈ M [X2]. Summing up these results we have shown:

Lemma 3.6 Let η ∈ νM(X2)(m). Then the p-decomposition η = ηE +
∑

ηp of
η satisfies

(i) ηE ∈ νM (m)

(ii) Only for p ∈ M [X2] we may have ηp 6= 0, and then

ηp =
ξ

p

with ξ ∈ Ωm
F M [X2], deg ξ < deg p. Moreover ηp ∈ νM(X2)(m), d(pξ) = 0

and C(pξ) = ξ.

Let us return to the basic equation

w = ℘u + d v + Tη

in Ωm
F F (X2

µ, Y 2
µ ) = Ωm

F M(X2), where X = X1 and M = F (X2
ν , Y 2

µ , µ, ν ∈
Sn, ν > 1). We insert the p-decomposition of the forms involved in this equation
and we obtain as in [Ar-Ba1]

w = ℘uE + d vE + TηE +
∑

p

Ep (3.7)

Ep = ℘up + d vp + Tηp (3.8)
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where the forms Ep belong to ΩF M [X2] and arise from the multiplication of
T with ηp. For all irreducible polynomials p ∈ M [X ]\M [X2] we have shown
ηp = 0 and hence Ep = ℘up + d vp. Since ℘, d are compatible with the p-
decomposition, we have in this case Ep = 0. Thus in (3.7) only polynomials
p ∈ M [X2] do appear. The main idea is now to get rid of the forms Ep in the
equation (3.7), and this will be accomplished in the last section of this paper.

4 Second reduction step in the proof of the main
theorem

We keep the same notation as in the last section. Thus in the basic equations
(3.7), (3.8) only polynomials p ∈ M [X2] occur. Since p is monic and irreducible,
we have p(0) 6= 0 for all such p’s. Therefore we can specialize in these equations
X −→ 0 and we obtain

w = ℘u0 + d v0 + T1η0 (4.1)

where u0, v0 ∈ ΩF M and η0 ∈ νM (m). Here T1 is now the polynomial b +
a1bY

2
1 +

∑

µ>1 aµY 2
µ (b+X2

µ +aµY 2
µ X2

µ). Notice that the specialization X −→ 0
is compatible with the operators ℘ and d. Proceeding with the other variables
Xµ in the same way as above, we finally obtain an equation

w = ℘u + d v + Tη (4.2)

with u ∈ Ωm
F F (Y 2

µ , µ ∈ Sn), v ∈ Ωm−1
F F (Y 2

µ , µ ∈ Sn), η ∈ νF (Y 2
µ )(m) and

T = b



1 +
∑

µ∈Sn

aµY 2
µ



 (4.3)

This equation will be from now on our basic equation and our goal is now to
eliminate in an appropriate way the variables Yµ. Thus we have shown

Proposition 4.4 If w ∈ Hm+1(F (p)/F ), then there exist u ∈ Ωm
F F (Y 2

µ , µ ∈

Sn), v ∈ Ωm−1
F F (Y 2

µ , µ ∈ Sn) and η ∈ νF (Y 2
µ )(m) such that (4.2) holds, where

T is given by (4.3).

During the process of elimination of the variables Yµ, we will see that the
following type of conditions on the forms η ∈ ν(m) appear:

For some τ ∈ Sn and E ⊂ F (Y 2
µ , µ ∈ Sn) intermediate field (to be later

specified) one has η ∈ νE(m) and aση ∈ d Ωm−1
E for all σ ≤ τ . We will in the

next section study this property and characterize these forms for some specific
subfields of F (Y 2

µ , µ ∈ Sn).

14



5 Forms in good shape

Let N be some field (with 2 = 0) and a1, . . . , an ∈ N elements contained
in a 2-basis of N . Let Y be a variable over N and fix some τ ∈ Sn. Set
tτ = t = max{i| τ(i) = 1}. Then

Proposition 5.1 Let η ∈ νN(Y 2)(m) be such that aση ∈ d Ωm−1
N(Y 2) for all σ ≤ τ .

Then η has the form

η =
d a1

a1
∧ · · · ∧

d at−1

at−1
∧

∑

γ

d (at + dγ)

at + dγ
∧

d fγ(t+1)

fγ(t+1)
∧ · · · ∧

d fγ(m)

fγ(m)

where dγ =
∑

α aαc2
α,γ, cα,γ ∈ N(Y ), α ∈ St−1 such that α + t > τ , fγ(i) ∈

Nγ(i)[Y
2], i ≥ t + 1, γ ∈ Σn with γ(1) = 1, . . ., γ(t) = t. (Here α + t means

that one adds 1 at the t-th place of α). Conversely, each form of the above type
satisfies aση ∈ d Ω for all σ ≤ τ .

As a special case τ = max{σ|σ ∈ Sn} we get t = n and the set α ∈ Sn−1

with α + n > τ is empty. Thus we get the useful

Corollary 5.2 If η ∈ νN(Y 2)(m) satisfies

aση ∈ d Ωm−1
N(Y 2)

for all σ ∈ Sn, then

η =
d a1

a1
∧ · · · ∧

d an

an
∧ ξ

with some ξ ∈ ν(m − n).

Proof of (5.1). Let first consider the case τ = (1, 0, . . . , 0) = first element in
Sn. Then t = 1. By assumption a1η ∈ d Ω, which implies d a1 ∧ η = 0 (since
d η = 0) and hence η = d a1

a1
∧ ξ with some ξ ∈ Ωm−1. From Kato’s lemma we

can write

η =
∑

γ

d fγ(1)

fγ(1)
∧ · · · ∧

d fγ(m)

fγ(m)

with γ(1) = 1 for all γ, i.e. fγ(1) = n2
γa1+m2

γ and nγ 6= 0 in N [Y ]. For simplicity
replace fγ(1) by n−2

γ fγ(1) so that we can assume nγ = 1 and mγ ∈ N(Y ). Then

η =
∑

γ

d
(

a1 + m2
γ

)

a1 + m2
γ

∧ ξγ

where ξγ =
d fγ(2)

fγ(2)
∧ · · · ∧

d fγ(m)

fγ(m)
. Hence

a1η =
∑

γ

(

a3
1 + a2

1m
2
γ

)

(

a1 + m2
γ

)2

d a1

a1
∧ ξγ .
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The form
∑

γ
a3
1

(a1+m2
γ)

2
d a1

a1
∧ ξγ is exact, so that our hypothesis implies

∑

γ

a2
1m

2
γ

(

a1 + m2
γ

)2

d a1

a1
∧ ξγ ∈ d Ωm−1

N(Y 2).

