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Abstract

Let F' be a field of characteristic 2. Let Q% be the F-space of differ-
ential forms over F. There is a homomorphism g : Q% — Q&/d Q"
given by p xdz—gil A A % = (mQ—x)dz%/\- : -/\% modd Q7" Let
H""Y(F) = coker(p). If p =< a1,...,an;b]] is an anisotropic quadratic
Pfister form over F' and F(p) the function field of the Pfister quadric {p =
0}, we compute the kernel H"*1(F(p)/F) = ker H""'(F) — H™ ' (F(p))
for all m. Using Kato’s correspondence between differential and quadratic
forms we compute the kernels I W, (F(p)/F) = ker [I"W4(F) — I"™W,(F(p))],
where W (F') denotes the Witt group of quadratic forms over F' and Ir
is the maximal ideal of the Witt ring W (F') of symmetric bilinear forms
over F.

Keywords: Quadratic Forms, Bilinear forms, Pfister forms, Witt ring, Differen-
tial forms.

1 Introduction

We continue in this paper our previous work [Ar-Ba;] on the behavior of quadratic
and differential forms under function field of Pfister quadrics over fields with
2 = 0. In [Ar-Ba;] we considered bilinear Pfister quadrics, and in this paper
we will treat the case of quadratic Pfister quadrics. If F is a field with 2 = 0,
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we will denote by W (F') the Witt ring of non singular symmetric bilinear forms
over F' and by W (F') the W(F)- module of non singular quadratic forms over
F. Let Ir C W(F) be the maximal ideal of even dimensional forms (see [Sa],
[Ba], [Mi] for details). For a; € F* = F\{0}, 1 < i < n, we will denote
by < ai,...,a, > the bilinear form with diagonal Gram-matrix and entries
ai,...,a, on the diagonal. The quadratic form z2 + zy + ay? will be denoted
by [1,a], a € F. The maximal ideal Ir C W(F) is additively generated by the
forms < a >»>=<1,a >, a € F*, so that the powers I} are generated by the n-
fold bilinear Pfister forms < a1,...,a, >=< a1 > -+ < a, >, a; € F*. The
submodules I"W,(F) of W,(F) are generated by the n-fold quadratic Pfister
forms < ai,...,an;a]] =<K a1,...,a, > -[1,a]. The graded objects I}}/I}}H,
resp. I"W,(F)/I" W, (F) will be denoted by Ip, resp. I"W,(F).

Let p be an anisotropic bilinear or quadratic n-fold Pfister form. Let F(p)
denote the function field of the quadric {p = 0} over F. In [Ar-Bas] we computed

the kernels ker [Iqu(F) — Iqu(F(p))} if p is a bilinear n-fold Pfister form

for all m > 0. In this paper we will compute these kernels if p is a quadratic
n-fold Pfister form. The bilinear case implies the quadratic case for m < n,
as it is shown in [Ar-Bay]. Although the methods are similar, the arguments
we need in the latter case are much more delicate. Actually we will compute
the absolute kernels ker [I"W,(F) — I™Wy(F (p))] by a trick used in [Ar-Bao]
(see the statements below).

As in [Ar-Ba;] we will use Kato’s correspondence between differential forms
and quadratic forms. We will work with differential forms and then translate
the results into the language of quadratic forms. Let us first introduce briefly
some notations and results. If Q1 denotes the F-vector space generated by the
symbols da, a € F, with the relations d(a + b) = da + db, d(ab) = bda +

adb, then let Q% = AQL and d : Q% — Q%! be the differential operator
d(zdazy A---Aday)=dezAdzy A Adxy,. Then d?2 =0 and d extends the

derivation d : F — QL. The space Q5 = @ Q% (2% = F) is a Z-graded
n=0

algebra with the exterior multiplication A : Q% x Q% — Q%™ The usual
Artin-Schreier operator p : F — F, p(z) = 2% — z extends to a well defined

homomorphism
O — Qr/dn!
through
d dwz, d day
p(l‘ﬁ/\---/\ ad ) :(12_1.)&/\.../\ r .
T T Z1 Tn

Let vp(m) = ker(p), H™TY(F) = coker(p), so that
0 —vp(m) — Qp — Q’I?/dﬂgf_l — Herl(F) —0

is exact. The groups vp(n) act on the groups H™+1(F) by exterior multiplica-

tion of forms
/\ cvp(n) x H™T — grtmTl(p),



These groups behave functiorially with respect to field extensions. If F' — L
is a field extension we will denote by vy, /r(m), resp. H™T1(L/F), the kernels
ker(vp(m) — v (m)), resp. ker(H™ 1 (F) — H™TY(L)). A basic lemma due
to Kato and stated below shows that Z/F( ) is additively generated by the pure

logarithmic differential forms d;“ Ao A d o x; € F*. Recall that a 2-basis
of F' is a subset B = {a;, 1 € I} such that the elements {a¢ = [[ e, e =
icl

(¢i)ier, €i € {0,1}, e, =0 for almost all i € I} form a F2-basis of F'. Then or-
dering I, it is easy to see that for any n > 1, {daa—l ARERW d‘“" s < e <t
is a F-basis of Q%. Using such a basis we can define a B dependmg Artin-
Schreier operator o : Q% — QF, p (Z . Cip e daiy nLin M) =

11 < <ip vin ai, Qi

Yiicci, 9 (Ciy i) daii Ave A dal" . This operator g is modulo d Q% !, well

aiy
defined, and we will use it some tlmes “when the 2-basis B is given. Moreover if we
da, dai, da;

set forp =12, . i Ciyin a‘zll Ao A Lin ol S iicci i a’;l
- A %, we get p(n) = 77[2] - . In fact the square operation 77[2] is
well defined modulo d Q%™ *. Using this notation we can write H™+(F) =
Qp/ (pQ’]J +d Q}?*l). Another important operator on differential forms is the

Cartier operator. Given a 2-basis B ={a;,7 € I} of F we define

%)% = {nPn € O}

which is the subgroup of squares of Q% (with respect to B). In [Ca] it is
shown that the space Zp = ker(d) C QF% of closed n-forms satisfies Z3 =
[Q’l?;]2 @ d 0% Then we define the Cartier operator

C:Zp — Qp
by
CP +dw) =7

C is well defined, and independent of the 2-basis 3. This operator satisfies the
following rules:

e C (a2%> = a% for all a,be€ F*
C(dn)=0 for all ne Qp*
C (aQw = qw for all w e Z}

CwAX)=C(w)AC((N) forall we Zp, \e Zp.

The elements of vp(n) are characterized by the following properties: for any
n € Q% it holds

ne€vp(n) ifandonly if n € Zp and C(n) =
Moreover for n € Q%

nedQu ! ifandonlyif n€ Zp and C(n) =



We will use these properties thoroughly in this paper without mentioning
any source. Let us state now Kato’s result (see [Ka]). To this end we need some
notation. Let B be a fixed 2-basis and take any fixed ordering on I. For any
n > 1, let ¥, p denote the set of functions o : {1,...,n} — I with 0(i) < o(j)
whenever ¢ < j. We order ¥,, r lexicographically. For any a € X, r we denote

by 48 the form daa—‘:“) A A da“‘") Thus {42 o € %, p} is a F-basis of

Go(n

Q. Let % be the subspace generated by the forms W f < aand Qf _,

a

the subspace generated by — with 3 < a. For any i € I we will also denote
by F; the subfield F?(a;|j S i) and by F.; the subfield F?(a;|j < ). Thus
F; = Foi(a;). (If 4o is the first element in I, then F_;,, = F?). Kato’s lemma
(see [Ka]) can be stated as follows:

Lemma (Kato [Ka]) Fiz aa € &, p, y € F and assume p(y daa) €0p o+
dQ% L. Then there erist v € QFK& and ¢; € a(i), 1 <1 < n, such that
dag dep dcn

=v+—A-
Uq C1 Cn,

Y

This implies in particular, that any 1 € vp(n) can be written as

d
77_2 B fﬁ

B<La

_ * dfa _ dfs) A A B
for some o € S p, fa) € Fj), €p € {0,1} and 7T RRA RN Freat

In [Ar-Bag] we have shown the following result, Wthh we quote here for the
sake of completeness, since we will use it several times in the future.

