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Abstract. Let F be a field of characteristic zero and let ft,n be the stabiliza-
tion homomorphism Hn(SLt(F ), Z) → Hn(SLt+1(F ), Z). We prove the following
results: For all n, ft,n is an isomorphism if t ≥ n + 1 and is surjective for t = n,
confirming a conjecture of C-H. Sah. Furthermore if n is odd, then fn,n is an iso-
morphism. If n ≥ 1 is even then the cokernel of fn−1,n is naturally isomorphic to
the nth Milnor-Witt K-group, KMW

n (F ). This answers a question of Jean Barge
and Fabien Morel. If n ≥ 3 is odd there is a natural short exact sequence
0 → Coker(fn−1,n) → KMW

n (F ) → Ker(fn−1,n−1) → 0.

1. Introduction

Given a family of groups {Gt}t∈N with natural inclusions Gt → Gt+1, we say that
the family has homology stability if there exist constants K(n) such that the natural
maps Hn(Gt,Z) → Hn(Gt+1,Z) are isomorphisms for t ≥ K(n). The question of
homology stability for families of linear groups over a ring R - general linear groups,
special linear groups, symplectic, orthogonal and unitary groups - has been studied
since the 1970s in connection with applications to algebraic K-theory, algebraic
topology, the scissors congruence problem, and the homology of Lie groups. These
families of linear groups are known to have homology stability at least when the
rings satisfy some appropriate finiteness condition, and in particular in the case of
fields and local rings ([4],[25],[26],[24], [5],[2], [15],[14]). It seems to be a delicate -
but interesting and apparently important - question, however, to decide the minimal
possible value of K(n) for a particular class linear groups (and rings) and the nature
of the obstruction to extending the stability range further.

The best illustration of this last remark are the results of Suslin on the integral
homology of the general linear group of a field in the paper [22]. He proved that,
for an infinite field F , the maps Hn(GLt(F ),Z) → Hn(GLt+1(F ),Z) are isomor-
phisms for t ≥ n (so that K(n) = n in this case), while the cokernel of the map
Hn(GLn−1(F ),Z) → Hn(GLn(F ),Z) is naturally isomorphic to the nth Milnor K-
group, KM

n (F ).In fact, if we let

Hn(F ) := Coker(Hn(GLn−1(F ),Z) → Hn(GLn(F ),Z)),

his arguments show that there is an isomorphism of graded rings H•(F ) ∼= KM
• (F )

(where the multiplication on the first term comes from direct sum of matrices and
cross product on homology). In particular, the non-negatively graded ring H•(F ) is
generated in dimension 1.
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Recent work of Barge and Morel ([1]) suggested that Milnor-Witt K-theory may
play a somewhat analogous role for the homology of the special linear group. The
Milnor-Witt K-theory of F is a Z-graded ring KMW

• (F ) surjecting naturally onto
Milnor K-theory. It arises as a ring of operations in stable motivic homotopy the-
ory. (For a definition see section 2 below, and for more details see [17, 18, 19].)
Let SHn(F ) := Coker(Hn(SLn−1(F ),Z) → Hn(SLn(F ),Z)) for n ≥ 1, and let
SH0(F ) = Z [F×] for convenience. Barge and Morel construct a map of graded
algebras SH•(F ) → KMW

• (F ) for which the square

SH•(F ) //

��

KMW
• (F )

��

H•(F ) // KM
• (F )

commutes.

A result of Suslin ([23]) implies that the map H2(SL2(F ),Z) = SH2(F ) → KMW
2 (F )

is an isomorphism. Since positive-dimensional Milnor-Witt K-theory is generated
by elements of degree 1, it follows that the map of Barge and Morel is surjective in
even dimensions greater than or equal to 2. They ask the question whether it is in
fact an isomorphism in even dimensions.

As to the question of the range of homology stability for the special linear groups
of an infinite field, as far as the authors are aware the most general result to date is
still that of van der Kallen [24], whose results apply to much more general classes
of rings. In the case of a field, he proves homology stability for Hn(SLt(F ),Z) in
the range t ≥ 2n + 1. On the other hand, known results when n is small suggest
a much larger range. For example, the theorems of Matsumoto and Moore imply
that the maps H2(SLt(F ),Z) → H2(SLt+1(F ),Z) are isomorphisms for t ≥ 3 and
are surjective for t = 2. In the paper [21] (Conjecture 2.6), C-H. Sah conjectured
that for an infinite field F (and more generally for a division algebra with infinite
centre), the homomorphism Hn(SLt(F ),Z) → Hn(SLt+1(F ), ) is an isomorphism if
t ≥ n+ 1 and is surjective for t = n.

The present paper addresses the above questions of Barge/Morel and Sah in the case
of a field of characteristic zero. We prove the following results about the homology
stability for special linear groups:

Theorem 1.1. Let F be a field of characteristic 0. Let ft,n be the stabilization
homomorphism Hn(SLt(F ),Z) → Hn(SLt+1(F ),Z)

(1) ft,n is an isomorphism for t ≥ n + 1 and is surjective for t = n.
(2) If n is odd fn,n is an isomorphism
(3) For even n the cokernel of fn−1,n is naturally isomorphic to KMW

n (F ).
(4) When n ≥is odd there is a natural exact sequence

0 → Coker(fn−1,n) → KMW
n (F ) → Ker(fn−1,n) → 0.

Proof. The proofs of these statements can be found below as follows:

(1) Corollary 5.11.
(2) Corollary 6.12.
(3) Corollary 6.11.
(4) Corollary 6.13
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Our strategy is to adapt Suslin’s argument for the general linear group in [22] to
the case of the special linear group. Suslin’s argument is an ingenious variation on
the method of van der Kallen in [24], in turn based on ideas of Quillen. The broad
idea is to find a highly connected simplicial complex on which the group Gt acts and
for which the stabilizers of simplices are (approximately) the groups Gr, with r ≤ t,
and then to use this to construct a spectral sequence calculating the homology of
the Gn in terms of the homology of the Gr. Suslin constructs a family E(n) of such
spectral sequences, calculating the homology of GLn(F ). He constructs partially-
defined products E(n) × E(m) → E(n + m) and then proves some periodicity and
decomposabilty properties which allow him to conclude by an easy induction.

