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Abstract. We prove that the essential dimension of a p-group G over
a field F containing a primitive p-th root of unity is equal to the least
dimension of a faithful representation of G over F .

The notion of the essential dimension edF (G) of a finite group G over a field
F was introduced in [5]. The integer edF (G) is equal to the smallest number of
algebraically independent parameters needed to classify all Galois G-algebras
over any field extension of F . If V is a faithful linear representation of G over
F , then edF (G) ≤ dim(V ) (cf. [2, Prop. 4.11]). The essential dimension of
G can be smaller than dim(V ) for every faithful representation V of G over
F . For example, we have edF (Z/3Z) = 1 over F = Q or any field F of
characteristic 3 (cf. [12], [2, Example 2.3]) and edC(S5) = 2 (cf. [5, Th. 6.5]).

In this paper we prove that if G is a p-group and F is a field of characteristic
different from p containing a primitive p-th root of unity, then edF (G) coincides
with the least dimension of a faithful representation of G over F .

In the paper the word “scheme” means a separated scheme of finite type
over a field and “variety” an integral scheme.

Acknowledgment: We are grateful to Z. Reichstein for useful conversations.

1. Preliminaries

1.1. Severi-Brauer varieties. (cf. [1]) Let A be a central simple algebra of
degree n over a field F . The Severi-Brauer variety P = SB(A) of A is the
variety of right ideals in A of dimension n. For a field extension L/F , the
algebra A is split over L if and only if P (L) 6= ∅ if and only if PL ≃ Pn−1

L .
The change of field map deg : Pic(P ) → Pic(PL) = Z for a splitting field

extension L/F identifies Pic(P ) with eZ, where e is the exponent (period) of
A. In particular, P has divisors of degree e. The algebra A is split over L if
and only if PL has a divisor of degree 1 (a hyperplane).
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1.2. Groupoids and gerbes. Let X be a groupoid over F in the sense of [17].
We assume that for any field extension L/F , isomorphism classes of objects in

the category X (L) form a set which we denote by X̂ (L). We can view X̂ as a
functor from the category Fields/F of field extensions of F to Sets .

Example 1.2.1. If G is an algebraic group over F , then the groupoid BG is
defined as the category of G-torsors over some base over F . Hence the functor

B̂G takes a field extension L/F to the set of isomorphism classes of G-torsors
over L.

Special examples of groupoids are gerbes banded by a commutative group

scheme C over F . There is a bijection between the set of isomorphism classes
of gerbes banded by C and the Galois cohomology group H2(F, C) (cf. [7, Ch.
4] and [14, Ch. 4, §2]). The gerbe BC corresponds to the trivial element of
H2(F, C).

Example 1.2.2. (Gerbes banded by µn) Let A be a central simple F -algebra
and n an integer with [A] ∈ Brn(F ) = H2(F, µn). Let P be the Severi-Brauer
variety of A and S a divisor on P of degree n. Denote by XA the gerbe banded

by µn corresponding to [A]. For a field extension L/F , the set X̂A(L) has the

following direct description (cf. [4]): X̂A(L) is nonempty if and only if P is

split over L. In this case X̂A(L) is the set of equivalence classes of the set

{f ∈ L(P )× : div(f) = nH − SL, where H is a hyperplane in PL},

and two functions f and f ′ are equivalent if f ′ = fhn for some h ∈ L(P )×.

1.3. Essential dimension. Let T : Fields/F → Sets be a functor. For a field
extension L/F and an element t ∈ T (L), the essential dimension of t, denoted
ed(t), is the least tr. degF (L′) over all subfields L′ ⊂ L over F such that t
belongs to the image of the map T (L′) → T (L). The essential dimension

ed(T ) of the functor T is the supremum of ed(t) over all t ∈ T (L) and field
extensions L/F .

Let G be an algebraic group over F . The essential dimension ed(G) of G
is the essential dimension of the functor taking a field extension L/F to the
set of isomorphism classes of G-torsors over Spec L. If G is a finite group, we
view G as a constant group over a field F and write edF (G) for the essential
dimension of G over F .

Example 1.3.1. Let X be a groupoid over F . The essential dimension of X ,

denoted by ed(X ), is the essential dimension ed(X̂ ) of the functor X̂ defined
in §1.2. In particular, ed(BG) = ed(G) for an algebraic group G over F .

1.4. Canonical dimension. (cf. [3], [11]) Let F be a field and C a class of
field extensions of F . A field E ∈ C is called generic if for any L ∈ C there is
an F -place E Ã L.