Applying the Cartier operator to this form, we obtain

∑

γ

a1mγ
(

a1 + m2
γ

)

d a1

a1
∧ ξγ = 0.

But the elements d a1

a1
∧ ξγ belong to different filtrations for each γ, thus we

obtain
mγ = 0 for all γ

and hence η = d a1

a1
∧ ξ with ξ =

∑

γ ξγ ∈ ν(m − 1). This proves our assertion
in the case τ = (1, 0, . . . , 0).

Assume now our assertion for all σ ≤ τ , τ ∈ Sn. Let δ be the next element
in Sn. We want to show the assertion for δ. Assume t = tτ = max{i| τ(i) = 1}
and let tδ = max{i| δ(i) = 1}. Then tδ = t or tδ = t + 1. First case: tδ = t.
Then δ = (. . . , 1, 0, . . .) with 1 at the t-th place. By induction we have η =
d a1

a1
∧ · · · ∧ d at−1

at−1
∧

∑

γ
d(at+dγ)

at+dγ
∧ ξγ with dγ =

∑

σ∈St−1
σ+t>τ

aσm2
σ,γ , mσ,γ ∈ N(Y ),

and ξγ =
d fγ(t+1)

fγ(t+1)
∧ · · · ∧

d fγ(m)

fγ(m)
. Thus we can write

dγ =
∑

σ∈St−1
σ+t≥δ

aσm2
σ,γ = aδ−tm2

δ−t,γ +
∑

σ∈St−1
σ+t>δ

aσm2
σ,γ

where δ− t is the element σ ∈ St−1 with σ + t = δ. Now we use aδη ∈ d Ωm−1
N(Y 2).

The form

aδη =
∑

γ

d a

a
∧

aδ d (at + dγ)

at + dγ
∧ ξγ

=
∑

γ

d a

a
∧

aδ (at + dγ) at

(at + dγ)
2

d at

at
∧ ξγ ∈ d Ωm−1

N(Y 2)

because d a ∧ d aδ−t = d a ∧ d aσ = 0 for all σ ∈ St−1. Now the terms

aδa2
t

(at + dγ)2
d a

a
∧

d at

at
∧ ξγ

are all exact, as well as the forms

aδat

∑

σ+t>δ aσm2
σ,γ

(at + dγ)
2

d a

a
∧

d at

at
∧ ξγ
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because each summand of these expressions has the form

aδ+t+σm2
σ,γ

(at + dγ)
2

d a

a
∧

d at

at

which is indeed exact, since δ + t + σ > 0 and δ + t + σ ∈ St−1. Therefore we
obtain

∑

γ

a2δm2
δ−t,γ

(at + dγ)
2

d a

a
∧

d at

at
∧ ξγ ∈ d Ωm−1

N(Y 2).

Applying the Cartier operator to this form we obtain

∑

γ

aδmδ−t,γ

(at + dγ)

d a

a
∧

d at

at
∧ ξγ ∈ 0.

Since the forms d a
a ∧ d at

at
∧ ξγ are independent, we conclude mδ−t,γ = 0 for

all γ and hence dγ =
∑

σ∈St−1
σ+t>δ

aσm2
σ,γ . This concludes the proof in this case.

We have to look at the case tδ = t + 1. This case is only possible for τ =
(1, 1, . . . , 1, 0, . . . , 0) (the last 1 at the t-th place) and δ = (0, . . . , 0, 1, 0, . . . , 0)
with 1 at the (t + 1)-th place. In this case there is no α ∈ St−1 with α + t > τ ,
hence we have by induction, because of aση ∈ d Ω for σ ≤ τ ,

η =
∑

γ

d a1

a1
∧ · · · ∧

d at−1

at−1
∧

d at

at
∧

d fγ(t+1)

fγ(t+1)
∧ · · · ∧

d fγ(m)

fγ(m)
.

Since aδ = at+1, we have still the condition at+1η ∈ d Ω. In particular d at+1 ∧
η = 0. It follows η ∈ d a1 ∧ · · · ∧ d at+1 ∧ Ωm−t−1. Comparing this with the
above expression of η, we conclude γ(t + 1) = t + 1 for all γ in the sum. Thus
fγ(t+1) ∈ Mt+1[Y

2] for all γ, i.e. fγ(t+1) = Aγ(at+1+Bγ) with Aγ , Bγ ∈ Mt[Y
2].

Since da1 ∧ · · · ∧ d at ∧ d Aγ = 0, we may assume fγ(t+1) = at+1 + Bγ . Write
now Bγ = n2

γ +
∑

aαn2
α,γ , where α runs over St with α + (t + 1) > δ. We want

to show nγ = 0 for all γ. The assumption at+1η ∈ d Ω means

∑

γ

d a1

a1
∧ · · · ∧

d at

at
∧

(at+1 + Bγ) a2
t+1

(at+1 + Bγ)
2

d at+1

at+1
∧ ξγ ∈ d Ω

with ξγ =
d fγ(t+2)

fγ(t+2)
∧ · · · ∧

d fγ(m)

fγ(m)
. A similar argument as before shows that

∑

γ

d a1

a1
∧ · · · ∧

d at

at
∧

a2
t+1n

2
γ

(at+1 + Bγ)2
d at+1

at+1
∧ ξγ

is exact. Applying the Cartier operator, we obtain

∑

γ

at+1nγ

(at+1 + Bγ)

d a1

a1
∧ · · · ∧

d at

at
∧

d at+1

at+1
∧ ξγ = 0
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and again it follows nγ = 0 for all γ. This completes the proof of our proposition.

The property assumed in the last proposition for forms η ∈ ν(m) will play
a crucial role in the proof of our main theorem. We will state this property in
the following definition.