Lemma 1.1 Let B = {a;, i € I} be a 2-basis of F with a given ordering on I.
Leta € pp andletw =73 _, ¢y da? € Q% be a differential form with co # 0.
Ifwe dQ}’;l, then there exist elements M; € Fo), 1 <1 < n such that

Ca = aa(l)Ml +F aa(n)Mn-

After these preliminaries we proceed now to formulate our main result. Let
p =< aiy,...,ay;b]] be an anisotropic quadratic n-fold Pfister form over F.
Since we can alter b modulo p(F) we may assume b € F2. Moreover since
< ai,...,a, > is anisotropic, ay, ...,a, are part of a 2-basis of F. Let F(p)
be the function field of the quadric {p = 0} over F. Then the main result in
this paper is

Theorem 1.2 For all m > 0 it holds

0 ifm<n
H™ N (F(p)/F) =

Vp(mfn)/\bd—all/\u'/\da" if m > n.



This result follows easily from (4.1) (5.4) in [Ar-Bay] for n = 0 and for
m < n, n > 1. Thus we can assume n > 1 and m > n. Using Kato’s
correspondence (1.2) reads

Theorem 1.3 For all m,n >0

0 ifm<n
ImW,(F(p)/F) =
Im7="-p if m>n.

We give now the full graded version of this result

Theorem 1.4 Let p =< ay,...,a,;b]] be an anisotropic quadratic n-fold Pfis-
ter form over F. Then for all m >0

W(F)-p ifm<n
I"Wo(F(p)/F) =
Ip="-p ifm>n

(here we write W (F) instead of I%).

Remark 1.5 In [Ar-Bai ] we computed ImWy(F(¢)/F') for ¢ =< a1,...,an >.
The corresponding full graded version of the main result of [Ar-Bay] is now

¢ - We(F) ifm<n
I"Wy(F(¢)/F) = (1.6)
¢ - I "W, (F) fm>n

Since the proofs of (1.4) and (1.6) are very similar and rely on the same
principle, we will derive only (1.4) from (1.3).

Proof of (1.4). Let p =< ax,...,ay,;b]] be anisotropic. Let us first assume
that the field F has a finite 2-basis B = {a,...,ax}. Then (see [Mi]) I~ ' =0.
Take g € I™W,(F(p)/F) i.e. ¢ € I"Wy(F') and ¢ ® F(p) ~ 0. Assume ¢ # 0.
Then § € I™W,(F(p)/F) and hence if m > n, g€ I™ " -p,ie. ¢ =0+ a1
with ¢1 € I ™" and ¢1 € I™T'W,(F). Since ¢q® F(p) = 0, p& F(p) = 0 it follows
@1 ® F(p) = 0. Thus ¢1 = ¢op + g2 with ¢o € I;P'H_" and go € I™T2W,(F).
Iterating this procedure M > N + 1 —m times and using IV*! = 0 we arrive at
an equation ¢ = (¢1 + @2+ -+ ¢oar)p € I~ ™ - p. This proves the claim in this
case. In the general case we have the relation ¢ ® F(p) = 0 and this relation
involves finitely many elements ai,...,ay € B. Let By = {a1,...,an} C B
and set Fy = F2(a1, ...,ayn). Then there exist forms qg, pg over Fy, pg =<
ai,...,an;b]], such that ¢ = gy ® F, p = po ® F and gy ® F(po) = 0. From the
first part we conclude go € Iy ~" - po, and extending scalars to I’ we obtain
g € 177" - p. This proves the claim in the case m > n. If m < n, then in
the first case we would obtain ¢ € I"™ W, (F) and iterating, we may assume
m=n,ie g€ W(F)-p. The rest of the proof is the same. This concludes the
proof of (1.4) and also of (1.6). m



We proceed now to describe briefly the plan of the paper. In section 2 we
reduce the computation of H™(F(p)/F) to study for a form w € QF the
equation w = pu+dv+Tn, where u € QERM, ve QR @M, n € vy(m)
and T is the polynomial (2.1). Here M denotes the field F (Xﬁ, YMQ,/L € Sn),
X,,Y, are variables for pe S, = set of maps p:{l,...,n} — {0,1}, p#0
(see (2.8)).

The main idea is now to reduce this equation to one without variables, so

that during this process the form 7 changes and successively it gets factors of
d a;

the form , thereby at the end of the reduction process we get an equation

K2

w:puoﬁ-dvo—kb%/\---/\dﬂ/\f
ai n

with € € vp(m —n), ug,vo € Qp, which is the content of theorem (1.2). This
reduction process is achieved in section 4 and 6. Section 3 is of preparatory
character (see also [Ar-Ba;]), and we analyze here the decomposition in partial
fractions (= p-components) of forms contained in vy (y2)(m) for some field N,
where Y is a variable over N (see (3.6)). We show that the p—components are
also forms contained in groups ve(m). In section 5, we characterize the forms
n € vn(y2)(m) with the property that an € dQ;C[Z)lZ) for all o <71 €5,
where ay,...,a, € M are part of a 2-basis of N (see (5.1)). This property,
called good shape, plays a crucial role during the reduction process done in
section 6 (see main lemma (6.1)).

2 First reduction step in the proof of (1.2)

Let F be a field with 2 = 0 and let p =< aq,...,a,;b]] be an anisotropic
quadratic n-fold Pfister form over F' with function field F(p). We may assume
without restriction b € F2. Let S,, be the set of maps p: {1,...,n} — {0,1},

1 # 0, and let B be a 2-basis of F', which we may assume contains aq, ..., a,
as the first elements in some ordering of the index set I of B. Let X, r be
the set of maps o : {1,...,n} — I with o(i) < o(j) whenever i < j. For

any p € S, we take a pair of independent variables X,,, Y, and we form the
field L = F(X,,Y,, p € Sp). For m <n we will identify S,, C S, in the
obvious way. Let To =b+3_ 5 a“Yi (b+X, +Xﬁ) be the generic polynomial
representing the pure part of p. Here a* = af(l) @™ Then F(p) = L(20)
with 22 4+ 20 = To. We can change Ty modulo pF[X,,,Y,, u € S,], so that we
will work in this paper with the polynomial

T=b+ Y a"Y20+X)+ Y (a"Y2)* X2
HESn HESn
= [[ @ +a"v?) (b+a"Y:X]) (2.1)
HESR

and F(p) = L(2), 2> +2=T.



The 2-basis B of F' extends to the 2-basis By, = B U{X,,, Y, p € Sp} of
L, where we order the X's, Y's lexicographically. Since F(p)/L is a separable
quadratic extension then By, remains a 2-basis of F(p). This is consequence of
the following

Lemma 2.2 If E/F is a finite separable extension, then any 2-basis of F is
also a 2-basis of E. Thus Qf = Q) QF E.

In particular we obtain Q’}(p) =0} ®r F(p) for all n > 1, and Br U{X,,
Y., 1 € Sy} is 2-basis of F(p).
Take now w € H™(F(p)/F), i.e. w € QP satisfies

w = p(u) +dv (2.3)

with u € Q). v € Q’;Z(;)l Thus wu,v are forms generated over L(z) = L+ Lz

by the differentials da;, i € I, d X, dY,, u € Sp.

Lemma 2.4 The forms u, v in (2.3) can be chosen in QF ® F(XZ, Yi, JTRS

Proof. Let us represent w, u and dv in the 2-basis Br = {b;,j € J} of F(p)

da; dX
a; ; @i € BF; X:a

introduced above, i.e. they are generated by the differentials

dy,
YU‘
0 € ¥, the maximal one occurring in . Then the maximal multi-index of d v
is < max{~,d}. If v < 6 then we have from (2.3)

over F(p). Let v € ¥,, p be the maximal multi-index occurring in w, and

d bs m— m
[ (’U@K) = 0 mOd (d QF(p)l =+ QF(p),<5) (25)

where u(;% is the maximal (# 0) element in the expansion of u. Using Kato’s

lemma we can write

d bs d fi d fm ,
Usg—— = —— N A —— +u
“bs  f Fm

with fi € F(p)suy, 1<i<m,and v € Q’}L(p%d. Thus we get
w=gpu+dv

with w € Q’I?(m <5+ Hence we can assume 7 = §. In particular u belongs to

QF ® F(p) and let w, daa” be the maximal term in w as well as uy daav the
N Y
maximal term of u. Using lemma ( 3.3) of [Ar-Bas] we conclude

wy = pus + Y ay My (2.6)
i=1

with M.,y € F(p)<~@i), 1< 4 < m. In particular M, ;) is contained in F(Xi, Yi)(z)
for all 1 < i < m. Then (2.6) implies pu, € F(X7,Y?)(z) and hence also



uy € F(X2,Y2)(2), i.e. uy does not contain odd powers of X,,, Y, in its 2-basis

w
expansion. Thus p(u) = p(uy)dal:” + p(u<y) with ucy € Q) . and p(u,) €

F(Xi,Yi)(z). We claim now that there is a decomposition v = v, + v,

where d v, is free from d X, dY,’s and its coefficients lie in F(X7,Y?)(z), and

dvey € Q?(;)l - To see this we set dv = h,ydaﬂ +o' with o' € QF ) ..
Using lemma (3.2) of [Ar-Bay] again, we have h, = > " ay ;M) with