The canonical dimension cdim(C) of the class C is the minimum of the
tr. degF E over all generic fields E ∈ C.
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Let T : Fields/F → Sets be a functor. Denote by CT the class of splitting

fields of T , i.e., the class of field extensions L/F such that T (L) 6= ∅. The
canonical dimension of T , denoted cdim(T ), is the canonical dimension of the
class CT .

If X is a scheme over F , we write cdim(X) for the canonical dimension of
X viewed as a functor L 7→ X(L) = MorF (Spec L, X).

Example 1.4.1. Let X be a groupoid over F . We define the canonical dimen-

sion cdim(X ) of X as the canonical dimension of the functor X̂ . In particular,
if G is an algebraic group over F , then cdim(BG) coincides with cdim(G) as
defined in [3].

Example 1.4.2. (A relation between essential and canonical dimension) Let
T : Fields/F → Sets be a functor. We define the “contraction” functor T c :
Fields/F → Sets as follows. For a field extension L/F , we have T c(L) = ∅ if
T (L) is empty and T c(L) is a one element set otherwise. If X is a regular and
complete variety over F viewed as a functor then ed(Xc) = cdim(X) and this
integer is equal to the smallest dimension of a closed subvariety Z ⊂ X such
that there is a rational morphism X 99K Z. (cf. [11, Cor. 4.6]).

1.5. Valuations. Let K/F be a regular field extension, i.e., for any field ex-
tension L/F , the ring K ⊗F L is a domain. We write KL for the quotient field
of K ⊗F L.

Let v be a valuation on L over F with residue field R. Let O be the valuation
ring and M its maximal ideal. As K⊗F R is a domain, the ideal M̃ := K⊗F M
in the ring Õ := K ⊗F O is prime. The localization ring ÕfM

is a valuation
ring in KL with residue field KR. The corresponding valuation ṽ on KL is
called the canonical extension of v on KL. Note that the groups of values of
v and ṽ coincide.

2. Essential and canonical dimension of gerbes banded by (µn)s

In this section we relate the essential and canonical dimension of gerbes
banded by (µn)s. The following statement is a generalization of [4, Th. 7.1].

Theorem 2.1. Let X be a gerbe banded by (µn)s over an arbitrary field F
with n > 1 and s ≥ 0. Then ed(X ) = cdim(X ) + s.

Proof. The gerbe X is given by an element in H2(F, µn)
s = Brn(F )s, i.e., by an

s-tuple of central simple algebras A1, A2, . . . , As with [Ai] ∈ Brn(F ). Let P be
the product of the Severi-Brauer varieties Pi := SB(Ai), i = 1, . . . , s. As the
classes of splitting fields for X and P coincide, we have cdim(X ) = cdim(P ).
We shall prove that ed(X ) = cdim(P ) + s.

Let Si be a divisor on Pi of degree n. Let L/F be a field extension and
fi ∈ L(Pi)

× with div(fi) = nHi − (Si)L for i = 1, . . . , s. Write 〈fi〉 for the

corresponding element in X̂ (L) (cf. §1.2).
By Example 1.4.2, there is a closed subvariety Z ⊂ P and a rational domi-

nant morphism P 99K Z with dim(Z) = cdim(P ). We view F (Z) as a subfield
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of F (P ). As P (L) 6= ∅ and P is regular, there is an F -place γ : F (P ) Ã L
(cf. [11, §4.1]). Since Z is complete, the valuation ring of the restriction
γ|F (Z) : F (Z) Ã L dominates a point in Z. It follows that Z(L) 6= ∅. Choose
a point y ∈ Z such that F ′ := F (y) ⊂ L.

Since P (F ′) 6= ∅, there are gi ∈ F ′(Pi)
× with div(gi) = nH ′

i − (Si)F ′ for
i = 1, . . . , s. As Pic(Pi)L = Z, there are functions hi ∈ L(Pi)

× with div(hi) =
(H ′

i)L − Hi. We have

div(gi)L = div(fi) + div(hn
i ),

hence
aigi = fih

n
i

for some ai ∈ L×. Hence 〈fi〉 = 〈aigi〉 in X (L), therefore 〈fi〉 is defined over
the field F ′(a1, a2, . . . , as). It follows that

ed〈fi〉 ≤ tr. degF (F ′) + s ≤ dim(Z) + s = cdim(P ) + s,

hence ed(X ) ≤ cdim(P ) + s.
We shall prove the opposite inequality. As P

(
F (Z)

)
6= ∅, there are fi ∈

F (Z)(Pi)
× with div(fi) = nHi−(Si)F (Z). Consider the field L := F (Z)(t1, t2, . . . , ts),

where ti are variables, and the point 〈tifi〉 ∈ X̂ (L).
We claim that ed〈tifi〉 ≥ cdim(P ) + s. Suppose 〈tifi〉 is defined over a

subfield L′ ⊂ L, i.e., there are gi ∈ L′(Pi)
× and hi ∈ L(Pi)

× with tifi = gih
n
i .