Definition 5.3 Let E be any field with 2 = 0 and a1, . . . , an ∈ E be elements
contained in a 2-basis of E. Fix some τ ∈ Sn. Let η ∈ νE(m). We say that η
is in good shape with respect to τ (and a1, . . . , an) if

aση ∈ d Ωm−1
E

for all σ ≤ τ .

Thus proposition (5.1) characterizes forms in good shape for certain fields.

6 Last reduction step in the proof of the main

theorem

We fix the lexicographic ordering in the set Sn, and for any µ ∈ Sn let µ+ be
the next element in this ordering. Let T = T0 = b(1 +

∑

µ aµY 2
µ ) and we define

Tµ inductively by
Tµ = baµY 2

µ + Tµ+

Let M = F (Y 2
ν )ν>µ (for a given µ) and let w ∈ Ωn

F . We consider the
following assertions on w and µ:

(Aµ) There exist u ∈ Ωm
F M(Y 2

µ ), v ∈ Ωm−1
F M(Y 2

µ ) and η ∈ νM(Y 2
µ )(m) ∩

Ωm
F M(Y 2

µ ) such that
w = ℘(u) + d v + Tµη

and aση ∈ d Ω for all σ < µ.

(Bµ) There exist u ∈ Ωm
F M [Y 2

µ ], v ∈ Ωm−1
F M [Y 2

µ ] and η ∈ νM (m)∩Ωm
F M such

that
w = ℘(u) + d v + Tµη

and aση ∈ d Ω for all σ < µ.

Lemma 6.1 (Main lemma) For any µ ∈ Sn

(Aµ) =⇒ (Bµ) =⇒ (Aµ+).
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Clearly (A0) is the basic equation (4.2). Thus (6.1) implies that starting
with (A0), i.e. (4.2), we arrive at an equation (for the last element in Sn)

w = ℘u + d v + bη (6.2)

with u ∈ Ωm
F , v ∈ Ωm−1

F and η ∈ νF (m) such that aση ∈ d ΩF for all σ ∈ Sn.
Applying now corollary (5.2) we conclude η = d a1

a1
∧ · · · ∧ d an

an
∧ ξ with ξ ∈

νF (m − n). This implies the main theorem.

The rest of this section is devoted to the proof of (6.1). Let us first show
the easy part, namely (Bµ)=⇒(Aµ+). Assuming (Bµ) one easily checks that,

without restriction, u = u0 ∈ Ωm
F M and v = v0 + v2Y

2
µ with v0, v2 ∈ Ωm−1

F M ,
as well as η ∈ νM (m) ∩ Ωm

F M with aση ∈ d Ω for all σ < µ.
From

w = ℘u0 + d(v0 + v2Y
2
µ ) + (baµY 2

µ + Tµ+)η

we obtain
w = ℘u0 + d(v0) + Tµ+η

and
d(v2) = baµη.

Since b ∈ F 2, we get aµη = b−1 d(v2) ∈ d Ω, i.e. it holds aση ∈ d Ω for all
σ < µ+. This proves (Aµ+).

The hard part of the lemma is the implication (Aµ)=⇒(Bµ). Let us start
with the basic equation (i.e. (Aµ))

w = ℘u + d v + Tη

with w ∈ Ωm
F , u ∈ Ωm

F M(Y 2), v ∈ Ωm−1
F M(Y 2), η ∈ νM(Y 2)(m) ∩ Ωm

F M(Y 2),
T = Tµ, Y = Yµ for some µ ∈ Sn, where aση ∈ d Ω for all σ < µ. For µ = 0,
this is the equation (4.2). Let t = max{i |µ−(i) = 1}, where µ− denotes the
antecessor of µ. We consider the p-decomposition (see §3 and [Ar-Ba1]) of the
form η

η = ηE +
∑

p

ηp (6.3)

with ηE ∈ νM(Y 2)(m)∩Ωm
F M [Y 2] = νM (m), ηp ∈ 1

pΩF M [Y 2]∩ νM(Y 2)(m) (see

(2.10)). Then we have

Lemma 6.4 If η in ( 6.3) satisfies aση ∈ d Ω for all σ < µ, then ηE, ηp, for
all p, have the same property.

Proof. Since d is compatible with the p-decomposition (see [Ar-Ba1]) we obtain

0 = d(aση) = d(aσηE) +
∑

p

d(aσηp)

19



and hence d(aσηE) = 0, d(aσηp) = 0 for all p and σ < µ. Also C is compatible
with p-decomposition (loc. cit.), so that from C(aση) = 0 it follows

C(aσηE) = 0

C(aσηp) = 0.

This implies aσηE , aσηp ∈ d Ω for all p, σ < µ.

Let us now insert the p-decompositions u = uE +
∑

up, v = vE +
∑

vp,
η = ηE +

∑

ηp into the equation (Aµ). Here we have up ∈ 1
pΩm

F M [Y 2], vp ∈
1
p2 Ωm−1

F M [Y 2], ηE ∈ νM(Y 2)(m) ∩ Ωm
F M [Y 2] = νM (m) and ηp ∈ 1

pΩF M [Y 2] ∩

νM(Y 2)(m). We obtain

w = ℘uE + d vE + TηE +
∑

p

Ep (6.5)

Ep = ℘up + d vp + Tηp (6.6)

with Ep ∈ Ωm
F M [Y 2] for all p (see [Ar-Ba1]). We have seen in (3.6) that the

irreducible polynomials appearing in the p-decomposition of η are in M [Y 2].
Thus for the others polynomials p we have Ep = ℘up + d vp and it follows im-
mediately that Ep = 0 since Ep is integral and ℘up, d vp are in the p-component
so these terms can be discarded in the above expression (6.5). Thus we assume
in (6.5) and (6.6) that all irreducible polynomials p are in M [Y 2]. Moreover,
according to (6.4) we know that the forms ηE , ηp satisfy aσηE , aσηp ∈ d Ω for
all σ < µ.

In the next lemma we will use the following notation. Given a polynomial
f ∈ M [Y 2], we denote by fil(f) the maximal filtration of the coefficients of
f (with respect to the given 2-basis). For f, g ∈ M [Y 2] we write f < g if
deg f < deg g or deg f = deg g and fil f < fil g.

Lemma 6.7 For any p and ηp as above it holds

ηp = η0 + η1 ∧
d p

p

with η0, η1 ∈ νM(Y 2) ∩
⊕

q<p
1
q ΩF M [Y 2] and aση0, aση1 ∈ d Ω for all σ < µ.