M,y € F(X2,Y?2)(z) for 1 <i <m (see above remarks). Thus

w
S da’ (1) da (m)
dv = a(iMz-) ) Ao )y
<; o ) a500) @)
Y da day day(m
= a’Y(i)M'y(i) 7(1)/\-"/\¢/\"'/\¢+’Ul
=1 A~ (1) Ay (4) Oy (m)
- da (1) i da (m)
Zd(av(i)Mv(i) NI ACCAV A A Y
i=1 Gv(1) Oy (m)
da d M, dam
+a’y(i)M'y(i)a’Y(l)/\.../\Mi’Y_()/\.../\%()_’_UI-
" 26 +(m)
Since A = a0 M, dﬂzﬁ(g) A A %ﬂ(()) Ao A % . Q?(;)l,@ and

from the last relation we see that X is exact, we conclude A = d(v<~) for some
Vey € Q’;(;)l Hence we have dv = duvy + d(v<y), where

dayw o d0y6oy Oy o daym)
(1) Ay (i-1) Gy (i+1) Ay (m)

Uy = Z Ay (i My )
i=1

belongs to Q' @ F(X2, Y,2)(z). Inserting all of this in (2.3) it follows
w+ p(uy) + dvy = pucy) +d(v<y)

where the left hand side of this equation is in QF @ F(X 7, Y,?)(z). Repeating the
above arguments for this relation we finally arrive at an equation w = p(u)+dv
in QP ® F(Xﬁ, Yi)(z) which proves the lemma. =

Let us now consider the equation (2.3) with u, v € QF ® F(X, Y,?)(z).
We write u = ug + u1z, v = v9 + v12z with ug,u; € QF ® F(Xﬁ,YHQ), Vg, V1 €
Qp~' @ F(X2,Y2). Then

w = p(ug + u1z) + d(vg + v12)

= puo—l—Tu[lQ] +zu[12] 4+ zuy +dvg +zdvy +vi AT

i.e.

w:puo—l—dvo—i—Tu[f} + vy AdT

0=pu; +duv;.



The second equation implies (with L = F(X,,Y),))
up €vp(m)NOE ® F(Xi, Yi)

ie.
U] € VF(Xﬁ,Yf)(m)
according to lemma (2.9) below. Inserting u[12] = u; +dv; in the first equation,

we get
w=pug+dvg+Tuy +Tdvy +vy AdT

and we finally obtain an equation for w € QF
w=gpu+dv+Tn (2.7)

with u € QP @ F(X2,Y2), v € QP '@ F(X2,Y}?) and n € Vr(x2,vz2)(m). Here
we have set u = up, v = vg + Tv1, n = u1. Equation (2.7) will be the basic
relation which will be used in the proof of theorem (1.2). Thus we summarize
the above results in

Proposition 2.8 Let w € H™ Y(F). Then w € H™(F(p)/F) if and only if
there ezist u € QP ® F(Xi, Yi), v E Q?,?*l ® F(Xi, Yi) andn € VF(Xﬁ7y3)(m)
such that

w=pu+dv+Tn.

In the proof of the above result we have used the following

Lemma 2.9
VR(X,.v,)(m) NQE ® F(Xia Yi) = VF(Xg,Yg)(m)-

Proof. The contention 2 is trivial. Write L = F(X,,,Y,) and M = F(X},Y?).

Take now A € v, (m) N Qp ® F(X7,Y?), and write

d
A== 4 A,
Oy

with A, € Q}?K'y ® M. Since p\ € dQp, it follows

da m— m
@(Cv)a—v €dQy Lt QL,<"y'
¥

Applying now Kato’s lemma, we obtain
da, df, ,
cy— =—L+ )
Y ay f’y <y
where f ;) € L*(aj, j <7(i)), 1 <i<mand X, € QF' __. Thus

d
A= i+)\<7+>\’<7.
fy



In particular, since dff” € vm(m), we get X' = Acy + A € v (m)NQp @ M,
Y

but now X € Qp <, is in a lower filtration. We proceed with X" as above and

after finitely many steps we obtain A € VF(Xgﬁyi)(m). This proves the lemma.

]
Similarly we can prove the following result, which we will need later.

Lemma 2.10 Let F C M be fields and Y a variable over M. Assume d M C
QL@ M. Then,

Var(y2)(m) N QIMI[Y?] = vpr(m)
(we will apply this result for M = F(Xﬁ, Yi) for certain variables X, Y, p €

S,).

Proof. Since dM C Q},ﬂ ® M, the contention D is clear. Let us show now C.
Let 17 € vag(y2y(m) N QEM[Y?] and write

dev(l) 5 de"):Zc dag
A1) fymy S Ga

with co € M[Y?], fi5) € My;)(Y?), 1 <4 < m (according to Kato’s lemma).
Choose v to be the maximal multi-index on the left hand side. Expanding the
termd f,/fy, wesee that d f,/fy = <H1 a,y(i)D,Y(i)(f,y(i))) / <H1 f,y(i)) da,/ay+terms
of lower filtration. On the right the maximal term is ¢, d a,/a., thus we obtain

m

1;1 v D) ()
_H E10)
=1

Cy =

with ¢, € M[Y?] and all f,;) € M[Y?]. Moreover we can assume that the f.
have only irreducible factors of multiplicity one. We want to show f.; € M
for all 4. Let k = max{i| f,; ¢ M} and consider an irreducible monic factor
p of fyu) (which has without restriction multiplicity one). From the lemma
(2.11) below, we know that filtration(p)=~(k) =filtration of f. ). In particular
(loc.cit.) p t fyq for all i < k. Thus (2.11) implies p|D.x)(fyx)), because
filtration(D, ;) fy(;)) < filtration(f,;)) and for i > k, all f ;) € M. Let us
write f’y(k) =Dp- h with (p, h) =1lin M[YQ] Then Dv(k) (fV(k)) = pD,y(k)(h) +
hD.x)(p) and hence p|D)(p) which is a contradiction since p being monic,
deg(D k) (p)) < deg(p). This proves f,;) € M for all i and the lemma follows.
|

Lemma 2.11 Let f(Y) € M[Y] be a polynomial with filtration I and whose
irreducible monic factors have multiplicity 1. Assume that all of these factors
have filtration > 1. Then all such factors have exactly filtration = [.

10



Proof. Let p|f be a monic irreducible factor such that filtration(p) = k is
maximal among all such factors. Write p = pg 4+ axp1 with fil(pg), fil(p1) < k.
By assumption k > I. We have (po + agp1)h = f in M[Y], where fil(f) =1 < k.
Then fil(h) < k, otherwise we get a contradiction. Let r = fil(h) < k, and set
h = ho + ayhq, fil(h;) < r, i =1,2. Obviously p1,h; # 0. Assume now k > [.
We have

f = (po + axp1)(ho + arh1)
= poho + axpiho + arhi(po + axpr).
If r < k, then the term ayp1(ho + ar-h1) has filtration = k, because fil(p1) < k,
and hence fil(f) = k& > [, contradiction. Then necessarily r = k and we can
write
f = poho + ajpihy + ar(prho + hipo).
Since fil(p1h1) < k, the last term dominates if it is # 0. But | < k implies
p1ho + hipo =0
and this means, since (pg, p1) = 1, that p;|h1, polho and
h h
20— te My
n Po

is a certain polynomial. Thus h = ¢ - p and hence p?|f, contradicting our
assumption on the multiplicity. This shows k =1. =

3 p-components of differential forms

Our basic equation (2.7) holds in Q% ® F(X7, Y2, u € Sy). More generally fix
some index p € S,, and let M = F(X2,YZ|v > p, A > p) and set X = X,,.
Assume that we have a form u € Q% ® M(X?). The p-component of this form
u arise from the partial fraction decomposition in M (X) of the coefficients of
the form. We will call the subgroup Q% M[X?] the integral forms and for any
irreducible monic polynomial p € M|[X] set

p QR M[X?] = {i| v EQEM[X?, s> 1,degy v < sdegxp} (3.1)
pé
if p € M[X?] and
p QR M[X?) = {%M} € OPEM[X?), s> 1,degyv < 25degXp}
p S

if p ¢ M[X?]. Here we set degy w = 2t whenever we have w = wo + w1 X? +
s we X2 wy # 0 and w; € Q. Then using partial fraction decomposition
in M(X) we obtain

QFM(X?) = QpM[X*) o @Pp *QF M[X7). (3.2)

p
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It is shown in [Ar-Ba;] that this decomposition is compatible with the operators
dand p. If u € QFM(X?), then u = ug + Y up, and the forms u, (including
ug) are called the p-components of w.