We shall show that tr. degF (L′) ≥ cdim(P ) + s.
The sequence of variables t1, t2, . . . , ts yields a valuation v on L over F with

residue field F (Z) and the group of values Zs such that v(ti) = ei, where the
ei denote the standard basis elements of Zs. Write w for the restriction of v
on L′.

Let K = F (P ). We extend canonically the valuations v and w to valuations
ṽ and w̃ on KL and KL′ respectively (cf. §1.5). Note that fi ∈ K(Z)×,
gi ∈ (KL′)× and hi ∈ (KL)×. We have

ei = ṽ(tifi) ≡ w̃(gi) (mod n).

Since n > 1, the elements w(gi) generate a subgroup of Zs of finite index. It
follows that the value group of w̃ is of rank s, hence rank(w) = rank(w̃) = s.

Let R be the residue field of w. By [18, Ch. VI, Th. 3, Cor. 1], we have

(1) tr. degF (L′) ≥ tr. degF (R) + rank(w) = tr. degF (R) + s.

As P (L′) 6= ∅, there is an F -place F (P ) Ã L′. Composing it with the place
L′

Ã R given by w, we get an F -place F (P ) Ã R. As P is complete, we have
P (R) 6= ∅, i.e., R is a splitting field of P . On the other hand, R is a subfield of
F (Z) that is the residue field of v and a generic splitting field of P . Hence R
is also a generic splitting field of P . By definition of the canonical dimension,

cdim(P ) = tr. degF F (Z) ≥ tr. degF (R) ≥ cdim(P ).

It follows that tr. degF (R) = cdim(P ) and therefore, we have tr. degF (L′) ≥
cdim(P ) + s by (1). The claim is proved.

It follows from the claim that ed(X ) ≥ cdim(P ) + s. ¤
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3. Canonical dimension of a subgroup of Br(F )

Let p be a prime integer and D a finite subgroup of Brp F of dimension r
over Z/pZ. In this section we determine the canonical dimension cdim D of
the class of common splitting fields of all elements of D. We say that a basis
{a1, a2, . . . , ar} of D is minimal if for any i = 1, . . . , r and any element d ∈ D
outside of the subgroup generated by a1, . . . , ai−1, we have ind d ≥ ind ai.

One can construct a minimal basis of D by induction as follows. Let a1 be a
nonzero element of D of minimal index. If the elements a1, . . . , ai−1 are already
chosen for some i ≤ r, then we take for ai an element of D of the minimal
index among the elements outside of the subgroup generated by a1, . . . , ai−1.

In this section we prove the following

Theorem 3.1. Let p be a prime integer, D ⊂ Brp F a subgroup of dimension

r and {a1, a2, . . . , ar} a minimal basis of D. Then

cdim(D) =
( r∑

i=1

ind ai

)
− r .

We prove Theorem 3.1 in several steps.
Let {a1, a2, . . . , ar} be a minimal basis of D. For every i = 1, 2, . . . , r, let

Pi be the Severi-Brauer variety of a central division F -algebra Ai representing
the element ai ∈ Brp F . We write P for the product P1 × P2 × · · · × Pr. We
have

dim P =
r∑

i=1

dim Pi =
( r∑

i=1

ind ai

)
− r.

Moreover, the classes of splitting fields of P and D coincide, hence cdim(D) =
cdim(P ). Thus, the statement of Theorem 3.1 is equivalent to the equality
cdim(P ) = dim(P ).

Let 0 ≤ n1 ≤ n2 ≤ · · · ≤ nr be integers and K = K(n1, . . . , nr) the subgroup
of the polynomial ring Z[x] in r variables x = (x1, x2, . . . , xr) generated by
the monomials pe(j1,...,jr)xj1

1 . . . xjr

k for all j1, . . . , jr ≥ 0, where the exponent
e(j1, . . . , jr) is 0 if all the j1, . . . , jr are divisible by p, otherwise e(j1, . . . , jr) =
nk with the maximum k such that jk is not divisible by p. In fact, K is a
subring of Z[x].

Remark 3.2. Let A1, . . . , Ar be central division algebras over some field such
that for any non-negative integers j1, . . . , jr, the index of the tensor product
A⊗j1

1 ⊗ · · · ⊗ A⊗jr

r is equal to pe(j1,...,jr). The group K can be interpreted as
the colimit of the Grothendieck groups of the product over i = 1, . . . , r of the
Severi-Brauer varieties of the matrix algebras Mli(Ai) over all positive integers
l1, . . . , lr.