Proof. From the characterization of forms in good shape given in (5.1) we get

ηp =
d a1

a1
∧ · · · ∧

d at−1

at−1
∧

∑

γ

d
(

n2
γat + mγ

)

n2
γat + mγ

∧
d fγ

fγ

where mγ =
∑

σ aσm2
σ,γ , mσ,γ , nγ ∈ M [Y ] and σ runs over those σ ∈ St−1

with σ + t ≥ µ, and
d fγ

fγ
=

d fγ(t+1)

fγ(t+1)
∧ · · · ∧

d fγ(m)

fγ(m)
with t = max{i |µ−(i) = 1}.

Moreover for all γ ∈ Σm in this sum we can write γ(i) = i for i ≤ t, fγ(i) = ai ,
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i ≤ t − 1 and fγ(t) = n2
γat + mγ and fγ(j) ∈ Mγ(j)[Y

2] for all j. Let γ be the
maximal multi-index in the above sum, and set

ηp,γ =
d fγ

fγ
=

da1

a1
∧ · · · ∧

d at−1

a1
∧

d
(

n2
γat + mγ

)

n2
γat + mγ

∧
d fγ(t+1)

fγ(t+1)
∧ · · · ∧

d fγ(m)

fγ(m)

(6.8)

and

ηp,<γ =
d a

a
∧

∑

λ<γ

d
(

n2
λat + mλ

)

n2
λat + mλ

∧
d fλ(t+1)

fλ(t+1)
∧ · · · ∧

d fλ(m)

fλ(m)
.

Thus ηp = ηp,γ + ηp,<γ . We use now the fact that ηp ∈ 1
pΩF M [Y 2] to obtain

the 2−basis expansion

ηp =
∑

λ≤γ

cλ
d a1

a1
∧ · · · ∧

d at−1

at−1
∧

d at

at
∧

daλ(t+1)

aλ(t+1)
∧ · · · ∧

d aλ(m)

aλ(m)

with cλ ∈ 1
pM [Y 2]. Let cλ = hλ

p , where hλ ∈ M [Y 2], degY hλ < degY p. On the
other hand only the term γp,γ contributes to the maximal term in this expansion,
and its contribution is (see the proof of (2.10))

d a

a
∧

atn
2
γ

n2
γat + mγ

d at

at
∧

aγ(t+1)Dγ(t+1)

(

fγ(t+1)

)

fγ(t+1)

d aγ(t+1)

aγ(t+1)
∧

· · · ∧
aγ(m)Dγ(m)

(

fγ(m)

)

fγ(m)

d aγ(m)

aγ(m)

=

m
∏

j=t

(

aγ(j)Dγ(j)

(

fγ(j)

)

fγ(j)

)

d aγ

aγ
.

Thus we obtain
hλ

p
=

m
∏

j=t

(

aγ(j)Dγ(j)

(

fγ(j)

)

fγ(j)

)

where deg hγ < deg p, deg
(

Dγ(i)

(

fγ(i)

))

≤ deg fγ(i), fil
(

Dγ(i)

(

fγ(i)

))

< γ(i) =

fil
(

fγ(i)

)

. This last remark follows from the definition of the operator Dγ(i).
Therefore

hλ

m
∏

j=t

fγ(j) = ap

m
∏

j=t

Dγ(j)

(

fγ(j)

)

(6.9)

with a =
∏m

j=t aγ(j) ∈ F . In particular p|
∏m

j=t fγ(j) and there is some t ≤ k ≤ m
with p|fγ(k). This k is unique and it follows, since p is irreducible and monic
(see (2.11)), that fil(p) = γ(k). We can assume without restriction that fγ(j)

are products of irreducible polynomials q with multiplicity 1 and filtration γ(j).
Now we distinguish three cases:
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(a) j > k. Then fγ(j) ∈ M is constant.

To see this, we choose j > k maximal with fγ(j) ∈ M [Y 2]\M . Let q|fγ(j)

be a monic irreducible factor. Then fil(q) = γ(j). From (6.7) we get
q|

∏m
i=t Dγ(i)

(

fγ(i)

)

, because it can not be p since fil(p) = γ(k) 6= γ(j).

Hence q|Dγ(i)

(

fγ(i)

)

for some i ≥ t. If l > j, by the choice of j, fγ(l) ∈ M .

Hence i ≤ j. But i ≤ j implies fil
(

Dγ(i)

(

fγ(i)

))

< γ(i) ≤ γ(j) and this

contradicts q|Dγ(i)

(

fγ(i)

)

, since fil(q) = γ(j). This implies fγ(j) ∈ M for
all j > k.

(b) j = k. We claim fγ(k) = cp with c ∈ Mγ(k).

Assume q|fγ(k) is an irreducible monic factor different from p. We have

fil(q) = γ(k). But from (6.9) it follows q|Dγ(i)

(

fγ(i)

)

for some i ≥ t, and
this implies fil(q) < γ(i). Since fγ(l) ∈ M for l > k, it follows i ≤ k,
and hence fil(q) < γ(i) ≤ γ(k), which is a contradiction. Thus q = p and
since its multiplicity is one, we have fγ(k) = cp. Since fil(fγ(k)) = γ(k), it
follows c ∈ Mγ(k).

(c) j < k. We claim deg(fγ(j)) ≤ deg(p) for all j < k.