Let us consider the p-decomposition of the form n € vi(m) where L =

F(Xu,Y,, p € Sp). Assume 7 € vp(x2)(m) where M and X are as above.

Then 7 = ng + Y, 7, is the p-decomposition of 1, np € QFM[X?] and 7, €
p~ QR M[X?]. We claim

Lemma 3.3 (i) ng € var(x2)(m) N QEM[X?] = vy (m)
(i) np € var(x2)(m) Np~ CQEM[X?].

Proof. We use dn = 0 (since n € v(m)) and the compatibility of the p-
decomposition with d to get from dng + Zp dn, = 0 necessarily

dng =0, dn, =0 for all p.

Now we apply the Cartier operator to 7 to obtain from n = C(n)
ne+ Y 1y =Clne)+ > Clnp)
P P

and hence

ne = Clig)
1y = C(np)
ie. ng € vapr(m), np € vag(x2)(m). This proves (i) and (ii). m

The equality
I/]M(X2)(m) n Q?M[AXQ] = V]\/[(m)

has been shown in (2.10). We give here a shorter proof of it. The contention 2
is clear. Let a € vpy(x2)(m)NQEM[X?] and write oo = g+ X2 +- - -+ o, X ¢
with a; € QP M. From da = 0 it follows da; = 0 for all 0 <4 < s and the
relation C(a) = « implies

g+ X? 4+ X% =Clag) + Cla) X + -+ + Clag) X®

which holds only if s =0, a = ag € QEM. But dag = 0 and C(ag) = ap imply
ag € vpr(m). This shows (2.10) again.

Let us now study the intersection
var(x2)(m) Np~CQEM[X?] (3.4)

and take 7, contained in it.
We can write 0, = % or n, = pz,% where ¢ € QPM[X?], p t £ and
deg¢ < 2tdegp, resp. degé < (2t + 1) degp, with t > 1, resp. t > 0. We set

=& +aX" + o +6X*

12



with & € QF M, 0 < i <s, and we choose s and ¢ in the above representations
to be minimal. We have dn, = 0, C(n,) = 1, because 7, € vp(x2). The first
equation implies d§ = 0 for all ¢ and the second one means
Ce) +CENX +---+C(E)X* L+ &X% 4+ X2
ot p2t

and this implies s = 0, t = 0 i.e. 1, = 0. Thus only the second case can occur.

We have n, = and from dn, =0, C(n,) = n, it follows d (p&;) = 0 for all

. P22
1 and

C(p€) £

pt+1 - p2t+1'
Thus £ = ptC(p€). Since p & we conclude t = 0, i.e.

£

p » (3.5)
with &€ € QT M[X?], deg¢ < degp. Thus we have shown that the p-component
np of a form 7 € vyx2)(m) is of the form (3.5). Furthermore we claim that
np # 0 only if p € M[X?]. Assume p ¢ M[X?] and set p = py + Xp1 with po,
p1 € M[X?], p1 #0. Then & = pon, + Xp17,. Since n, € QrM(X?), it follows
Xpinp € QpM(X?) with p; € M[X?]. This is impossible if p; # 0. Therefore
p =po € M[X?]. Summing up these results we have shown:

Lemma 3.6 Let 1) € vp(x2)(m). Then the p-decomposition n = ng + > 1, of
n satisfies

(i) ne € vi(m)
(ii) Only for p € M[X?] we may have 1, # 0, and then

-
Yoo
with £ € QEM[X?], deg& < degp. Moreover n, € vp(x2y(m), d(pf) =0

and C(p§) =¢.

Let us return to the basic equation
w=pu+dv+Tn

in QPF(X2,Y?) = QpM(X?), where X = X; and M = F(X}, Y2, p,v €
Sn, v >1). We insert the p-decomposition of the forms involved in this equation

and we obtain as in [Ar-Ba4]

w:puE—l—dvE—i—TnE—i—ZEp (3.7)
P
E, = pu, +dv, + Ty (3.8)

13



where the forms E, belong to QpM[X?] and arise from the multiplication of
T with 7,. For all irreducible polynomials p € M[X]\M[X?] we have shown
np, = 0 and hence E, = pu, + dv,. Since p, d are compatible with the p-
decomposition, we have in this case E, = 0. Thus in (3.7) only polynomials
p € M[X?] do appear. The main idea is now to get rid of the forms E, in the
equation (3.7), and this will be accomplished in the last section of this paper.

4 Second reduction step in the proof of the main
theorem

We keep the same notation as in the last section. Thus in the basic equations
(3.7), (3.8) only polynomials p € M[X?] occur. Since p is monic and irreducible,
we have p(0) # 0 for all such p’s. Therefore we can specialize in these equations
X — 0 and we obtain

w = pug +dwvo + T1mo (4.1)
where ug, vg € QrpM and 19 € va(m). Here Ty is now the polynomial b +
a1bY{ + D1 a’Y?(b+ X +a"Y?X?). Notice that the specialization X — 0
is compatible with the operators p and d. Proceeding with the other variables
X, in the same way as above, we finally obtain an equation

w=pu+dv+Tn (4.2)

with u € QRF(Y,2, p € Sp), v € U~ F(Y)2, 1t € S), 0 € vp(yz)(m) and

T=b[1+ > a'v} (4.3)
HESR

This equation will be from now on our basic equation and our goal is now to
eliminate in an appropriate way the variables Y),. Thus we have shown

Proposition 4.4 If w € H™'(F(p)/F), then there exist u € QEFF(Y,?, €
Sn), v € Q’I?_lF(Yi, f € Sn) and n € vp(yz)(m) such that (4.2) holds, where
T is given by (4.3).

During the process of elimination of the variables Y),, we will see that the
following type of conditions on the forms 7 € v(m) appear:

For some 7 € S, and E C F(Y?, u € Sy,) intermediate field (to be later
specified) one has n € vg(m) and a%n € dQ’gi1 for all o < 7. We will in the
next section study this property and characterize these forms for some specific
subfields of F(Y?, i € S,,).

14



5 Forms in good shape

Let N be some field (with 2 = 0) and aq,...,a, € N elements contained
in a 2-basis of N. Let Y be a variable over N and fix some 7 € S,,. Set
t; =t = max{i|7(i) = 1}. Then

Proposition 5.1 Letn € vy(y2y(m) be such that a®n € dQX}(_YB) forallo < 7.
Then n has the form

dar oy 4o > d(a+dy) | LEATGRY A dfw(m
ay at—1 ol +d, Ty(e+1) fw(m)

77:

where d,y = >, a%3 s Cay € N(Y), a € S;—1 such that a +t > 7, fy4) €

Nypy[Y?], i >t+1, v e X, withy(1) =1, ..., y(t) = t. (Here a +t means
that one adds 1 at the t-th place of o). Conversely, each form of the above type
satisfies a’n € dQ for all o < 7.

As a special case 7 = max{o|o € S, } we get t = n and the set a € 5,1
with o +n > 7 is empty. Thus we get the useful

Corollary 5.2 Ifn € vn(y2)(m) satisfies

a%n € dQN )
for all 0 € S,,, then
da; da,
= A A AE
ai n

with some § € v(m —n).