We set h = (h1, . . . , hr) with hi = 1 − xi ∈ Z[x].

Proposition 3.3. Let bhi1
1 . . . hir

r be a monomial of the lowest total degree of

a polynomial f in the variables h lying in K. Assume that the integer b is not

divisible by p. Then pn1|i1, . . . , p
nr |ir.
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Proof. We recast the proof for r = 1 given in [8, Lemma 2.1.2] to the case of
arbitrary r.

We proceed by induction on m = r + n1 + · · · + nr. The case m = 1 is
trivial. If m > 1 and n1 = 0, then K = K(n2, . . . , nr)[x1] and we are done by
induction applied to K(n2, . . . , nr). In what follows we assume that n1 ≥ 1.

Since K(n1, n2, . . . , nr) ⊂ K(n1 −1, n2, . . . , nr), by the induction hypothesis
pn1−1|i1, p

n2 |i2, . . . , p
nr |ir. It remains to show that i1 is divisible by pn1 .

Consider the additive operation ϕ : Z[x] → Q[x] which takes a polynomial
g ∈ Z[x] to the polynomial p−1x1 · g′, where g′ is the partial derivative of g
with respect to x1. We have

ϕ(K) ⊂ K(n1 − 1, n2 − 1, . . . , nr − 1) ⊂ K(n1 − 1)[x2, . . . , xr]

and
ϕ(hj1

1 hj2
2 · · ·hjr

r ) = −p−1j1h
j1−1
1 hj2

2 · · ·hjr

r + p−1j1h
j1
1 hj2

2 · · ·hjr

r .

Since bhi1 · · ·hir is a monomial of the lowest total degree of the polynomial
f , it follows that −bp−1i1h

i1−1
1 hi2

2 · · ·hir
r is a monomial of ϕ(f) considered as a

polynomial in h. As

ϕ(f) ∈ K(n1 − 1)[x2, . . . , xr] ,

we see that −bp−1i1h
i1−1
1 is a monomial of a polynomial from K(n1 − 1). It

follows that p−1i1 is an integer and by Lemma 3.4 below, this integer is divisible
by pn1−1. Therefore pn1|i1. ¤

Lemma 3.4. Let g be a polynomial in h1 lying in K(m) for some m ≥ 0. Let

bhi−1
1 be a monomial of g such that i is divisible by pm. Then b is divisible by

pm.

Proof. We write h for h1 and x for x1. Note that hi ∈ K(m) since i is divisible
by pm. Moreover, the quotient ring K(m)/(hi) is additively generated by
pe(j)xj with j < i. Indeed, the polynomial xi − (−h)i = xi − (x−1)i is a linear
combination with integer coefficients of pe(j)xj with j < i. Consequently, for
any k ≥ 0, multiplying by pe(k)xk, we see that the polynomial pe(i+k)xi+k =
pe(k)xi+k modulo the ideal (hi) is a linear combination with integer coefficients
of the pe(j)xj with j < i + k.

Thus, K(m)/(hi) is additively generated by pe(j)(1 − h)j with j < i. The
only one generator pe(i−1)(1−h)i−1 = pm(1−h)i−1 has nonzero hi−1-coefficient
and that coefficient is divisible by pm. ¤

Let Y be a scheme over the field F . We write CH(Y ) for the Chow group of Y
and set Ch(Y ) = CH(Y )/p CH(Y ). We define Ch(Y ) as the colimit of Ch(YL)
where L runs over all field extensions of F . Thus for any field extension L/F ,
we have a canonical homomorphism Ch(YL) → Ch(Y ). This homomorphism
is an isomorphism if Y = P , the variety defined above, and L is a splitting
field of P .

We define Ch(Y ) as the image of the homomorphism Ch(Y ) → Ch(Y ).

Proposition 3.5. We have Ch
j
(P ) = 0 for any j > 0.
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Proof. Let K0(P ) be the Grothendieck group of P . We write K0(P ) for the
colimit of K0(PL) taken over all field extensions L/F . The group K(P ) is
canonically isomorphic to K0(PE) for any splitting field E of P . Each of
the groups K0(P ) and K0(P ) is endowed with the topological filtration. The
subsequent factor groups GjK0(P ) and GjK0(P ) of these filtrations fit into
the commutative square

CHj(P ) −−−→ GjK0(P )x
x

CHj(P ) −−−→ GjK0(P )

where the top map is an isomorphism. Therefore it suffices to show that the
image of the homomorphism GjK0(P ) → GjK0(P ) is divisible by p for any
j > 0.