Since fil(fγ(j)) = γ(j) < γ(k) = fil(p), we see that any monic irreducible
factor of fγ(j), say q, has fil(q) = γ(j) < γ(k) and hence q 6= p. Inserting
(a) and (b) in the relation (6.9) we obtain an equation of the form

dhγfγ(t) · · · fγ(k−1) =
∏

t≤j≤k−1

Dγ(j)

(

fγ(j)

)

· Dγ(k) (cp) (6.10)

with some d ∈ M . If q|fγ(k−1) is a monic irreducible factor, we have

fil(q) = γ(k − 1) and since fil(Dγ(j)

(

fγ(j)

)

) < γ(j) for all j ≤ k − 1 and
therefore q|Dγ(k) (cp). Since all irreducible factors of fγ(k−1) have mul-
tiplicity 1 we obtain fγ(k−1)|Dγ(k) (cp) and hence deg(fγ(k−1)) ≤ deg(p).
We set Dγ(k) (cp) = lγ(k)fγ(k−1) with fil(lγ(k)) < γ(k) and deg(lγ(k)) =
deg(p) − deg(fγ(k−1)). From (6.10) it follows

dhγfγ(t) · · · fγ(k−2) = lγ(k)

∏

t≤j≤k−1

Dγ(j)

(

fγ(j)

)

. (6.11)

Let now q be a monic irreducible factor of fγ(k−2). Then fil(q) = γ(k − 2)

and from (6.10) we conclude q|lγ(k)Dγ(k−1)

(

fγ(k−1)

)

. Since all factors

of fγ(k−2) have multiplicity 1, it follows fγ(k−2)|lγ(k)Dγ(k−1)

(

fγ(k−1)

)

.
Hence

deg(fγ(k−2)) ≤ deg(lγ(k)) + deg(Dγ(k−1)

(

fγ(k−1)

)

)

≤ deg(p) − deg(fγ(k−1)) + deg(Dγ(k−1)

(

fγ(k−1)

)

)

≤ deg(p).

Iterating this argument we obtain our claim.
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Summing up, we have in (6.8) the following situation. There is an integer k,
t ≤ k ≤ m, such that fγ(k) = cp with c ∈ Mγ(k), fγ(j) ∈ M for all j > k and if
j < k, deg fγ(j) ≤ deg p.

If γ(k) > t, then

ηp,γ =
d a

a
∧

d(n2
t at + mt)

n2
t at + mt

∧ · · · ∧
d fγ(k−1)

fγ(k−1)
∧

d c

c
∧ · · · ∧

d fγ(m)

fγ(m)

+
d a

a
∧

d(n2
t at + mt)

n2
t at + mt

∧ · · · ∧
d fγ(k−1)

fγ(k−1)
∧

d p

p
∧ · · · ∧

d fγ(m)

fγ(m)

where both summands are in good shape with respect to µ− and satisfy the
requirements of the lemma, since all fγ(j) (j 6= k), have irreducible factors < p.

If γ(k) = t, then fγ(k) = ft = cp is the polynomial n2
t at + mt, and obviously

ηp,γ has the decomposition stated in the lemma, and is in good shape with
respect to µ.

Let us now consider ηp,<γ . We have

ηp,<γ =
d a

a
∧

∑

α<γ

d(n2
αat + mα)

n2
αat + mα

∧
d fα

fα

which is in good shape with respect to µ−. Decomposing ηp,<γ in p-components
we get

ηp,<γ = ηp,γ,p + ηp,γ,0,

where ηp,γ,p belongs to 1
pΩF M [Y 2]∩νM(Y 2)(m) and ηp,γ,0 ∈

⊕

q<p
1
q ΩF M [Y 2]∩

νM(Y 2)(m). From (6.4) we know that all these summands are in good shape
with respect to µ−. Thus ηp,γ,0 contributes to h0. We apply now the above
procedure to ηp,γ,p considering the highest multi-index λ < γ appearing in
ηp,γ,p. We continue with this procedure to finally get the desired decomposition
of ηp. This proves the lemma.

Lemma 6.12 For any p appearing in (6.6) it holds

up = u0 + u1 ∧
d p

p

vp = v0 + v1 ∧
d p

p

with u0, u1, v0, v1 ∈ ΩF M [Y 2], deg ui, deg vi < deg(p).

Proof. Set up = u′

p , vp = v′

p2 with u′, v′ ∈ ΩF M [Y 2], deg u′ < deg p, deg v′ <

2 deg p. Inserting in (6.6) we get

p2Ep = u′[2] + pu′ + d v′ + pT (pηp)
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with pηp ∈ ΩF M [Y 2]. Set M(p) = M [Y ]/ < p > and consider the rest class
homomorphism ΩF M [Y 2] −→ ΩM(p). The last equation induces the relation

u′[2] + d v′ = 0

in ΩM(p). Using the Cartier-operator we conclude from d v′ = u′[2] that u′ = 0
and d v′ = 0 in ΩM(p). From lemma (3.2) in [Ar-Ba1] we get

u′ = pu0 + u1 ∧ d p

d v′ = p2 d v0 + p d v1 ∧ d p

with u0, u1, v0, v1 ∈ ΩF M [Y 2], and deg ui, vi < deg p. Thus

up = u0 + u1 ∧
d p

p

and

vp = v0 + v1 ∧
d p

p
.

This proves the lemma.

We insert now the above relations in (6.6). It follows

Ep + ℘u0 + d v0 + Tη0 = (℘u1 + d v1 + Tη1) ∧
d p

p
. (6.13)

Here η0 is in good shape with respect to µ− as well as η1 ∧ d p
p . Actually if

fil(p) > t, then η1 is in good shape with respect to µ−, and if fil(p) = t, then
η1 ∧

d cp
cp with some c ∈ Mt, is in good shape with respect to µ−.

In what follows we will need the following remark concerning 2-basis of
M(p). Assume p = p0 + akp1 with p0, p1 ∈ M<k[Y 2], fil(p0), fil(p1) < t,
and t = fil(p). Then we obtain the following 2-basis of M(p) = M [y] where
y ≡ Y mod(p): {a1, . . . , at−1, at+1, . . .} = B − {at} ∪ {y}. We keep the same
ordering in B−{at}as in B, but we set y as the maximal element in this 2-basis.

If f ∈ M [Y 2] has filtration s < t = fil(p), then it follows easily that fil(f) = s
in M(p). If f ∈ M [Y 2] has degree < deg p and filtration fil(f) = s > t, then
fil(f) ≥ s in M(p) too (and in fact fil(f) = s). To see this, let us assume
fil(f) < s and write in M [Y 2]

f = n0 + atn1 + as(n2 + atn3)

where ni has degree < p and do not contain at or as in the 2-basis expansion,
0 ≤ i ≤ 3. In particular fil(ni) < s, 0 ≤ i ≤ 3. In M(p) we get

f = n0 + atn1 + as(n2 + atn3)

where at =
p0p1

p2
1

has filtration < t in M(p). If fil(f) < s, then we have

n2 + atn3 = 0 in M(p) and this implies n2 = atn3 + lp with some polynomial
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l ∈ M [Y 2]. Since deg n2, deg n3 < deg p, it follows l = 0, i.e. n2 = atn3, and
this is a contradiction.