Proof of (5.1). Let first consider the case 7 = (1,0,...,0) = first element in
Sp. Then t = 1. By assumption a1n € d 2, which implies day An = 0 (since
dn =0) and hence n = % A € with some & € Q™! From Kato’s lemma we
can write
Z dhw 4
v fv(m)

with (1) = 1forall v, i.e. fy1)=n2 Sa1 —|—m and n, # 0in N[Y]. For simplicity
replace fy (1) by ny f,y (1) so that We can assume n, = 1 and m., € N(Y). Then

d (a1 + m2)
T SLICES P
a1 + ms
v
where &, = dffv(;?) Ao A d]cf”—“")). Hence

v (m

ad + a2m?2
‘1177:2( 1 1 ) nE,.

v (a1 + m2)2 .
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3
The form > . ((1141:77171%)2 da‘jl A&, is exact, so that our hypothesis implies

aim?  da _
Z L —— A& €AYy,

7 (a1 +m2)” @

Applying the Cartier operator to this form, we obtain

Z ar1ms da1 ne 0.
= L=

—~ (a1 +m3) m

But the elements da—all A &y belong to different filtrations for each «y, thus we

obtain
m~y =0 for all v

and hence n = da‘il A€ with § =3 &, € v(m —1). This proves our assertion
in the case 7 = (1,0,...,0).

Assume now our assertion for all o < 7, 7 € S,,. Let 0 be the next element
in S,,. We want to show the assertion for §. Assume ¢ = ¢, = max{i| (i) = 1}
and let t5 = max{i|§(i) = 1}. Then ¢t5 =t or t5 = t + 1. First case: t5 = t.
Then § = (...,1,0,...) with 1 at the ¢t-th place. By induction we have 7 =
dos g S Ayn dth) e with dy = Y ees, .y a”m2 |, mgs € N(Y),

at—1 at+d~

ot>T
d d foyim .
and &, = i oA LI Thyg we can write
Fye+1) Fr(m)
2 : aamiﬁ = aé_tmﬁftn + 2 : a"mgﬁ
o€St 1 gESE_1
ort>6 oHt>5

where ¢ —t is the element o € S;_; with o+t = §. Now we use a’n € dQN(YQ).
The form

da/\aad(athd )

— A
a ai +dy &

a‘sn =

da a(ar+dy)arda m
_Z ti)ta—t/\gwedQN(le)

at—l—d)

because daAda®t =daAda® =0 for all o € S;_;. Now the terms

4,2 d d
o’af da da o
(at+d7) a a

are all exact, as well as the forms

ala, Y oitss a"mgﬁ da A da nE
(ar + dyy)* a a7
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because each summand of these expressions has the form
2
aé-‘rt-‘ramgﬁ da da

(ar + d'y)Q a at

which is indeed exact, since 6 +t+ o0 > 0 and 6 +¢ + o € S;_1. Therefore we

obtain
25

a m27 d d
275@& P AE, € dQE(*YlZ),
v (ater'y) a at

Applying the Cartier operator to this form we obtain

Z a‘smg,tﬁ @ dat

N——A € 0.
- (a +dy) a at &

Since the forms ‘%’ A da—’zf A & are independent, we conclude ms_;~ = 0 for
2

o,y

all v and hence d, = ) ves,, a”mZ_,. This concludes the proof in this case.

o+t>4
We have to look at the case ts = t + 1. This case is only possible for 7 =

(1,1,...,1,0,...,0) (the last 1 at the ¢-th place) and § = (0,...,0,1,0,...,0)
with 1 at the (¢ + 1)-th place. In this case there is no a € S;_1 with a +1¢ > 7,
hence we have by induction, because of a’n € d2 for o < 7,

daq /\.“/\dat—l /\%/\df'y(ﬂrl) /\“./\df'y(m)-
aq at—1 Qg f’y(t-',-l) fw(m)

Since a® = as41, we have still the condition as11m € d€Q. In particular dasyq A
n = 0. It follows n € da; A -+ Adag1 A Q™ "L Comparing this with the
above expression of 7, we conclude (¢t +1) =t 4 1 for all v in the sum. Thus
f’y(t+1) S Mt+1[Y2] for all Y, i.e. fW(t+1) = A»Y(at+1 +B'Y) with A'Y’ B»y c Mt [Y2]
Since day A --- Ada; Ad Ay =0, we may assume f,(;41) = a1 + By. Write
now B, = n2 + Y a®n? ., where a runs over S; with a + (t41) > §. We want

o,y
to show ny = 0 for all 4. The assumption a:1+17 € d Q2 means

dal/\“./\% (at+1+Bv)a§+1 dat+1

ax at (aty1 + Bﬂy)2 aty1

AE, €dQ
v

with &, = $leen Ao Do A gimilar argument as before shows that
vy fytt2) Fy(m)

da da a2, n? da
Z L4 t+170 t+1/\§7

o ar  (agi1 4 By)? a1

is exact. Applying the Cartier operator, we obtain

Ap1m da da da
Zﬂ_l/\.../\_t/\il/\g,yzo
> (at41+ B,) a1 at att1
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and again it follows n, = 0 for all v. This completes the proof of our proposition.
]

The property assumed in the last proposition for forms n € v(m) will play
a crucial role in the proof of our main theorem. We will state this property in
the following definition.

Definition 5.3 Let E be any field with 2 = 0 and aq,...,a, € E be elements
contained in a 2-basis of E. Fix some T € S,,. Let n € vg(m). We say that n
is in good shape with respect to T (and aq,...,a,) if

-1
a’nedQy

for all o < 7.

Thus proposition (5.1) characterizes forms in good shape for certain fields.

6 Last reduction step in the proof of the main
theorem

We fix the lexicographic ordering in the set S, and for any u € S, let u™ be

the next element in this ordering. Let T = Tp = b(1+ 3, a"Y;?) and we define

T,, inductively by
Ty = ba"Y? + T+

Let M = F(Y?),>, (for a given p) and let w € Q%. We consider the

v
following assertions on w and pu:

(A,) There exist u € QEM(Y2), v € QP 'M(Y?) and 7 € Var(vg)(m) N
QEM(Y?) such that
w = p(u) +dv+Tyun

and a”n € dQ for all o < p.

(By.) There exist u € QEM[Y2], v € QF ' M[Y,2] and 1 € vp(m) NQEM such
that
w=p(u) +dv+Tyun

and a’n € dQ for all o < p.

Lemma 6.1 (Main lemma) For any pu € Sy,

(Ap) = (Bu) = (Ayr)-
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Clearly (Ap) is the basic equation (4.2). Thus (6.1) implies that starting
with (Ap), i.e. (4.2), we arrive at an equation (for the last element in S,,)

w = pu-+dv+by (6.2)

with u € QF, v € Q’I?_l and 1 € vp(m) such that a”n € dQp for all o € S,,.
Applying now corollary (5.2) we conclude n = % EERWA % A€ with € €
vp(m —mn). This implies the main theorem.

The rest of this section is devoted to the proof of (6.1). Let us first show
the easy part, namely (B,)==(A,+). Assuming (B,) one easily checks that,
without restriction, u = ug € QM and v = vy + 'UQYi with vg, vo € Q’I?*lM,
as well as n € vy (m) NQPM with a”n € dQ for all o < p.

From
w = pug + d(vo + vng) + (ba"‘YM2 + T+ )n
we obtain
w = puo +d(vo) + Tyt 1
and

d(ve) = ba'n.
Since b € F?, we get a*n = b= td(vy) € dQ, i.e. it holds an € dQ for all
o < p*. This proves (A4,+).
The hard part of the lemma is the implication (A,)==(B,,). Let us start
with the basic equation (i.e. (A4,))

w=gpu+dv+Tn

with w € QF, u € QRM(Y?), v € QF ' M(Y?), n € vareyz)(m) N QEM(Y?),
T=1T,Y =Y, for some p € Sy, where a’n € df2 for all ¢ < p. For u =0,
this is the equation (4.2). Let t = max{i|p~ (i) = 1}, where p~ denotes the
antecessor of p. We consider the p-decomposition (see §3 and [Ar-Bas]) of the
form 7

n=ng+Y (6.3)
p

with 75 € vary2)(m) NQEM[Y?] = var(m), n, € %QFM[YQ] Nvar(y2y(m) (see
(2.10)). Then we have

Lemma 6.4 Ifn in ( 6.8) satisfies an € dQ for all 0 < p, then ng, np, for
all p, have the same property.