The ring K0(P ) is identified with the quotient of the polynomial ring Z[h] by
the ideal generated by hind a1

1 , . . . , hindar

r . Under this identification, the element
hi is the pull-back to P of the class of a hyperplane in Pi over a splitting
field and the j-th term K0(P )(j) of the filtration is generated by the classes
of monomials of degree at least j. The group GjK0(P ) is identified with the
group of all homogeneous polynomials of degree j.

The group K0(P ) is isomorphic to the direct sum of K0(B), where B =
A⊗j1

1 ⊗ · · · ⊗ A⊗jr

r , over all ji with 0 ≤ ji < ind ai (cf. [15]). The image of the
natural map K0(B) → K0(BL) = Z, where L is a splitting field of B, is equal
to ind(aj1

1 · · ·ajr

r )Z. The image of the homomorphism K0(P ) → K0(P ) (which
is in fact an injection) is generated by

ind(aj1
1 · · ·ajr

r )(1 − h1)
j1 · · · (1 − hr)

jr

over all j1, . . . , jr ≥ 0.
We embed K0(P ) into the polynomial ring Z[x] = Z[x1, . . . , xr] as a sub-

group by identifying a monomial hj1
1 · · ·hjr

r where 0 ≤ ji < ind ai with the
polynomial (1− x1)

j1 · · · (1− xr)
jr . As the elements a1, . . . , ar form a minimal

basis of D, the index ind(aj1
1 · · ·ajr

r ) is a power of p with the exponent at least
e(ind a1, . . . , ind ar). Therefore,

K0(P ) ⊂ K(ind a1, . . . , ind ar) ⊂ Z[x].

An element of K0(P )(j) with j > 0 is a polynomial f in h of degree at least
j. The image of f in GjK0(P ) is the j-th homogeneous part fj of f . As the
degree of f with respect to hi is less than ind ai, it follows from Proposition
3.3 that all the coefficients of fj are divisible by p. ¤

Let d = dim P and α ∈ CHd(P × P ). The first multiplicity mult1(α) of α
is the image of α under the push-forward map CHd(P × P ) → CH0(P ) = Z

given by the first projection P × P → P (cf. [10]). Similarly, we define the
second multiplicity mult2(α).
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Corollary 3.6. For any element α ∈ CHd(P × P ), we have

mult1(α) ≡ mult2(α) modulo p.

Proof. We follow the proof of [9, Th. 2.1]. The homomorphism

f : CHd(P × P ) → (Z/pZ)2,

taking an α ∈ CHd(P ×P ) to
(
mult1(α), mult2(α)

)
modulo p, factors through

the group Ch
d
(P × P ). Since for any i, any projection Pi × Pi → Pi is a

projective bundle, the Chow group Ch
d
(P × P ) is a direct some of several

copies of Ch
i
(P ) for some i’s and the value i = 0 appears once. By Proposition

3.5, the dimension over Z/pZ of the vector space Ch
d
(P ×P ) is equal to 1 and

consequently the dimension of the image of f is at most 1. Since the image of
the diagonal class under f is (1, 1), the image of f is generated by (1, 1). ¤

Corollary 3.7. Any rational map P 99K P is dominant.

Proof. Let α ∈ CHd(P × P ) be the class of the closure of the graph of a
rational map P 99K P . We have mult1(α) = 1. Therefore, by Corollary 3.6,
mult2(α) 6= 0, and it follows that the rational map is dominant. ¤

Example 1.4.2 then yields

Corollary 3.8. cdim P = dim P . ¤

The corollary completes the proof of Theorem 3.1.

Remark 3.9. Theorem 3.1 can be generalized to the case of any finite sub-
group D ⊂ Br(F ) consisting of elements of p-primary orders. Let {a1, a2, . . . , ar}
be elements of D such that their images {a′

1, a
′

2, . . . , a
′

r} in D/Dp form a mini-
mal basis, i.e., for any i = 1, . . . r and any element d ∈ D with the class in D/Dp

outside of the subgroup generated by a′

1, . . . , a
′

i−1, the inequality ind d ≥ ind ai

holds. Then, as in Theorem 3.1, we have

cdim(D) =
( r∑

i=1

ind ai

)
− r .

Indeed, the quotient D/Dp has the same splitting fields as the group D itself.
Therefore, cdim(D) = cdim(D/Dp) = cdim(P ) for P = P1×· · ·×Pr, where Pi

for every i = 1, . . . , r is the Severi-Brauer variety of a central division algebra
representing the element ai. Corollaries 3.6, 3.7 and 3.8 hold for P since
K0(P ) ⊂ K(ind a1, . . . , ind ar).