Initially, the attempt to extend these arguments to the case of SLn(F ) does not
appear very promising. Two obstacles to extending Suslin’s arguments become
quickly apparent.

The main obstacle is Suslin’s Theorem 1.8 which says that a certain inclusion of a
block diagonal linear group in a block triangular group is a homology isomorphism.
The corresponding statement for subgroups of the special linear group are emphat-
ically false, as elementary calculations easily show. Much of Suslin’s subsequent
results - in particular, the periodicity and decomposability properties of the spectral
sequences E(n) and of the graded algebra S•(F ) which plays a central role - depend
on this theorem. And, indeed, the analogous spectral sequences and graded algebra
which arise when we replace the general linear with the special linear group do not
have these periodicity and decomposability properties.

However, it turns out - at least when the characteristic is zero - that the failure
of Suslin’s Theorem 1.8 is not fatal. A crucial additional structure is available to
us in the case of the special linear group; almost everything in sight in a Z[F×]-
module. In the analogue of Theorem 1.8, the map of homology groups is a split
inclusion whose cokernel has a completely different character as a Z[F×]-module
than the homology of the block diagonal group. The former is ‘additive ’, while the
latter is ‘multiplicative ’, notions which we define and explore in section 4 below.
This leads us to introduce the concept of ‘AM modules’, which decompose in a
canonical way into a direct sum of an additive factor and a multiplicative factor.
This decomposition is sufficiently canonical that in our graded ring structures the
additive and multiplicative parts are each ideals. By working modulo the messy
additive factors and projecting onto multiplicative parts, we recover an analogue
of Suslin’s Theorem 1.8 (Theorem 4.21 below), which we then use to prove the
necessary periodicity (Theorem 5.10) and decomposability (Theorem 6.8) results.

A second obstacle to emulating the case of the general linear group is the vanishing
of the groups H1(SLn(F ),Z). The algebra H•(F ), according to Suslin’s arguments,
is generated by degree 1. On the other hand, SH1(F ) = 0 = H1(SL1(F ),Z) = 0.
This means that the best we can hope for in the case of the special linear group is
that the algebra SH•(F ) is generated by degrees 2 and 3. This indeed turns out to
be essentially the case, but it means we have to work harder to get our induction
off the ground. The necessary arguments in degree n = 2 amount to the Theorem
of Matsumoto and Moore, as well as variations due to Suslin ([23]) and Mazzoleni
([11]). The argument in degree n = 3 was supplied recently in a paper by the present
authors ([8]).
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We make some remarks on the hypothesis of characteristic zero in this paper: This
assumption is used in our definition of AM-modules and the derivation of their
properties in section 4 below. In fact, a careful reading of the proofs in that section
will show that at any given point all that is required is that the prime subfield
be sufficiently large; it must contain an element of order not dividing m for some
appropriate m. Thus in fact our arguments show that our main results on homology
stability for the nth homology group of the special linear groups are true provided
the prime field is sufficiently large (in a way that depends on n). However, we
have not attempted to here to make this more explicit. To do so would make the
statements of the results unappealingly complicated, and we will leave it instead to
a later paper to deal with the case of positive characteristic. We believe that an
appropriate extension of the notion of AM-module will unlock the characteristic
p > 0 case.

As to our restriction to fields rather than more general rings, we note that Daniel
Guin [5] has extended Suslin’s results to a larger class of rings with many units. We
have not yet investigated a similar extension of the results below to this larger class
of rings.

2. Notation and Background Results

2.1. Group Rings and Grothendieck-Witt Rings. For a group G, we let Z [G]
denote the corresponding integral group ring. It has an additive Z-basis consisting of
the elements g ∈ G, and is made into a ring by linearly extending the multiplication
of group elements. In the case that the group G is the multiplicative group, F×, of
a field F , we will denote the basis elements by 〈a〉, for a ∈ F×. We use this notation
in order, for example, to distinguish the elements 〈1 − a〉 from 1−〈a〉, or 〈−a〉 from
−〈a〉, and also because it coincides, conveniently for our purposes, with the notation
for generators of the Grothendieck-Witt ring (see below). There is an augmentation
homomorphism ǫ : Z [G] → Z, 〈g〉 7→ 1, whose kernel is the augmentation ideal IG,
generated by the elements g − 1. Again, if G = F×, we denote these generators by
〈〈a〉〉 := 〈a〉 − 1.

The Grothendieck-Witt ring of a field F is the Grothendieck group, GW(F ), of the
set of isometry classes of nondgenerate symmetric bilinear forms under orthogonal
sum. Tensor product of forms induces a natural multiplication on the group. As
an abstract ring, this can be described as the quotient of the ring Z [F×/(F×)2]
by the ideal generated by the elements 〈〈a〉〉 · 〈〈1 − a〉〉, a 6= 0, 1. (This is just
a mild reformulation of the presentation given in Lam, [9], Chapter II, Theorem
4.1.) Here, the induced ring homomorphism Z [F×] → Z [F×/(F×)2] → GW(F ),
sends 〈a〉 to the class of the 1-dimensional form with matrix [a]. This class is
(also) denoted 〈a〉. GW(F ) is again an augmented ring and the augmentation ideal,
I(F ), - also called the fundamental ideal - is generated by Pfister 1-forms, 〈〈a〉〉.
It follows that the n-th power, In(F ), of this ideal is generated by Pfister n-forms
〈〈a1, . . . , an〉〉 := 〈〈a1〉〉 · · · 〈〈an〉〉.