Proof. Since d is compatible with the p-decomposition (see [Ar-Bai]) we obtain

0= d(a”y) = d(anz) + 3 d(an)
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and hence d(a’ng) =0, d(a’n,) = 0 for all p and o < p. Also C is compatible
with p-decomposition (loc. cit.), so that from C(a”n) = 0 it follows

C(a’ng) =0
C(a’np) =0.

This implies a’ng, a’n, € dQ for all p, o < p.

Let us now insert the p-decompositions u = ug + Zup, v = vg + va,
n = ng + > 1, into the equation (A,). Here we have u, € %Q}?M[YQ], vp €
SQETIMIY?), ne € varyz) (m) NQEM[Y?] = var(m) and 7, € 2QrM[Y?] N
Var(y2)(m). We obtain

w:puE+dvE+T77E+ZEp (6.5)

P
E, = pup, +dv, + Ty (6.6)

with E, € QEM[Y?] for all p (see [Ar-Bay]). We have seen in (3.6) that the
irreducible polynomials appearing in the p-decomposition of 1 are in M[Y?].
Thus for the others polynomials p we have E, = pu, + dv, and it follows im-
mediately that I, = 0 since F), is integral and pu,, d v, are in the p-component
so these terms can be discarded in the above expression (6.5). Thus we assume
in (6.5) and (6.6) that all irreducible polynomials p are in M[Y?]. Moreover,
according to (6.4) we know that the forms ng, 1, satisfy a”ng, a”n, € dQ for
allo < p. m

In the next lemma we will use the following notation. Given a polynomial
f € M[Y?], we denote by fil(f) the maximal filtration of the coefficients of
f (with respect to the given 2-basis). For f,g € M[Y?] we write f < g if
deg f < degg or degf =degg and fil f < filg.

Lemma 6.7 For any p and n, as above it holds

dp
771):770"'771/\?

with no, M € vam(y2) ND, <, %QFM[YQ] and a’ng, a®n € dQ for all o < p.
Proof. From the characterization of forms in good shape given in (5.1) we get

B N | /\Zd(”gat"‘mv) A5

a1 at—1 > n%at + my Iy

Mlp

where m, = Y _a’mZ_, Mgy, ny € M[Y] and o runs over those o € S;_;
: dfy _ dfsetn Ao A S s _ () —
with 0 +¢ > p, and = = Fron NN T with ¢ = max{i|p~ (i) = 1}.
Moreover for all v € ¥, in this sum we can write (i) = i for i <t, f,;) = a; ,
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i<t—1 and fy4) = nda;+my and f;) € My;[Y?] for all j. Let v be the
maximal multi-index in the above sum, and set

A _da o day dle ) dfe

d fyom
np(y f — ./\&
vy

@ @ niaetmy o fye Frtm)

(6.8)

and

_da ~d (n3a¢ +may) A Lhery o dfam
Np,<y = — Z 2 o ’
a 5T TGt + mx I+ Faam)

Thus 7, = 1py + 1p,<~. We use now the fact that n, € %QFM[YQ] to obtain
the 2—basis expansion

d dai—; d da da
npzzcx\ﬁ/\"'/\L/\ﬁ/\M/\"'/\M
b ai ar—1 at AX(t+1) AX(m)
with ¢y € %M[YQ]. Let ¢y = h—p*, where hy € M[Y?], degy hy < degy p. On the
other hand only the term y, , contributes to the maximal term in this expansion,
and its contribution is (see the proof of (2.10))

da i day aye) Dy (Fesen) dayen) |
@ niatmy o Py Gy (o+1)
 9mDrim) (From)) daymy
Frmy Qry(m)
_ ﬁ (av(j)Dv(j) (fv(j))> day
it 0 Ay

Thus we obtain

11 [ @60 Pv6 (F6)
ST

j=t f’Y(J)

where deg iy < degp, deg (D) (f1()) < deg fy), Bl (Dyiiy (Fr0)) < 7(0) =
fil ( f,y(i)). This last remark follows from the definition of the operator D. ;.

Therefore . .
o =a [ Do) (o) (6.9)
j=t j=t

witha = [[., ay(;) € F. Inparticular p| [T}", f,(;) and thereis some t < k < m

with p|fy ). This k is unique and it follows, since p is irreducible and monic

(see (2.11)), that fil(p) = (k). We can assume without restriction that f.;

are products of irreducible polynomials ¢ with multiplicity 1 and filtration y(j).
Now we distinguish three cases:
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(a) j > k. Then f,;) € M is constant.

To see this, we choose j > k maximal with f. ;) € M[Y?]\M. Let q|f,;
be a monic irreducible factor. Then fil(g) = ~(j). From (6.7) we get
a| TT:%, Doy (f4()), because it can not be p since fil(p) = (k) # ~(j).
Hence q| D, (f,y(i)) for some i > t. If [ > j, by the choice of j, f,) € M.
Hence i < j. But i < j implies fil (D) (fy())) < 7(i) < 7(j) and this
contradicts q| D (fy(i)), since fil(q) = v(j). This implies f.;) € M for
all j > k.

(b) j =k. We claim f, ) = cp with ¢ € M.
Assume q|fy 1) is an irreducible monic factor different from p. We have
fil(g) = v(k). But from (6.9) it follows q|D.,(;y (f+(;)) for some i > t, and
this implies fil(g) < 7(i). Since f,; € M for [ > k, it follows i < k,
and hence fil(¢) < v(¢) < v(k), which is a contradiction. Thus ¢ = p and
since its multiplicity is one, we have f, ) = cp. Since fil(f,)) = v(k), it
follows ¢ € M-

(c) j < k. We claim deg(f.(;)) < deg(p) for all j < k.

Since fil(f,;)) = 7(j) < (k) = fil(p), we see that any monic irreducible
factor of f.(;), say g, has fil(q) = 7(j) < (k) and hence g # p. Inserting
(a) and (b) in the relation (6.9) we obtain an equation of the form

dhfyy - Fye-n = [T Dy (F)) - Dy (ep) (6.10)
t<j<k—1

with some d € M. If q|f,x—1) is a monic irreducible factor, we have
fil(q) = v(k — 1) and since fil(D(j) (f1(;))) < 7(j) for all j < k —1 and
therefore ¢|D ) (cp). Since all irreducible factors of f,_1) have mul-
tiplicity 1 we obtain fy_1)|D~ k) (cp) and hence deg(fyx—1)) < deg(p).

We set Dy x) (cp) = Ly(k) fy(k—1) With fil(ly k) < (k) and deg(lv(k)) =
deg(p) — deg(f,(—1)). From (6.10) it follows

dhoyfoy - Fye2y =y T Pai) (Fi)) - (6.11)
t<j<k—1

Let now ¢ be a monic irreducible factor of f._2y. Then fil(q) = v(k —2)
and from (6.10) we conclude gq|l, () D k—1) (f,y(k,l)). Since all factors

of f,y(k_g) have multiplicity 1, it follows fV(k—Q)”V(k)DV(k—l) (f’y(k—l))-
Hence

deg(fy(k—2)) < deg(lyky) + deg(Dye—1) (fr(k-1)))

< deg(p) — deg(fyk—1)) + deg(Dye—1) (fy(k-1)))
< deg(p).

Iterating this argument we obtain our claim.
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Summing up, we have in (6.8) the following situation. There is an integer k,
t <k < m, such that f, ) = cp with ¢ € M), fy(;) € M for all j > k and if
J <k, deg fy(; < degp.

If v(k) > t, then

d d(n? d _ d d fo(m
npﬂ:_a/\w/\.../\w/\_c/\.../\w
a nyay + my Fyk-1) c Frym)

L dae, 7(1(2%% tm) g ey de o A

a nias + my k=1 P Fry(m)

where both summands are in good shape with respect to u~ and satisfy the
requirements of the lemma, since all f, ;) (j # k), have irreducible factors < p.
If v(k) = t, then f,4) = fi = cp is the polynomial nZa; +my, and obviously
7p,~ has the decomposition stated in the lemma, and is in good shape with
respect to u.
Let us now consider 1, <. We have

da A Z d(n2as +ma) A d fa

Mp,<y =
’ ngzat + Mea fa

a<ly

which is in good shape with respect to u~. Decomposing 7, <~ in p-components
we get
Mp,<v = Mp,y.p t Tlp,y,0

where 7, , belongs to - Qp M[Y?]Nwar(y2)(m) and ny,0 € @, ¢ QrM[Y?]N
Vm(y2y(m). From (6.4) we know that all these summands are in good shape
with respect to p~. Thus 7,0 contributes to hg. We apply now the above
procedure to 1, ., considering the highest multi-index A < v appearing in
Np,,p- We continue with this procedure to finally get the desired decomposition
of n,. This proves the lemma. m

Lemma 6.12 For any p appearing in (6.6) it holds

dp
up:uo—l—ul/\?

d
Up:U0+Ul/\—p
p

with ug, u1, vo, v1 € QpM[Y?], degu;, degv; < deg(p).