4. Main theorem

The main result of the paper is the following

Theorem 4.1. Let G be a p-group and F a field of characteristic different

from p containing a primitive p-th root of unity. Then edF (G) coincides with

the least dimension of a faithful representation of G over F .
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The rest of the paper is devoted to the proof of the theorem. As was men-
tioned in the introduction, we have edF (G) ≤ dim(V ) for any faithful repre-
sentation of G over F . We shall construct a faithful representation of G over
F with edF (G) ≥ dim(V ).

Denote by C the subgroup of all central elements of G of exponent p and
set H = G/C, so we have an exact sequence

(2) 1 → C → G → H → 1.

Let E → Spec F be an H-torsor and Spec F → BH be the corresponding
morphism. Set XE := BG×BH Spec F . Then XE is a gerbe over F banded by
C and its class in H2(F, C) coincides with the image of the class of E under
the connecting map H1(F, H) → H2(F, C) (cf. [14, Ch. 4, §2]). An object of
XE over a field extension L/F is a pair (E ′, α), where E ′ is a G-torsor over L

and α : E ′/C
∼
→ EL is an isomorphism of H-torsors over L.

Alternatively. XE = [E/G] (cf. [17]) with objects (over L) G-equivariant
morphisms E ′ → EL, where E ′ is a G-torsor over L.

The following lower bound for ed(G) was established in [4, Prop. 2.20]. We
give a short proof here for completeness.

Theorem 4.2. For any H-torsor E over F , we have edF (G) ≥ ed(XE).

Proof. Let L/F be a field extension and x = (E ′, α) an object of XE(L).
Choose a subfield L0 ⊂ L over F such that tr. deg(L0) = ed(E ′) and there is
a G-torsor E ′

0 over L0 with (E ′

0)L ≃ E ′.
Let Z be the (zero-dimensional) scheme of isomorphisms IsoL0

(E ′

0/C, EL0
)

of H-torsors over L0. The image of the morphism Spec L → Z over L0 rep-
resenting the isomorphism α is a one point set {z} of Z. The field extension
L0(z)/L0 is algebraic since dim Z = 0.

The isomorphism α descents to an isomorphism of the H-torsors E ′/C and
E over L0(z). Hence the isomorphism class of x belongs to the image of the

map X̂E
(
L0(z)

)
→ X̂E(L). Therefore,

edF (G) ≥ ed(E ′) = tr. deg(L0) = tr. deg(L0(z)
)
≥ ed(x).

It follows that edF (G) ≥ ed(XE). ¤

Let C∗ := Hom(C,Gm) denote the character group of C. An H-torsor
E → Spec F yields a homomorphism

βE : C∗ → Br(F )

taking a character χ : C → Gm to the image of the class of E under the
composition

H1(F, H)
∂
−→ H2(F, C)

χ∗

−→ H2(F,Gm) = Br(F ),

where ∂ is the connecting map for the exact sequence (2). Note that as µp ⊂
F×, the intersection of Ker(χ∗) over all characters χ ∈ C∗ is trivial. It follows
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that the classes of splitting fields of the gerbe XE and the subgroup Im(βE)
coincide. It follows that

(3) cdim(XE) = cdim
(
Im(βE)

)
.

Let χ1, χ2, . . . , χs be a basis of C∗ over Z/pZ such that {βE(χ1), . . . , β
E(χr)}

is a minimal basis of Im(βE) for some r and βE(χi) = 1 for i > r. By Theorem
3.1, we have

(4) cdim
(
Im(βE)

)
=

( r∑

i=1

ind βE(χi)
)
− r =

( s∑

i=1

ind βE(χi)
)
− s.

In view of Theorem 4.2 and (3), we shall find an H-torsor E (over a field
extension of F ) so that the integer in (4) is as large as possible. We embed H
into X := GLn as a subgroup for some n and set Y := X/H. Let E be the
generic fiber of the H-torsor π : X → Y . It is a “generic” H-torsor over the
function field L := F (Y ).

Let χ : C → Gm be a character. Let Rep(χ)(G) be the category of all finite
dimensional representations ρ of G such that ρ(c) is multiplication by χ(c) for

any c ∈ C. Choose a representations ρ : G → GL(V ) in Rep(χ)(G). The con-
jugation action of G on B := End(V ) factors through an H-action. By descent
(cf. [14, Ch. 1, §2]), there is (a unique up to canonical isomorphism) Azumaya
algebra A over Y and an H-equivariant algebra isomorphism π∗(A) ≃ BX .
Let A be the generic fiber of A; it is a central simple algebra over L = F (Y ).