Now let h := 〈1〉 + 〈−1〉 = 〈〈−1〉〉 + 2 ∈ GW(F ). Then h · I(F ) = 0, and the Witt
ring of F is the ring

W (F ) :=
GW(F )

〈h〉
=

GW(F )

h · Z
.
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Since h 7→ 2 under the augmentation, there is a natural ring homomorphism
W (F ) → Z/2. The fundamental ideal I(F ) of GW(F ) maps isomorphically to
the kernel of this ring homomorphism under the map GW(F ) →W (F ), and we also
let I(F ) denote this ideal.

For n ≤ 0, we define In(F ) := W (F ). The graded additive group I•(F ) =
{In(F )}n∈Z is given the structure of a commutative graded ring using the natu-
ral graded multiplication induced from the multiplication on W (F ). In particular,
if we let η ∈ I−1(F ) be the element corresponding to 1 ∈W (F ), then multiplication
by η : In+1(F ) → In(F ) is just the natural inclusion.

2.2. Milnor K-theory and Milnor-Witt K-theory. The Milnor ring of a field
F (see [12]) is the graded ring KM

• (F ) with the following presentation:

Generators: {a} , a ∈ F×, in dimension 1.

Relations:

(a) {ab} = {a} + {b} for all a, b ∈ F×.
(b) {a} · {1 − a} = 0 for all a ∈ F× \ {1}.

The product {a1} · · · {an} in KM
n (F ) is also written {a1, . . . , an}. So KM

0 (F ) = Z
and KM

1 (F ) is an additive group isomorphic to F×.

We let kM
• (F ) denote the graded ring KM

• (F )/2 and let in(F ) := In(F )/In+1(F ),
so that i•(F ) is a non-negatively graded ring.

In the 1990s, Voevodsky and his collaborators proved a fundamental and deep
theorem - originally conjectured by Milnor ([13]) - relating Milnor K-theory to
quadratic form theory:

Theorem 2.1 ([20]). There is a natural isomorphism of graded rings kM
• (F ) ∼= i•(F )

sending {a} to 〈〈a〉〉.

In particular for all n ≥ 1 we have a natural identification of kM
n (F ) and in(F ) under

which the symbol {a1, . . . , an} corresponds to the class of the form 〈〈a1, . . . , an〉〉.

The Milnor-Witt K-theory of a field is the graded ring KMW
• (F ) with the following

presentation (due to F. Morel and M. Hopkins, see [17]):

Generators: [a], a ∈ F×, in dimension 1 and a further generator η in dimension −1.

Relations:

(a) [ab] = [a] + [b] + η · [a] · [b] for all a, b ∈ F×

(b) [a] · [1 − a] = 0 for all a ∈ F× \ {1}
(c) η · [a] = [a] · η for all a ∈ F×

(d) η · h = 0, where h = η · [−1] + 2 ∈ KMW
0 (F ).

Clearly there is a unique surjective homomorphism of graded rings KMW
• (F ) →

KM
• (F ) sending [a] to {a} and inducing an isomorphism

KMW
• (F )

〈η〉
∼= KM

• (F ).

Furthermore, there is a natural surjective homomorphism of graded ringsKMW
• (F ) →

I•(F ) sending [a] to 〈〈a〉〉 and η to η. Morel shows that there is an induced isomor-
phism of graded rings

KMW
• (F )

〈h〉
∼= I•(F ).
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The main structure theorem on Milnor-Witt K-theory is the following theorem of
Morel:

Theorem 2.2 (Morel, [18]). The commutative square of graded rings

KMW
• (F ) //

��

KM
• (F )

��

I•(F ) // kM
• (F )

is cartesian.

Thus for each n ∈ Z we have an isomorphism

KMW
n (F ) ∼= KM

n (F ) ×in(F ) I
n(F ).

It follows that for all n there is a natural short exact sequence

0 → In+1(F ) → KMW
n (F ) → KM

n (F ) → 0

where the inclusion In+1(F ) → KMW
n (F ) is given by 〈〈a1, . . . , an+1〉〉 7→ η[a1] · · · [an].

Similarly, for n ≥ 0, there is a short exact sequence

0 → 2KM
n (F ) → KMW

n (F ) → In(F ) → 0

where the inclusion 2KM
n (F ) → KMW

n (F ) is given (for n ≥ 1) by 2{a1, . . . , an} 7→
h[a1] · · · [an]. Observe that, when n ≥ 2,

h[a1][a2] · · · [an] = ([a1][a2] − [a2][a1])[a3] · · · [an] = [a2
1][a2] · · · [an].

(The first equality follows from Lemma 2.3 (3) below, the second from the obser-
vation that [a2

1] · · · [an] ∈ Ker(KMW
n (F ) → In(F )) = 2KM

n (F ) and the fact, which
follows from Morel’s theorem, that the composite 2KM

n (F ) → KMW
n (F ) → KM

n (F )
is the natural inclusion map.)

When n = 0 we have an isomorphism of rings

GW(F ) ∼= W (F ) ×Z/2 Z ∼= KMW
0 (F ).

Under this isomorphism 〈〈a〉〉 corresponds to η[a] and 〈a〉 corresponds to η[a] + 1.
(Observe that with this identification, h = η[−1] + 2 = 〈1〉 + 〈−1〉 ∈ KMW

0 (F ) =
GW(F ), as expected.)

Thus each KMW
n (F ) has the structure of a GW(F )-module (and hence also of a

Z [F×]-module), with the action given by 〈〈a〉〉 · ([a1] · · · [an]) = η[a][a1] · · · [an].

We record here some elementary identities in Milnor-Witt K-theory which we will
need below.

Lemma 2.3. Let a, b ∈ F×. The following identities hold in the Milnor-Witt K-
theory of F :

(1) [a][−1] = [a][a].
(2) [ab] = [a] + 〈a〉[b].
(3) [a][b] = −〈−1〉[b][a].