Proof. Set u, = %, vp = ;—; with v/, v' € QrM[Y?], degu’ < degp, degv’ <

2 deg p. Inserting in (6.6) we get

p*E, = u/® + pu’ + Ao + pT(pn,)
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with pn, € QrM[Y?]. Set M(p) = M[Y]/ < p > and consider the rest class
homomorphism QpM[Y?] — Q). The last equation induces the relation

WP+ dv =0

in Qp(y). Using the Cartier-operator we conclude from dv’ = u/? that v/ =0
and dv' = 0 in Q7). From lemma (3.2) in [Ar-Ba;] we get

w =pug+u Adp
dv' =p?dvy +pdu; Adp

with wug, u1, vo, v1 € QpM[Y?], and degu;,v; < degp. Thus

dp
up:U()‘FUl/\?

and

d
Up:U0+Ul/\—p.
p

This proves the lemma. m

We insert now the above relations in (6.6). It follows

d
E, 4+ puo +dvg + T = (pur +doy +T771)/\?p. (6.13)

Here 79 is in good shape with respect to u~ as well as n; A %. Actually if
fil(p) > ¢, then 7 is in good shape with respect to p~, and if fil(p) = ¢, then
A dc—;p with some ¢ € My, is in good shape with respect to p~.

In what follows we will need the following remark concerning 2-basis of
M(p). Assume p = po + app1 with po, pr € M<x[Y?], fil(po), fil(p1) < t,
and t = fil(p). Then we obtain the following 2-basis of M(p) = M|[y] where
y=Y mod(p): {a1,...,ai-1,a141,...} = B—{a:} U{y}. We keep the same
ordering in B— {a;}as in B, but we set y as the maximal element in this 2-basis.

If f € M[Y?] has filtration s < ¢t = fil(p), then it follows easily that fil(f) = s
in M(p). If f € M[Y?] has degree < degp and filtration fil(f) = s > ¢, then
fil(f) > s in M(p) too (and in fact fil(f) = s). To see this, let us assume
fil(f) < s and write in M[Y?]

[ =mno +ami + as(ne + ang)

where n; has degree < p and do not contain a; or as in the 2-basis expansion,
0 < ¢ < 3. In particular fil(n;) < s,0 < i< 3. In M(p) we get

f =70 + asiay + as(Ma + as73)

where a; = 170_]2?1 has filtration < ¢ in M(p). If fil(f) < s, then we have

p1
Mo + a;Mi3 = 0 in M (p) and this implies ny = asnz + Ip with some polynomial
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I € M[Y?]. Since degna, degnz < degp, it follows [ = 0, i.e. na = asn3, and
this is a contradiction.

From (6.13) we obtain
pur +dvy +Tm =0

in Qpz(py (see [Ar-Bay]). In this relation we know that 7, is in good shape with
respect to pu~ if (k) > ¢ or if ~(k) = ¢, then m A d]Tp is in good shape with
respect to p~. Moreover since for all ~(j) > ¢, the elements f ;) appears
in n; are constants (see (a) in the proof of (6.7)), we get from the last remark
that the multi-indices of 77 keep the same ordering in M (p) with respect to
the 2-basis of M (p) introduced in this remark. Now the equation

Tnm = pus +duv

leads to the relation
T = pc+ Z Ay Fr)
itk
with A, € M(p)y;) and deg A,y < degp. This follows from lemma (3.3)
in [Ar-Bag], and the fact that we can change the 2-basis of M (p) through the

replacement f,;y < a,(;) for i # k. Here 7 is the maximal multi-index in 7.
Thus in M[Y?] we obtain

T =gpc+ Z A'y(i)f'y(i) + ph (6.14)
itk

with ¢ € M[Y?], dege < degp, Ay;) € M[Y?], deg A,(;) < degp and hence
also degh < degp. We also have fil A ;) < (). If y(k) = t, recall that
fyky = ft = cp with ¢ € My, and in this case we write cp instead of p in the
above relation. Changing the notation a little, we will write f, ) = pif y(k) > ¢
and f,) =cpif y(k) =t, and h = A,(;) in both cases. Thus we have

T =gpc+ Z A'y(z)f'y(z) (615)

We will now use this relation to get rid of the term 7', in the equation (6.13).
To this end we distinguish two cases: (k) = filp for k > ¢t and ~(k) =t for
k=t

First Case : (k) = filp, k > t. We can write

d d(n? d k d fyim
771:—a/\ (n;at—i_mt)/\ f'Y(tJrl)/\.../\ /\.../\@
a nyas +my Jr(t+1) Frym)
+M1,<y
=Myt Mm<y
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for the form n; in lemma (6.7). Here « is the maximal multi-index ap-
pearing in 7;. Let us now use (6.15) with & > ¢, to compute Tn; 5 A %.
Notice that in this case we have written f,) = p, Ayx) = h, where
degh < degp, and f,) = ft = nZa; +my. We get

dp da dfv(t dfv(m
Ty N — = | pc+ A Ry~ e .
T ( Z @@ "To V" Fm

It is convenient to write f,;y = a;, y(i) = i, for i <t, so that

dfi) Ao A M
) Frm)

dp o
Ty A e (@C + Z Ay fy)

i=1

Let v<p gs(m) denote the subgroup of vy;(y2y(m) of forms in good shape
with respect to u~ and where the generators are logarithmic differential
forms d¢/q with ¢ < p. We will compute the above expression modulo
the group Q™ +d Q™! + Ty, os(m). Since

- dA
(0 _ +(0)
Aahop == Aolo -

we have

d dA; A fim
f”(”A..A 1@ o L ym)

dp
T AL =3 A fr
B b7 Ay Frm)

>4
3 dfhay o 4o o A

T+S A nf A
2 A0 5o Fy Ay i Fy(m)

i=1 Jj#i

=1
i A he A
— Ho Av(z fv(m)

m
m
m

dfya) dA, i) d fym)
+ A f PRy it A5/ Wt ELLL A
; ; TR L ) Ay Frm)

Since fil(A,;)) < (i), it follows that da Ad A, ;) = 0 for all i < t. Hence

. d(n? :
the above sums can be taken for i > ¢t. Moreover the term @ A %
. d dA
appears in the first summand, so that 7'y _." | %i? NN (()” A A
ki (i
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dfoym) s . .
4 g contained in Tv<p.gs, and can be dropped. Hence

Frv(m)
dp & d fy) d A, d f(m)
TmayN— = A(<)f(<) Ao A — Y Ao\ AT
Tp ; ; v(3) (i Ty Ay Fym)
3 dfya dA,;
= Y Aoho+A0ho) fv()A...AA_MAM
1<j<i<m y(1) +()
SR M A A m
Ay Ja(m)

Replacing A, () f )y + Ay fr) Y T+32044 5 Ay fr) mod p we obtain

dp - d fy) dA.;
T7717,y/\—E Z T+ZA7(l)f'y(l) 'Y( A---A A'V(])/\

p 1<j<i<m 14,5 FHa v(35)
A o dhm
Av(z fv(m)

dA
= Z ZA’Y(lf’y fv(l) A AV(J)/\---/\
1<j<i<m l#i,j Ha v(5)

ddyi e
Ay Fryim)

Iterating this reasoning we obtain

dA,,
T /\ — Z A'y(z f'y(z - A %()
v(m)
= TdAV(” Ao A 7(1 A”("‘)
Ay Ay(m)
=0

ie.
d
Thy - A ?p € PO + A+ Tuzy go(m)
Thus we get rid of the term T , A dITP in the equation (6.13). We can

now continue with 7'; <, which has lower filtration, and this shows that
we can assume 7; = 0 in (6.13).