From (6.13) we obtain

℘u1 + d v1 + Tη1 = 0

in ΩM(p) (see [Ar-Ba1]). In this relation we know that η1 is in good shape with

respect to µ− if γ(k) > t or if γ(k) = t, then η1 ∧ d p
p is in good shape with

respect to µ−. Moreover since for all γ(j) > t, the elements fγ(i) appears
in η1 are constants (see (a) in the proof of (6.7)), we get from the last remark
that the multi-indices of η1 keep the same ordering in M(p) with respect to
the 2-basis of M(p) introduced in this remark. Now the equation

Tη1 = ℘u1 + d v1

leads to the relation
T = ℘c +

∑

i6=k

Aγ(i)fγ(i)

with Aγ(i) ∈ M(p)γ(i) and deg Aγ(i) < deg p. This follows from lemma (3.3)
in [Ar-Ba2], and the fact that we can change the 2-basis of M(p) through the
replacement fγ(i) ←→ aγ(i) for i 6= k. Here γ is the maximal multi-index in η1.
Thus in M [Y 2] we obtain

T = ℘c +
∑

i6=k

Aγ(i)fγ(i) + ph (6.14)

with c ∈ M [Y 2], deg c < deg p, Aγ(i) ∈ M [Y 2], deg Aγ(i) < deg p and hence
also deg h < deg p. We also have fil Aγ(i) < γ(i). If γ(k) = t, recall that
fγ(k) = ft = cp with c ∈ Mt, and in this case we write cp instead of p in the
above relation. Changing the notation a little, we will write fγ(k) = p if γ(k) > t
and fγ(k) = cp if γ(k) = t, and h = Aγ(k) in both cases. Thus we have

T = ℘c +
∑

i

Aγ(i)fγ(i). (6.15)

We will now use this relation to get rid of the term Tη1 in the equation (6.13).
To this end we distinguish two cases: γ(k) = fil p for k > t and γ(k) = t for

k = t.

First Case : γ(k) = fil p, k > t. We can write

η1 =
d a

a
∧

d(n2
t at + mt)

n2
t at + mt

∧
d fγ(t+1)

fγ(t+1)
∧ · · · ∧

k
∧ · · · ∧

d fγ(m)

fγ(m)

+ η1,<γ

= η1,γ + η1,<γ
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for the form η1 in lemma (6.7). Here γ is the maximal multi-index ap-
pearing in η1. Let us now use (6.15) with k > t, to compute Tη1,γ ∧ d p

p .
Notice that in this case we have written fγ(k) = p, Aγ(k) = h, where
deg h < deg p, and fγ(t) = ft = n2

t at + mt. We get

Tη1,γ ∧
d p

p
=

(

℘c +
∑

i

Aγ(i)fγ(i)

)

d a

a
∧

d fγ(t)

fγ(t)
∧ · · · ∧

d fγ(m)

fγ(m)
.

It is convenient to write fγ(i) = ai, γ(i) = i, for i < t, so that

Tη1,γ ∧
d p

p
=

(

℘c +

m
∑

i=1

Aγ(i)fγ(i)

)

d fγ(1)

fγ(1)
∧ · · · ∧

d fγ(m)

fγ(m)
.

Let ν<p,gs(m) denote the subgroup of νM(Y 2)(m) of forms in good shape
with respect to µ− and where the generators are logarithmic differential
forms d q/q with q < p. We will compute the above expression modulo
the group ℘Ωm + d Ωm−1 + Tν<p,gs(m). Since

Aγ(i)fγ(i)

d fγ(i)

fγ(i)
≡ Aγ(i)fγ(i)

d Aγ(i)

Aγ(i)

we have

Tη1,γ ∧
d p

p
≡

m
∑

i=1

Aγ(i)fγ(i)

d fγ(1)

fγ(1)
∧ · · · ∧

d Aγ(i)

Aγ(i)
∧ · · · ∧

d fγ(m)

fγ(m)

≡

m
∑

i=1



T +
∑

j 6=i

Aγ(j)fγ(j)





d fγ(1)

fγ(1)
∧ · · · ∧

d Aγ(i)

Aγ(i)
∧ · · · ∧

d fγ(m)

fγ(m)

≡ T

m
∑

i=1

d fγ(1)

fγ(1)
∧ · · · ∧

d Aγ(i)

Aγ(i)
∧ · · · ∧

d fγ(m)

fγ(m)

+

m
∑

i=1





∑

j 6=i

Aγ(j)fγ(j)





d fγ(1)

fγ(1)
∧ · · · ∧

d Aγ(i)

Aγ(i)
∧ · · · ∧

d fγ(m)

fγ(m)
.

Since fil(Aγ(i)) < γ(i), it follows that d a∧ d Aγ(i) = 0 for all i < t. Hence

the above sums can be taken for i > t. Moreover the term d a
a ∧

d(n2
t at+mt)

n2
t at+mt

appears in the first summand, so that T
∑m

i=1
d fγ(1)

fγ(1)
∧ · · · ∧

d Aγ(i)

Aγ(i)
∧ · · · ∧
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d fγ(m)

fγ(m)
is contained in Tν<p,gs, and can be dropped. Hence

Tη1,γ ∧
d p

p
≡

m
∑

i=1





∑

j 6=i

Aγ(j)fγ(j)





d fγ(1)

fγ(1)
∧ · · · ∧

d Aγ(i)

Aγ(i)
∧ · · · ∧

d fγ(m)

fγ(m)

≡

m
∑

1≤j<i≤m

(

Aγ(j)fγ(j) + Aγ(i)fγ(i)

) d fγ(1)

fγ(1)
∧ · · · ∧

d Aγ(j)

Aγ(j)
∧ · · ·

· · · ∧
d Aγ(i)

Aγ(i)
∧ · · · ∧

d fγ(m)

fγ(m)

Replacing Aγ(j)fγ(j)+Aγ(i)fγ(i) by T +
∑

l 6=i,j Aγ(l)fγ(l) mod ℘ we obtain

Tη1,γ ∧
d p

p
≡

m
∑

1≤j<i≤m



T +
∑

l 6=i,j

Aγ(l)fγ(l)





d fγ(1)

fγ(1)
∧ · · · ∧

d Aγ(j)

Aγ(j)
∧ · · ·

· · · ∧
d Aγ(i)

Aγ(i)
∧ · · · ∧

d fγ(m)

fγ(m)

≡
m

∑

1≤j<i≤m

∑

l 6=i,j

Aγ(l)fγ(l)

d fγ(1)

fγ(1)
∧ · · · ∧

d Aγ(j)

Aγ(j)
∧ · · · ∧

d Aγ(i)

Aγ(i)
∧ · · · ∧

d fγ(m)

fγ(m)
.