Proof.

(1) See, for example, the proof of Lemma 2.7 in [7].
(2) 〈a〉b = (η[a] + 1)[b] = η[a][b] + [b] = [ab] − [a].
(3) See [7], Lemma 2.7.
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2.3. Homology of Groups. Given a group G and a Z [G]-module M , Hn(G,M)
will denote the nth homology group of G with coefficients in the module M . B•(G)
will denote the right bar resolution of G: Bn(G) is the free right Z [G]-module with
basis the elements [g1| · · · |gn], gi ∈ G. (B0(G) is isomorphic to Z [G] with generator
the symbol [ ].) The boundary d = dn : Bn(G) → Bn−1(G), n ≥ 1, is given by

d([g1| · · · |gn]) =
n−1∑

i=o

(−1)i[g1| · · · |ĝi| · · · |gn] + (−1)n[g1| · · · |gn−1] 〈gn〉 .

The augmentation B0(G) → Z makes B•(G) into a free resolution of the trivial
Z [G]-module Z, and thus Hn(G,M) = Hn(B•(G) ⊗Z[G] M).

If C• = (Cq, d) is a non-negative complex of Z [G]-modules, then E•,• := B•(G)⊗Z[G]

C• is a double complex of abelian groups. Each of the two filtrations on E•,• gives
a spectral sequence converging to the homology of the total complex of E•,•, which
is by definition, H•(G,C). (see, for example, Brown, [3], Chapter VII).

The first spectral sequence has the form

E2
p,q = Hp(G,Hq(C)) =⇒ Hp+q(G,C).

In the special case that there is a weak equivalence C• → Z (the complex consisting
of the trivial module Z concentrated in dimension 0), it follows that H•(G,C) =
H•(G,Z).

The second spectral sequence has the form

E1
p,q = Hp(G,Cq) =⇒ Hp+q(G,C).

Thus, if C• is weakly equivalent to Z, this gives a spectral sequence converging to
H•(G,Z).

Our analysis of the homology of special linear groups will exploit the action of
these groups on certain permutation modules. It is straightforward to compute the
map induced on homology groups by a map of permutation modules. We recall the
following basic principles (see, for example, [6]): If G is a group and if X is a G-set,
then Shapiro’s Lemma says that

Hp(G,Z[X]) ∼=
⊕

y∈X/G

Hp(Gy,Z),

the isomorphism being induced by the maps

Hp(Gy,Z) → Hp(G,Z[X])

described at the level of chains by

Bp ⊗Z[Gy ] Z → Bp ⊗Z[G] Z[X], z ⊗ 1 7→ z ⊗ y.

Let Xi, i = 1, 2 be transitive G-sets. Let xi ∈ Xi and let Hi be the stabiliser of xi,
i = 1, 2. Let φ : Z[X1] → Z[X2] be a map of Z[G]-modules with

φ(x1) =
∑

g∈G/H2

nggx2, with ng ∈ Z.
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Then the induced map φ• : H•(H1,Z) → H•(H2,Z) is given by the formula

φ•(z) =
∑

g∈H1\G/H2

ngcorH2

g−1H1g∩H2
resg−1H1g

g−1H1g∩H2

(
g−1 · z

)
(1)

There is an obvious extension of this formula to non-transitive G-sets.

2.4. Homology of SLn(F ) and Milnor-Witt K-theory. Let F be an infinite
field.

The theorem of Matsumoto and Moore ([10], [16]) gives a presentation of the group
H2(SL2(F ),Z). It has the following form: The generators are symbols 〈a1, a1〉,
ai ∈ F×, subject to the relations:

(i) 〈a1, a2〉 = 0 if ai = 1 for some i
(ii) 〈a1, a2〉 = 〈a−1

2 , a1〉
(iii) 〈a1, a2b2〉 + 〈a2, b2〉 = 〈a1a2, b2〉 + 〈a1, a2〉
(iv) 〈a1, a2〉 = 〈a1,−a1a2〉
(v) 〈a1, a2〉 = 〈a1, (1 − a1)a2〉

It can be shown that for all n ≥ 2, KMW
n (F ) admits a (generalised) Matsumoto-

Moore presentation:

Theorem 2.4 ([7], Theorem 2.5). For n ≥ 2, KMW
n (F ) admits the following pre-

sentation as an additive group:

Generators: The elements [a1][a2] · · · [an], ai ∈ F×.

Relations:

(i) [a1][a2] · · · [an] = 0 if ai = 1 for some i.
(ii) [a1] · · · [ai−1][ai] · · · [an] = [a1] · · · [a

−1
i ][ai−1] · · · [an]

(iii) [a1] · · · [an−1][anbn]+[a1] · · · [̂an−1][an][bn] = [a1] · · · [an−1an][bn]+[a1] · · · [an−1][an]
(iv) [a1] · · · [an−1][an] = [a1] · · · [an−1][−an−1an]
(v) [a1] · · · [an−1][an] = [a1] · · · [an−1][(1 − an−1)an]

In particular, it follows that there is a natural isomorphismKMW
2 (F ) ∼= H2(SL2(F ),Z).

This fact is essentially due to Suslin ([23]). A more recent proof, which we will need
to invoke below, has been given by Mazzoleni ([11]).

Recall that Suslin ([22]) has constructed a natural surjective homomorphism Hn(GLn(F ),Z) →
KM

n (F ) whose kernel is the image of Hn(GLn−1(F ),Z).

In [8], the authors proved that the map H3(SL3(F ),Z) → H3(GL3(F ),Z) is injec-
tive, that the image of the composite H3(SL3(F ),Z) → H3(GL3(F ),Z) → KM

3 (F ) is
2KM

3 (F ) and that the kernel of this composite is precisely the image of Hn(SLn−1(F ),Z).