Consider the homomorphism βE : C∗ → Br(L).

Lemma 4.3. The class of A in Br(L) coincides with βE(χ).

Proof. Consider the commutative diagram

1 −−−→ C −−−→ G −−−→ H −−−→ 1

χ

y ρ

y α

y
1 −−−→ Gm −−−→ GL(V ) −−−→ PGL(V ) −−−→ 1

The image of the H-torsor π : X → Y under α is the PGL(V )-torsor

E ′ := PGL(V )X/H → Y

where PGL(V )X := PGL(V ) × X and H acts on PGL(V )X by h(a, x) =
(ah−1, hx). The conjugation action of PGL(V ) on B gives rise to an isomor-
phism between PGL(V )X and the H-torsor IsoX

(
BX , End(V )X

)
of isomor-

phisms between the (split) Azumaya OX -algebras BX and End(V )X . Note
that this isomorphism is H-equivariant if H acts by conjugation on BX and
trivially on End(V )X . By descent,

E ′ ≃ IsoY

(
A, End(V )Y

)
.

Therefore, the image of the class of the torsor E ′ → Y under the connecting
map for the bottom row of the diagram coincides with the class of the Azumaya
algebra A. Restricting to the generic fiber yields [A] = βE(χ). ¤
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Theorem 4.4. For any character χ ∈ C∗, we have ind βE(χ) = min dim(V )

over all representations V in Rep(χ)(G).

Proof. We follow the approach given in [13]. Let G act on a scheme Z over F .
Denote by M(G, Z) the (abelian) category of left G-modules on Z that are
coherent OZ-modules (cf. [16, §1.2]). In particular, M(G, Spec F ) = Rep(G),
the category off all finite dimensional representations of G.

For a character χ : C → Gm, let M(χ)(G, Z) be the full subcategory
of M(G, Z) consisting of G-modules on which C acts via χ. For example,

M(χ)(G, Spec F ) = Rep(χ)(G).

We write K0(G, Z) and K
(χ)
0 (G, Z) for the Grothendieck groups of M(G, Z)

and M(χ)(G, Z) respectively.
By representation theory of diagonalizable group schemes, every M in M(G, Z)

is a direct sum of unique submodules M (χ) of M in M(χ)(G, Z) over all char-
acters χ of C. It follows that

K0(G, Z) =
∐

K
(χ)
0 (G, Z).

By Lemma 4.3, it suffices to show that ind(A) = gcd dim(V ) over all repre-

sentations V in Rep(χ)(G).
The image of the map dim : K0(A) → Z given by the dimension over L is

equal to ind(A) · dim(V ) · Z. To finish the proof of the theorem is suffices to
construct a surjective homomorphism

(5) K0

(
Rep(χ)(G)

)
→ K0(A)

so that the composition K0

(
Rep(χ)(G)

)
→ K0(A)

dim
−−→ Z is given by the di-

mension times dim(V ).
First of all we have

(6) K0

(
Rep(χ)(G)

)
≃ K

(χ)
0 (G, Spec F ).

Recall that H is embedded into X = GLn. Next, we embed X into Am,
where m = n2, as an open set in the standard way. The G-action on X extends
to a linear G-action on Am. By homotopy invariance in the equivariant K-
theory [16, Cor. 4.2],

K0(G, Spec F ) ≃ K0(G, Am).

It follows that

(7) K
(χ)
0 (G, Spec F ) ≃ K

(χ)
0 (G, Am).

By localization [16, Th. 2.7], the restriction homomorphism

(8) K
(χ)
0 (G, Am) → K

(χ)
0 (G, X).

is surjective.
Denote by M(1)(G, X, BX) the category of left G-modules M on X that

are coherent OX-modules and right BX -modules such that C acts trivially on
M and the G-action on M and the conjugation G-action on BX agree. The
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corresponding Grothendieck group is denoted by K
(1)
0 (G, X, BX). For any

object L in M(χ)(G, X), the group C acts trivially on L⊗F V ∗ and B acts on
the right on L ⊗F V ∗. We have Morita equivalence

M(χ)(G, X)
∼
→ M(1)(G, X, BX)

given by L 7→ L ⊗F V ∗ (with the inverse functor M 7→ M ⊗B V ). Hence

(9) K
(χ)
0 (G, X) ≃ K

(1)
0 (G, X, BX).

Now, as C acts trivially on X and BX , the category M(1)(G, X, BX) is
equivalent to the category M(H, X, BX). Hence

(10) K
(1)
0 (G, X, BX) ≃ K0(H, X, BX).

Recall that Y = X/H. By descent, the category M(H, X, BX) is equivalent
to the category M(Y,A) of coherent OY -modules that are right A-modules.
Hence

(11) K0(H, X, BX) ≃ K0(Y,A).