Iterating this reasoning we obtain

Tη1,γ ∧
d p

p
≡

m
∑

i=1

Aγ(i)fγ(i)

d Aγ(1)

Aγ(1)
∧ · · · ∧

d Aγ(m)

Aγ(m)

≡ T
d Aγ(1)

Aγ(1)
∧ · · · ∧

d Aγ(m)

Aγ(m)

≡ 0

i.e.

Tη1,γ ∧
d p

p
∈ ℘Ωm + d Ωm−1 + Tν<p,gs(m)

Thus we get rid of the term Tη1,γ ∧ d p
p in the equation (6.13). We can

now continue with Tη1,<γ which has lower filtration, and this shows that
we can assume η1 = 0 in (6.13).

Thus we have

Ep + ℘u0 + d v0 + Tη0 = (℘u1 + d v1) ∧
d p

p
(6.16)

where η0 ∈ νM(Y 2)(m) is in good shape with respect to µ and is in
ν<p,gs(m), i.e. its q-components are in lower filtration than p. Now a
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simple argument, see [Ar-Ba1], shows that we can get rid of the term
(℘u1 + d v1) ∧

d p
p and hence

Ep = ℘u0 + d v0 + Tη0

and therefore Ep disappears in the basic equation (6.5), because the u0,
v0, η0 are in lower components. Thus we are done in the case k > t. Let
us now consider the

Second case: k = t i.e. γ(k) = k = t = fil(p) = fil(ft) where fγ(t) = n2
t at + mt = cγp

with cγ ∈ Mt, mt =
∑

σ aσm2
σ, σ ∈ St−1, σ + t ≥ µ and nt, mt ∈ M [Y ].

From the proof of (6.7), case (b) we know that fγ(i) ∈ Mγ(i) for all i > t
and ft = fγ(t) = cγp, fil(cγ) ≤ t. Let us at this place introduce the
following M2-vector space

W = {x2at +
∑

σ

aσyσ |x, yσ ∈ M , σ ∈ St−1, σ + t ≥ µ} (6.17)

so that fγ(t) ∈ W [Y 2]. We will say that the polynomials in W [Y 2] are in
good shape with respect to µ−. In particular cγ ∈ W . We have in this
case

ηp =
d a

a
∧

∑

γ

d cγp

cγp
∧

d fγ(t+1)

fγ(t+1)
∧ · · · ∧

d fγ(m)

fγ(m)

and fγ(t) = cγp for all γ. We write fγ(i) = ai, γ(i) = i for i < t, so

that we have ηp =
∑

γ
d fγ

fγ
. Let γ be the maximal multi-index in this

summand, set

ηγ,p =
d fγ

fγ
=

d a

a
∧

d cγp

cγp
∧

d fγ(t+1)

fγ(t+1)
∧ · · · ∧

d fγ(m)

fγ(m)

with fγ(j) ∈ M for all j > t. Set η<γ,p =
∑

λ<γ(d fλ/fλ) so that ηp =
ηγ,p + η<γ,p.

The equation

Ep + ℘u0 + d v0 + Tη0 = (℘u1 + d v1 + Tη1) ∧
d p

p

implies ℘u1 + d v1 + Tη1 = 0 in ΩM(p). Notice in this case ηp = η1 ∧
d p
p ,

η0 = 0, since k = t. Since the ordering of the multi-index appearing in ηp

remains the same in the 2-basis of M(p), we obtain in M [Y 2] (see remark
after the proof of (6.12))

T = ℘c +
∑

i6=t

Aγ(i)fγ(i) + (cγp)h (6.18)

with h ∈ M [Y 2]. Here all fγ(i) are constants, cγ , Aγ(i), h ∈ M [Y 2]
with deg cγ , deg Aγ(i), deg h < deg p and Aγ(i) ∈ M<γ(i)[Y

2]. Moreover
fγ(t) = cγp and Aγ(t) = h. Then

T = ℘c +
∑

i

Aγ(i)fγ(i)
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Lemma 6.19 If deg p > 2, then h ∈ W [Y 2]

We postpone the proof of (6.19) to the end of the section. We look at the
basic equation for p of degree > 2.

Ep + ℘u0 + d v0 = (℘u1 + d v1 + Tη1) ∧
d p

p
.

We want to get rid of the term Tη1∧
d p
p = Tηp. We have for γ = maximal

multi-index in ηp

Tηγ,p =

(

℘c +

m
∑

i=1

Aγ(i)fγ(i)

)

d a

a
∧

d cγp

cγp
∧ · · · ∧

d fγ(m)

fγ(m)

and we compute again modulo the subgroup ℘Ωm +d Ωm−1 +Tν<p,gs(m).
Then

Tηγ,p ≡

(

m
∑

i=1

Aγ(i)fγ(i)

)

d fγ

fγ

≡

m
∑

i=1

Aγ(i)fγ(i)

d fγ(1)

fγ(1)
∧ · · · ∧

d Aγ(i)

Aγ(i)
∧ · · · ∧

d fγ(m)

fγ(m)

≡

m
∑

i=1



T +
∑

j 6=i

Aγ(j)fγ(j)





d fγ(1)

fγ(1)
∧ · · · ∧

d Aγ(i)

Aγ(i)
∧ · · · ∧

d fγ(m)

fγ(m)
.