In the next section we will construct natural homomorphisms Tn◦ǫn : Hn(SLn(F ),Z) →
KMW

n (F ), in a manner entirely analogous to Suslin’s construction. In particular, the
image of Hn(SLn−1(F ),Z) is contained in the kernel of Tn ◦ ǫn and the diagrams

Hn(SLn(F ),Z) //

��

KMW
n (F )

��

Hn(GLn(F ),Z) // KM
n (F )



Homology of SLn(F ) 9

commute. It follows that the image of T3 ◦ ǫ3 is 2KM
3 (F ) ⊂ KMW

3 (F ), and its kernel
is the image of H3(SL2(F ),Z).

3. The algebra S̃(F •)

In this section we introduce a graded algebra functorially associated to F which
admits a natural homomorphism to Milnor-Witt K-theory and from the homology
of SLn(F ). It is the analogue of Suslin’s algebra S•(F ) in [23], which admits ho-
momorphisms to Milnor K-theory and from the homology of GLn(F ). However, we
will need to modify this algebra in the later sections below, by projecting onto the
‘multiplicative ’ part, in order to derive our results about the homology of SLn(F ).

We say that a finite set of vectors v1, . . . , vq in an n-dimensional vector space V are
in general position if every subset of size min(q, n) is linearly independent.

If v1, . . . , vq are elements of the n-dimensional vector space V and if E is an ordered
basis of V , we let [v1| · · · |vq]E denote the n × q matrix whose i-th column is the
components of vi with respect to the basis E .

3.1. Definitions. For a field F and finite-dimensional vector spaces V and W , we
let Xp(W,V ) denote the set of all ordered p-tuples of the form

((w1, v1), . . . , (wp, vp))

where (wi, vi) ∈W⊕V and the vi are in general position. We also defineX0(W,V ) :=
∅. Xp(W,V ) is naturally an A(W,V )-module, where

A(W,V ) :=

(
IdW Hom(V,W )
0 GL(V )

)
⊂ GL(W ⊕ V )

Let Cp(W,V ) = Z[Xp(W,V )], the free abelian group with basis the elements of
Xp(W,V ). We obtain a complex, C•(W,V ), of A(W,V )-modules by introducing the
natural simplicial boundary map

dp+1 : Cp+1(W,V ) → Cp(W,V )

((w1, v1), . . . , (wp+1, vp+1)) 7→

p+1∑

i=1

(−1)i+1((w1, v1), . . . , (̂wi, vi), . . . , (wp+1, vp+1))

Lemma 3.1. If F is infinite, then Hp(C•(W,V )) = 0 for all p.

Proof. If

z =
∑

i

ni((w
i
1, v

i
1), . . . , (w

i
p, v

i
p)) ∈ Cp(W,V )

is a cycle, then since F is infinite, it is possible to choose v ∈ V such that v, vi
1, . . . , v

i
p

are in general position for all i. Then z = dp+1((−1)psv(z)) where sv is the ‘partial
homotopy operator’ defined by
sv((w1, v1), . . . , (wp, vp)) = ((w1, v1), . . . , (wp, vp), (0, v)) if v, v1, . . . vp are in general
position, and = 0 otherwise. �

We will assume our field F is infinite for the remainder of this section. (In later
sections, it will even be assumed to be of characteristic zero.)

If n = dimF (V ), we let H(W,V ) := Ker(dn) = Im(dn+1). This is an A(W,V )-
submodule of Cn(W,V ). Let S̃(W,V ) := H0(SA(W,V ), H(W,V )) = H(W,V )SA(W,V )

where SA(W,V ) := A(W,V ) ∩ SL(W ⊕ V ).
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If W ′ ⊂W , there are natural inclusions Xp(W
′, V ) → Xp(W,V ) inducing a map of

complexes of A(W ′, V )-modules C•(W
′, V ) → C•(W,V ).

When W = 0, we will use the notation, Xp(V ), Cp(V ), H(V ) and S̃(V ) instead of

Xp(0, V ), Cp(0, V ), H(0, V ) and S̃(0, V )

Since, A(W,V )/SA(W,V ) ∼= F×, any homology group of the form Hi(SA(W,V ),M)
where M is a A(W,V )-module is naturally a Z[F×]-module: If a ∈ F× and if
g ∈ A(W,V ) is any element of determinant a, then the action of a is the map on
homology induced by conjugation by g on A(W,V ) and multiplication by g on M .

In particular, the groups S̃(W,V ) are Z[F×]-modules.

Let e1, . . . , en denote the standard basis of F n. Given a1, . . . , an ∈ F×, we let
⌊a1, . . . , an⌉ denote the class of dn+1(e1, . . . , en, a1e1+· · ·+anen) in S̃(F n). If b ∈ F×,
then 〈b〉 · ⌊a1, . . . , an⌉ is represented by

dn+1(e1, . . . , bei, . . . , en, a1e1 + · · ·aibei · · ·+ anen)

for any i. (As a lifting of b ∈ F×, choose the diagonal matrix with b in the (i, i)-
position and 1 in all other diagonal positions.)

Remark 3.2. Given x = (v1, . . . , vv, v) ∈ Xn+1(F
n), let A = [v1| · · · |vn] ∈ GLn(F )

of determinant detA and let A′ = diag(1, . . . , 1, detA). Then B = A′A−1 ∈ SLn(F )
and thus x is in the SLn(F )-orbit of (e1, . . . , en−1, detAen, A

′w) with w = A−1v, and

hence dn+1(x) represents the element 〈detA〉 ⌊w⌉ in S̃(F n).

Theorem 3.3. S̃(F n) has the following presentation as a Z[F×]-module:

Generators: The elements ⌊a1, . . . , an⌉, ai ∈ F×

Relations: For all a1, . . . , an ∈ F× and for all b1, . . . , bn ∈ F× with bi 6= bj for i 6= j

⌊b1a1, . . . , bnan⌉−⌊a1, . . . , an⌉ =

n∑

i=1

(−1)n+i
〈
(−1)n+iai

〉
⌊a1(b1−bi), . . . , ̂ai(bi − bi), . . . , an(bn−bi), bi⌉.