The restriction to the generic point of Y gives a surjective homomorphism

(12) K0(Y,A) → K0(A).

Finally, the homomorphism (5) is the composition of (6), (7), (8), (9), (10),
(11) and (12). ¤

We can now complete the proof of Theorem 4.1. By Theorem 4.4, there are
representations Vi in Rep(χi)(G) such that ind βE(χi) = dim Vi, i = 1, . . . , s.
Let V be the direct sum of all the Vi. By Theorem 4.2 (applied to the group
G over L and the generic torsor E), Theorem 2.1, (3) and (4), we have

edF (G) ≥ edL(G) ≥ ed(XE) = cdim(XE) + s = cdim
(
Im(βE)

)
+ s

=
s∑

i=1

ind βE(χi) =
s∑

i=1

dim(Vi) = dim(V ).

Since χ1, χ2, . . . , χs generate C∗, the restriction of V on C is faithful. As ev-
ery nontrivial normal subgroup of G intersects C nontrivially, the G-representation
V is faithful. We have constructed a faithful representation V of G over F with
edF (G) ≥ dim(V ). The theorem is proved.

Remark 4.5. The proof of Theorem 4.1 shows how to compute the essential
dimension of G over F . For every character χ ∈ C∗ choose a representa-
tion Vχ ∈ Rep(χ)(G) of the smallest dimension. It appears as an irreducible
component of the smallest dimension of the induced representation IndG

C(χ).
We construct a basis χ1, . . . , χs of C∗ by induction as follows. Let χ1 be a
nonzero character with the smallest dim(Vχ1

). If the characters χ1, . . . , χi−1

are already constructed for some i ≤ s, then we take for χi a character with
minimal dim(Vχi

) among the characters outside of the subgroup generated by
χ1, . . . , χi−1. Then edF (G) =

∑s

i=1 dim(Vχi
).
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5. An application

Theorem 5.1. Let G1 and G2 be two p-groups and F a field of characteristic

different from p containing a primitive p-th root of unity. Then

edF (G1 × G2) = edF (G1) + edF (G2).

Proof. The index j in the proof takes two values 1 and 2. If Vj is a faithful
representation of Gj then V1⊕V2 is a faithful representation of G1×G2. Hence
edF (G1 × G2) ≤ edF (G1) + edF (G2) (cf. [5, Lemma 4.1(b)]).

Denote by Cj the subgroup of all central elements of Gj of exponent p. Set
C = C1 × C2. We identify C∗ with C∗

1 ⊕ C∗

2 .
For every character χ ∈ C∗ choose a representation ρχ : G1 × G2 →

GL(Vχ) in Rep(χ)(G1 × G2) of the smallest dimension. We construct a basis
{χ1, χ2, . . . , χs} of C∗ following Remark 4.5. We claim that all the χi can be
chosen in one of the C∗

j . Indeed, suppose the characters χ1, . . . , χi−1 are already
constructed, and let χi be a character with minimal dim(Vχi

) among the char-

acters outside of the subgroup generated by χ1, . . . , χi−1. Let χi = χ
(1)
i + χ

(2)
i

with χ
(j)
i ∈ C∗

j . Denote by ε1 and ε2 the endomorphisms of G1 × G2 taking
(g1, g2) to (g1, 1) and (1, g2) respectively. The restriction of the representation

ρχi
◦ εj on C is given by the character χ

(j)
i . We replace χi by χ

(j)
i with j such

that χ
(j)
i does not belong to the subgroup generated by χ1, . . . , χi−1. The claim

is proved.
Let Wj be the direct sum of all the Vχi

with χi ∈ C∗

j . Then the restriction
of Wj on Cj is faithful, hence so is the restriction of Wj on Gj . It follows that
edF (Gj) ≤ dim(Wj). As W1 ⊕ W2 = V , we have

edF (G1) + edF (G2) ≤ dim(W1) + dim(W2) = dim(V ) = edF (G1 × G2). ¤

Denote by ξpm a primitive pm-th root of unity (in a separable closure of F ).

Corollary 5.2. Let F be a field as in Theorem 5.1. Then

edF

(
Z/pn1Z × Z/pn2Z × · · · × Z/pnsZ

)
=

s∑

i=1

[
F (ξpni ) : F

]
.

Proof. By Theorem 5.1, it suffices to consider the case s = 1. This case has
been done in [6]. It is also covered by Theorem 4.1 as the natural representation
of the group Z/pnZ in the F -space F (ξpn) is faithful irreducible of the smallest
dimension. ¤
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