Whenever i < t, the terms
d fγ(1)

fγ(1)
∧ · · · ∧

d Aγ(i)

Aγ(i)
∧ · · · ∧

d fγ(m)

fγ(m)
are zero

because Aγ(i) ∈ M<γ(i), thus only for i ≥ t there are contribution to the

sum. Moreover, all the terms T
d fγ(1)

fγ(1)
∧ · · · ∧

d Aγ(i)

Aγ(i)
∧ · · · ∧

d fγ(m)

fγ(m)
for i ≥ t

belong to Tν<p,gs(m). Only the case i = t in non trivial, and this assertion
follows from lemma (6.19) since At = h ∈ W [Y 2]. Thus we have

Tηγ,p ≡

m
∑

i=1





∑

j 6=i

Aγ(j)fγ(j)





d fγ(1)

fγ(1)
∧ · · · ∧

d Aγ(i)

Aγ(i)
∧ · · · ∧

d fγ(m)

fγ(m)
.

Now we continue as in the case k > t to conclude Tηγ,p ∈ ℘Ωm +
d Ωm−1 + Tν<p,gs(m). Doing the same with Tη<γ,p we finally obtain the
desired result Tηp ∈ ℘Ωm

<p +dΩm−1
<p +Tν<p,gs(m) and we are done in this

case.

Thus we are left with the case deg p = 2, i.e. fγ(k) = fγ(t) = cγp =
cγY 2 + dγ ∈ W [Y 2], cγ ∈ W , dγ ∈ W . From the equation

T = ℘c +
∑

i6=t

Aγ(i)fγ(i) + (cγp)h
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we see deg h = 0,i.e. h ∈ M , as well as Aγ(i) ∈ M . Hence comparing
coefficients we obtain baµ = cγh, i.e.

h =
baσat

cγ
=

baσat

c2
γ

cγ .

But b ∈ F 2 and σ < µ, and

d h

h
=

d aσ

aσ
+

d at

at
+

d cγ

cγ

d a

a
∧

d h

h
=

d a

a
∧

d aσ

aσ
+

d a

a
∧

d at

at
+

d a

a
∧

d cγ

cγ

and we see immediately that the terms d a
a ∧ d h

h ∧ d fλ

fλ
are in good shape

with respect to µ− and belongs to lower degree or filtrations (in fact they
are constants). Thus we also get rid of the terms Tηp = Tη1 ∧

d p
p in the

basic equation.

It remains

Ep + ℘u0 + d v0 + Tη0 = (℘u1 + d v1) ∧
d p

p

with u0, v0, η0 having at most denominators divisible by q’s with q < p, and
η0 in good shape respect to µ−. Again ℘u1 + d v1 = 0 in M(p) enable us to
eliminate Ep from the basic equation (6.5).

Proceeding in the same way we finally arrive at a relation

w = ℘uE + d vE + TηE

with uE, vE , ηE ∈ ΩF M [Y 2] and ηE ∈ νM(Y 2)(m) in good shape with respect to
µ, i.e. aσηE ∈ d Ω for all σ < µ. But since (see (2.10)) Ωm

F M [Y 2]∩νM [Y 2](m) =
νM (m), we get ηE ∈ νM (m). This conclude the proof of the basic lemma:
(Aµ)=⇒(Bµ). ¤

Now we return to the proof of lemma(6.19).

Proof of lemma 6.19. To this end, we look at the relation

T = ℘c +
∑

i6=t

Aγ(i)fγ(i) + (cγp)h

with cγ ∈ W , deg c, deg Aγ(i), deg h < deg p and also deg fγ(i) = 0 for i 6= t, i.e.
fγ(i) ∈ M for all i 6= t. Here T = baµY 2+Tµ+ . We write cγp = p0+p1Y

2+ · · ·+
psY

2s with p0, . . . , ps ∈ W and ps = cγ . Set also h = h0+h1Y
2+· · ·+hs−1Y

2s−2

and c = c0 + c1Y
2 + · · · + cs−1Y

2s−2, ci, hi ∈ M . Then the equation above
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implies hs−1 = 0 and the other coefficients satisfy the following system of linear
equations



















ps ps−1 ps−2 · · · p3 p2

0 ps ps−1 · · · p4 p3

0 0 ps · · · p4

...
...

. . .
...

0 0 0 ps ps−1

0 0 0 · · · 0 ps





































h0

h1

h2

...
hs−3

hs−2



















=



















∗
...
0

c2
s−2

0
c2
s−1



















where ∗ = cs/2 if s is even and ∗ = 0 otherwise. Since the matrix of this
system has entries in W , it suffices to show that the inverse matrix also has
entries in W . This will imply hi ∈ W for all i. Let In denote the identity
matrix and consider the n × n-matrix E = (ei,j) with ei,i+1 = 1 and ei,j = 0
otherwise. Then En = 0. Fix n elements qi ∈ M and define the M2-vector
space W = M2q1 + · · · + M2qn. Assume qn 6= 0. Let Mn×n(W ) be the abelian
group of n × n-matrices with entries in W and let

A =











qn qn−1 · · · q1

0 qn · · · q2

...
...

. . .
...

0 0 · · · qn











i.e. A = qnIn + qn−1E + · · ·+ q1E
n−1 = qn

(

In +
∑n−1

j=1
qn−j

qn
Ej

)

= qn (In + B)

where Bn = 0. Then A−1 = q−1
n

(

In + B + · · · + Bn−1
)

.
We claim A−1 ∈ Mn×n(W ). Obviously this claim proves our lemma (6.19).

We have
A−1 =

qn

q2
n

In +
qn

q2
n

B + · · · +
qn

q2
n

Bn−1

and it suffices to show qn

q2
n
Bi ∈ Mn×n(W ).

If i = 0 this is clear. Assume i ≥ 1.

If i = 2t is even, then

qn

q2
n

B2t =
qn

q2
n

n−1
∑

j=1

(

qn−j

qn

)2t

E2tj = qn

n−1
∑

j=1

(

qt
n−j

qt+1
n

)2

E2tj

is clearly in Mn×n(W ).

If i = 2t + 1 is odd, then

qn

q2
n

Bi =





n−1
∑

j=1

(

qn−j

q2
n

)

Ej









n−1
∑

j=1

(

qn−j

q2
n

)2t

E2tj





which also belongs to Mn×n(W ) since qn−j/q2
n ∈ W .
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This proves the claim.
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