Proof. Taking SLn(F )-coinvariants of the exact sequence of Z[GLn(F )]-modules

Cn+2(F
n)

dn+2
// Cn+1(F

n)
dn+1

// H(F n) // 0

gives the exact sequence of Z[F×]-modules

Cn+2(F
n)SLn(F )

dn+2
// Cn+1(F

n)SLn(F )
dn+1

// S̃(F n) // 0.

It is straightforward to verify that

Xn+1(F
n) ∼=

∐

a=(a1,...,an),ai 6=0

GLn(F ) · (e1, . . . , en, a)

as a GLn(F )-set. It follows that

Cn+1(F
n) ∼=

⊕

a

Z[GLn(F )] · (e1, . . . , en, a)

as a Z[GLn(F )]-module, and thus that

Cn+1(F
n)SLn(F )

∼=
⊕

a

Z[F×] · (e1, . . . , en, a)

as a Z[F×]-module.
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Similarly, every element of Xn+2(F
n) is in the GLn(F )-orbit of a unique element

of the form (e1, . . . , en, a, b · a) where a = (a1, . . . , an) with ai 6= 0 for all i and b =
(b1, . . . , bn) with bi 6= 0 for all i and bi 6= bj for all i 6= j, and b ·a := (b1a1, . . . , bnan).
Thus

Xn+2(F
n) ∼=

∐

(a,b)

GLn(F ) · (e1, . . . , en, a, b · a)

as a GLn(F )-set and

Cn+2(F
n)SLn(F )

∼=
⊕

(a,b)

Z[F×] · (e1, . . . , en, a, b · a)

as a Z[F×]-module.

So dn+1 induces an isomorphism

⊕Z[F×] · (e1, . . . , en, a)

〈dn+2(e1, . . . , en, a, b · a)|(a, b)〉
∼= S̃(F n).

Now dn+2(e1, . . . , en, a, b · a) =
n∑

i=1

(−1)i+1(e1, . . . , êi, . . . , en, a, b · a) + (−1)i
(
(e1, . . . , en, b · a) − (e1, . . . , en, a)

)
.

Applying the idea of Remark 3.2 to the terms (e1, . . . , êi, . . . , en, a, b · a) in the sum
above, we let Mi(a) := [e1| · · · |êi| · · · |en|a] and δi = detMi(a) = (−1)n−iai. Since

Mi(a)
−1 =





1 . . . 0 −a1/ai 0 . . . 0

0
. . .

...
...

...
...

...
0 . . . 1 −ai−1/ai 0 . . . 0
0 . . . 0 −ai+1ai 1 . . . 0

0 . . . 0
... 0

. . . 0
0 . . . 0 −an/ai 0 . . . 1
0 . . . 0 1/ai 0 . . . 0





it follows that dn+1(e1, . . . , êi, . . . , en, a, b · a) represents 〈δi〉 ⌊wi⌉ ∈ S̃(F n) where

wi = Mi(a)
−1(b ·a) = (a1(b1− bi), . . . , ̂ai(bi − bi), . . . , an(bn− bi), bi). This proves the

theorem. �

3.2. Products. If W ′ ⊂W , there is a natural bilinear pairing

Cp(W
′, V ) × Cq(W ) → Cp+q(W ⊕ V ), (x, y) 7→ x ∗ y

defined on the basis elements by

((w′
1, v1), . . . , (w

′
p, vp)) ∗ (w1, . . . , wq) :=

(
(w′

1, v1), . . . , (w
′
p, vp), (w1, 0), . . . , (wq, 0)

)
.

This pairing satisfies dp+q(x ∗ y) = dp(x) ∗ y + (−1)px ∗ dq(y).

Furthermore, if α ∈ A(W ′, V ) ⊂ GL(W ⊕ V ) then (αx) ∗ y = α(x ∗ y), and if
α ∈ GL(V ) ⊂ A(W ′, V ) ⊂ GL(W ⊕ V ) and β ∈ GL(W ) ⊂ GL(W ⊕ V ), then
(αx) ∗ (βy) = (α · β)(x ∗ y). (However, if W ′ 6= 0 then the images of A(W ′, V ) and
GL(W ) in GL(W ⊕ V ) don’t commute.)

In particular, there are induced pairings on homology groups

H(W ′, V ) ⊗H(W ) → H(W ⊕ V ),
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which in turn induce well-defined pairings

S̃(W ′, V ) ⊗H(W ) → S̃(W,V ) and S̃(V ) ⊗ S̃(W ) → S̃(W ⊕ V ).

Observe further that this latter pairing is Z[F×]-balanced: If a ∈ F×, x ∈ S̃(W )

and y ∈ S̃(V ), then (〈a〉 x)∗y = x∗ (〈a〉 y) = 〈a〉 (x∗y). Thus there is a well-defined
map

S̃(V ) ⊗Z[F×] S̃(W ) → S̃(W ⊕ V ).

In particular, the groups {H(F n)}n≥0 form a natural graded (associative) algebra,

and the groups {S̃(F n)}n≥0 = S̃(F •) form a graded associative Z[F×]-algebra.

The following explicit formula for the product in S̃(F •) will be needed below:

Lemma 3.4. Let a1, . . . , an and a′1, . . . , a
′
m be elements of F×. Let b1, . . . , bn, b

′
1, . . . , b

′
m

be any elements of F× satisfying bi 6= bj for i 6= j and b′s 6= b′t for s 6= t.