Thus we have
dp
E, + puo +dvo + T = (pus —i—dvl)/\? (6.16)

where 79 € vpy2)(m) is in good shape with respect to p and is in
Vepes(m), le. its g-components are in lower filtration than p. Now a
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Second case:

simple argument, see [Ar-Ba;j], shows that we can get rid of the term
(pu1 +dwy) A d?p and hence

E, = pug +duvo +Tno

and therefore F, disappears in the basic equation (6.5), because the uy,
Vg, No are in lower components. Thus we are done in the case k > t. Let
us now consider the

k=tie ~(k)=k=t=A1l(p) = fil(fy) where f,u) = nia; +my = cyp
with ¢, € My, m¢ = > a"mZ, 0 € S;_1, o +t > p and ng, my € M[Y].
From the proof of (6.7), case (b) we know that f,;y € M, for all i > ¢
and fi = fy) = ¢yp, fil(c,) < t. Let us at this place introduce the
following M ?-vector space

W:{ant+Za0yg|x,ygGM,JGSt,l,JthZM} (6.17)

so that f.) € W[Y?]. We will say that the polynomials in W[Y?] are in
good shape with respect to p~. In particular ¢, € W. We have in this
case

d d d A foim

np:_a/\z Cyp/\ f’y(tJrl)/\.“/\ f’Y( )
a cyp Jy(e+1) Ty (m)

and fy) = cyp for all v. We write f,;) = a;, v(i) = i for i <, so

that we have 1, = >__ %. Let v be the maximal multi-index in this

summand, set

d da d d dfoim
M%_aAﬂAMA...A@
;

a P fyern Frm)
with f,;) € M for all j > t. Set ey, = 22\, (d fa/fx) so that n, =
My.p + N<y.p-
The equation

d
Ep + puo +dwvo + Tno = (pur +dwvy +Tnr) A ?p
implies puy +dwvy +Tn = 0 in Q). Notice in this case 7, = 71 A %,
1o = 0, since k = t. Since the ordering of the multi-index appearing in 7,

remains the same in the 2-basis of M (p), we obtain in M[Y?] (see remark
after the proof of (6.12))

T =pc+ Y Ay fri + ()b (6.18)
it
with h € M[Y?]. Here all f,) are constants, ¢y, A,u), h € M[Y?]

with degc,, deg A, (;), degh < degp and A, € M) [Y2]. Moreover
fV(t) = CyPp and Aw(t) = h. Then

T =gpc+ Y Ay fyi
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Lemma 6.19 Ifdegp > 2, then h € W[Y?]

We postpone the proof of (6.19) to the end of the section. We look at the
basic equation for p of degree > 2.

d
E, + puo + dvg = (pus +dvi +Tmr) A i

We want to get rid of the term Tn; A d]Tp = T'n,. We have for v = maximal
multi-index in n,

)da/\dc.yp/\”. df,y

Tnyp=|0c+ ) Ayiyfya
v.p < Z (%) Jy(3) eyp f'y(m)

i=1

and we compute again modulo the subgroup Q™ +d Q™!+ T o5(m).
Then

Ty = (Z Av(i)fv(i)> — -
i=1 v

i )f( /\MA df'Y(m
’ f (1) Ay fv(m)

- dfya d A, d fy(m)
T+ Ay Fvo) Nt L2 Ay S N A VL2
; ; T f Ay ) Fy(m)

Whenever i < t, the terms f”“) Ao A dAA”(") Ao A Yam are gero
Fr( ~(4) Fyim)

because A,y € M., thus only fori >t there are contribution to the
L NG A AP for > ¢
W A fy

v (%) (m)
belong to Tvep gs(m). Only the case i = tinnon trivial, and this assertion

follows from lemma (6.19) since A; = h € W[Y?]. Thus we have

sum. Moreover, all the terms T -2+~

m

dfy) d A, dfym)
Tnyp = Ay Frvi) WD Ao p Y AL A
v,p ; ; Y@ Sy f'y(l) A (i) f,y(m

Now we continue as in the case £ > ¢t to conclude 17,, € Q™ +
dQ™ ! + Tv.p os(m). Doing the same with T~ we finally obtain the
desired result Ty, € pQ7, +d Q2 1+ Ty, gs(m) and we are done in this
case.

Thus we are left with the case degp = 2, ie. fyn) = fy0) = ¢yp =
cyY?+d, e W[Y?, ¢, € W, d, € W. From the equation

T=pc+ Y Ayiyfy + (¢p)h
it
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we see degh = 0,i.e. h € M, as well as A
coefficients we obtain ba* = c,h, i.e.

~@) € M. Hence comparing

ba%ay; ba%ay
h= =—5 ¢y
Cy c3

But b € F? and o < y, and

dh  da® da; dc,
- = +—+—
h a’® ag Cy
da dh da da° da da; da dc,
— A =—A +— A — AN —

a h a a’® a ag a Cy

and we see immediately that the terms (%a A % A dfi are in good shape
A

with respect to = and belongs to lower degree or filtrations (in fact they
are constants). Thus we also get rid of the terms T'n, = T'm A d?p in the
basic equation.

It remains

d
Ep+pU0+d’l)0+T770 = (pul +d’U1> A ?p

with wug, vg, no having at most denominators divisible by ¢’s with ¢ < p, and
7o in good shape respect to p~. Again pu; +dwvy = 0 in M (p) enable us to
eliminate E, from the basic equation (6.5).

Proceeding in the same way we finally arrive at a relation

w=pug +dvg +Tng

with ug, ve, ng € QpM|[Y?] and ng € Vnr(y2)(m) in good shape with respect to
p, ie. a’np € dQ for all o < p. But since (see (2.10)) QFM[Y?|Nvpppy2(m) =
vp(m), we get ng € var(m). This conclude the proof of the basic lemma:
(Ay)=(Bu). O

Now we return to the proof of lemma(6.19).

Proof of lemma 6.19. To this end, we look at the relation
T=pc+ Y Ayiyfyi + (¢p)h
i#t

with ¢, € W, dege, deg A, (;), degh < degp and also deg f, ;) = 0 for i # ¢, i.e.
fyi) € M foralli # t. Here T = ba*Y?+T,,+. We write c,p = po+p1Y?+- -+
psY % with po,...,ps € W and ps = c,. Setalsoh = ho+h Y2+ -+hs_1Y?72
and ¢ = cg+ 1 Y2+ - 4+ ce_1Y? 72, ¢;,h; € M. Then the equation above
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implies hs_1 = 0 and the other coefficients satisfy the following system of linear
equations

Ds Ps—1 Ps—2 -+ D3 D2 ho *
0 ps DPs—1 - pPsa D3 h1 :
0 0 Ds - D4 ha _ O

: : - : : 2,
0 0 0 Ps Ps—1 h573 0
0 0 0 - 0 ps hs—s 2y

where x = ¢,/ if s is even and x = 0 otherwise. Since the matrix of this
system has entries in W, it suffices to show that the inverse matrix also has
entries in W. This will imply h; € W for all <. Let I, denote the identity
matrix and consider the n x n-matrix E = (e; ;) with e; ;41 = 1 and e;; =0
otherwise. Then E™ = 0. Fix n elements ¢; € M and define the M?-vector
space W = M2q; + -+ + M?q,. Assume g, # 0. Let M, (W) be the abelian
group of n x n-matrices with entries in W and let

qn Qqn-1 - 1
0 qn .« . q2
A= . . .
0 0 e gn

ie. A= inn +qn71E+ st qlEnil = (qn (In + Z?;ll (];—;]Ej) = Qn (In + B)

where B" = 0. Then A~! = ¢! (In +B+---+ B"_l).
We claim A1 € M,,x,,(W). Obviously this claim proves our lemma (6.19).
We have
Al = q—;’In+q—gB+--'+q—;’B”‘1

n n n

and it suffices to show %Bi € Myxn(W).

If 4 = 0 this is clear. Assume 7 > 1.

If ¢ = 2t is even, then

q Gn o~ (s (T

n 2t _ 41n n—j 2t __ n—j 2ty
e’ T ( > EanZ((f“) B
n

2
G =\ dn =

is clearly in My, x,(W).
If i = 2t 4+ 1 is odd, then

q n—1 q ) n—1 q N\ 2t

n P z : n—j i E : n—j 2t5
_QB,Li <—2) E] <—2> E ’
ar an dn

j=1 j=1

which also belongs to M,,«, (W) since g,—;/q2 € W.
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This proves the claim. m
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