Then (−1)n+m⌊a1, . . . , an⌉ ∗ ⌊a
′
1, . . . , a

′
m⌉ =

n∑

i=1

m∑

j=1

(−1)i+j
〈
(−1)i+jaia

′
j

〉
⌊a1(b1 − bi), . . . , ̂ai(bi − bi), . . . , bi, a

′
1(b

′
1 − b′j), . . . ,

̂a′j(b
′
j − b′j), . . . , b

′
j⌉

+(−1)m

n∑

i=1

(−1)i+1
〈
(−1)i+1ai

〉
⌊a1(b1 − bi), . . . , ̂ai(bi − bi), . . . , bi, b

′
1a

′
1, . . . , b

′
ma

′
m⌉

+(−1)n
m∑

j=1

(−1)j+1
〈
(−1)j+1a′j

〉
⌊b1a1, . . . , bnan, a

′
1(b

′
1 − b′j), . . . ,

̂a′j(b
′
j − b′j), . . . , b

′
j⌉

+(−1)n+m⌊b1a1, . . . , bnan, bi, b
′
1a

′
1, . . . , b

′
ma

′
m⌉

Proof. This is an entirely straightforward calculation using the definition of the
product, Remark 3.2, the matrices Mi(a), Mj(a

′) as in the proof of Theorem 3.3,
and the partial homotopy operators sv with v = (a1b1, . . . , anbn, a

′
1b

′
1, . . . , a

′
mb

′
m). �

3.3. The maps ǫV . If dimF (V ) = n, then the exact sequence of GL(V )-modules

0 // H(V ) // Cn(V )
dn

// Cn−1(V )
dn−1

// · · ·
d1

// C0(V ) = Z // 0

gives rise to an iterated connecting homomorphism

ǫV : Hn(SL(V ),Z) → H0(SL(V ), H(V )) = S̃(V ).

Note that the collection of groups {Hn(SLn(F ),Z)} form a graded Z[F×]-algebra
under the graded product induced by exterior product on homology, together with
the obvious direct sum homomorphism SLn(F ) × SLm(F ) → SLn+m(F ).

Lemma 3.5. The maps ǫn : Hn(SLn(F ),Z) → S̃(F n), n ≥ 0, give a well-defined
homomorphism of graded Z[F×]-algebras; i.e.

(1) If a ∈ F× and z ∈ Hn(SLn(F ),Z), then ǫn(〈a〉 z) = 〈a〉 ǫn(z) in S̃(F n), and
(2) If z ∈ Hn(SLn(F ),Z) and w ∈ Hm(SLm(F ),Z) then

ǫn+m(z × w) = ǫn(z) ∗ ǫm(w) in S̃(F n+m).

Proof.
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(1) The exact sequence above is a sequence of GL(V )-modules and hence all of
the connecting homomorphisms δi : Hn−i+1(SL(V ), Im(di)) → Hn−i(SL(V ),Ker(di))
are F×-equivariant.

(2) Let Cτ
• (V ) denote the truncated complex.

Cτ
p (V ) =

{
Cp(V ), p ≤ dimF (V )

0, p > dimF (V )

Thus H(V ) → Cτ
• (V ) is a weak equivalence of complexes (where we regard

H(V ) as a complex concentrated in dimension dim (V )). Since the complexes
Cτ
• (V ) are complexes of free abelian groups, it follows that for two vector

spaces V and W , the map H(V ) ⊗Z H(W ) → T•(V,W ) is an equivalence
of complexes, where T•(V,W ) is the total complex of the double complex
Cτ
• (V ) ⊗Z Cτ

• (W ). Now T•(V,W ) is a complex of SL(V ) × SL(W )-modules,
and the product ∗ induces a commutative diagram of complexes of SL(V )×
SL(W )-complexes:

H(V ) ⊗Z H(W ) //

∗
��

Cτ
• (V ) ⊗ Cτ

• (W )

∗
��

H(V ⊕W ) // Cτ
• (V ⊕W )

which, in turn, induces a commutative diagram

Hn(SL(V ),Z) ⊗ Hm(SL(W ),Z)
ǫV ⊗ǫW

//

×
��

H0(SL(V ), H(V )) ⊗ H0(SL(W ), H(W ))

×
��

Hn+m(SL(V ) × SL(W ),Z ⊗ Z)
ǫT•

//

��

H0(SL(V ) × SL(W ), H(V ) ⊗H(W ))

��

Hn+m(SL(V ⊕W ),Z)
ǫV ⊕W

// H0(SL(V ⊕W ), H(V ⊕W ))

(where n = dim (V ) and m = dim (W )).

�

Lemma 3.6. If V = W ⊕W ′ with W ′ 6= 0, then the composite

Hn(SL(W ),Z) // Hn(SL(V ),Z)
ǫV

// S̃(V )

is zero.

Proof. The exact sequence of SL(V )-modules

0 → Ker(d1) → C1(V ) → Z → 0

is split as a sequence of SL(W )-modules via the map Z → C1(V ), m 7→ m · e where
e is any nonzero element of W ′. It follows that the connecting homomorphism
δ1 : Hn(SL(W ),Z) → Hn−1(SL(W ),Ker(d1)) is zero. �

Let SHn(F ) denote the cokernel of the map Hn(SLn−1(F ),Z) → Hn(SLn(F ),Z). It
follows that the maps ǫn give well-defined homomorphisms SHn(F ) → S̃(F n), which

yield a homomorphism of graded Z[F×]-algebras ǫ• : SH•(F ) → S̃(F •).
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3.4. The maps DV . Suppose now that W and V are vector spaces and that
dim (V ) = n. Fix a basis E of V . The group A(W,V ) acts transitively on Xn(W,V )
(with trivial stabilizers), while the orbits of SA(W,V ) are in one-to-one correspon-
dence with the points of F× via the correspondence

Xn(W,V ) → F×, ((w1, v1), . . . , (wn, vn)) 7→ det ([v1| · · · |vn]E) .

Thus we have an induced isomorphism

H0(SA(W,V ), Cn(W,V ))
det
∼=

// Z[F×].

Taking SA(W,V )-coinvariants of the inclusion H(W,V ) → Cn(W,V ) then yields a
homomorphism of Z[F×]-modules

DW,V : S̃(W,V ) → Z[F×].

In particular, for each n ≥ 1 we have a homomorphism of Z[F×]-modules Dn :
S̃(F n) → Z[F×].

We will also set D0 : S̃(F 0) = Z → Z equal to the identity map. Here Z is a trivial
F×-module.

We set

An =






Z, n = 0
IF×, n odd
Z[F×], n > 0 even

We have An ⊂ Z[F×] for all n and we make A• into a graded algebra by using the
multiplication on Z[F×].

Lemma 3.7.

(1) The image of Dn is An.
(2) The maps D• : S̃(F •) → A• define a homomorphism of graded Z[F×]-

algebras.
(3) For each n ≥ 0, the surjective map Dn : S̃(F n) → An has a Z[F×]-splitting.

Proof.

(1) Consider a generator ⌊a1, . . . , an⌉ of S̃(F n).
Let e1, . . . , en be the standard basis of F n. Let a := a1e1 + · · · + anen.

Then

⌊a1, . . . , an⌉ = dn+1(e1, . . . , en, a)

=
n∑

i=1

(−1)i+1(e1, . . . , êi, . . . , en, a) + (−1)n(e1, . . . , en).

Thus

Dn(⌊a1, . . . , an⌉) =

n∑

i=1

(−1)i+1 〈det ([e1| · · · |êi| · · · |en|a])〉 + (−1)n 〈1〉

=

{
〈a1〉 − 〈−a2〉 + · · · + 〈an〉 − 〈1〉 , n odd
〈−a1〉 − 〈a2〉 + · · · − 〈an〉 + 〈1〉 , n > 0 even

Thus, when n is even, Dn(⌊−1, 1,−1, . . . ,−1, 1⌉) = 〈1〉 and Dn maps onto
Z[F×].
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When n is odd, clearly, Dn(⌊a1, . . . , an⌉) ∈ IF×. However, for any a ∈ F×,
Dn(⌊a,−1, 1, . . . ,−1, 1⌉) = 〈〈a〉〉 ∈ An = IF×.

(2) Note that Cn(F n) ∼= Z[GLn(F )] naturally. Let µ be the homomorphism of
additive groups

µ : Z[GLn(F )] ⊗ Z[GLm(F )] → Z[GLn+m(F )],

A⊗B 7→

(
A 0
0 B

)

The formula Dm+n(x∗y) = Dn(x) ·Dm(y) now follows from the commutative
diagram

H(F n) ⊗H(Fm)
∗

//

��

H(F n+m)

��

Cn(F
n) ⊗ Cm(Fm)

∗
//

∼=
��

Cn+m(F n+m)

∼=
��

Z[GLn(F )] ⊗ Z[GLm(F )]
µ

//

det⊗ det
��

Z[GLn+m(F )]

det
��

Z[F×] ⊗ Z[F×]
·

// Z[F×]

(3) When n is even the maps Dn are split surjections, since the image is a free
module of rank 1.

It is easy to verify that the map D1 : S̃(F ) → A1 = IF× is an isomorphism.
Now let E ∈ S̃(F 2) be any element satisfying D2(E) = 〈1〉 (eg. we can take

E = ⌊−1, 1⌉). Then for n = 2m + 1 odd, the composite S̃(F ) ∗ E∗m →
S̃(F n) → IF× = An is an isomorphism.

�

We will let S̃(W,V )+ = Ker(DW,V ). Thus S̃(F n) ∼= S̃(F n)+⊕An as a Z[F×]-module
by the results above.

Observe that it follows directly from the definitions that the image of ǫV is contained
in S̃(V )+ for any vector space V .

3.5. The maps Tn.

Lemma 3.8. If n ≥ 2 and b1, . . . , bn are distinct elements of F× then

[b1][b2] · · · [bn] =
n∑

i=1

[b1 − bi] · · · [bi−1 − bi][bi][bi+1 − bi] · · · [bn − bi] in KMW
n (F ).
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Proof. We will use induction on n starting with n = 2: Suppose that b1 6= b2 ∈ F×.
Then

[b1 − b2]([b1] − [b2]) =

(
[b1] + 〈b1〉

[
1 −

b2
b1

]) (
−〈b1〉

[
b2
b1

])
by Lemma 2.3 (2)

= −〈b1〉[b1]

[
b2
b1

]
since [x][1 − x] = 0

= [b1]([b1] − [b2]) by Lemma 2.3(2) again

= [b1]([−1] − [b2]) by Lemma 2.3 (1)

= [b1](−〈−1〉[−b2]) = [−b2][b1] by Lemma 2.3 (3).

Thus

[b1][b2 − b1] + [b1 − b2][b2] = −〈−1〉[b2 − b1][b1] + [b1 − b2][b2]

= −([b1 − b2] − [−1])[b1] + [b1 − b2][b2]

= −[b1 − b2]([b1] − [b2]) + [−1][b1]

= −[−b2][b1] + [−1][b1] = ([−1] − [−b2])[b1]

= −〈−1〉[b2][b1] = [b1][b2]

proving the case n = 2.

Now suppose that n > 2 and that the result holds for n − 1. Let b1, . . . , bn be
distinct elements of F×.We wish to prove that

( n−1∑

i=1

[b1 − bi] · · · [bi] · · · [bn−1 − bi]

)
[bn] =

n∑

i=1

[b1 − bi] · · · [bi] · · · [bn − bi].

We re-write this as:
n−1∑

i=1

[b1 − bi] · · · [bi] · · · [bn−1 − bi]([bn] − [bn − bi]) = [b1 − bn] · · · [bn−1 − bn][bn].

Now

[b1 − bi] · · · [bi] · · · [bn−1 − bi]([bn] − [bn − bi]) = (−〈−1〉)n−i[b1 − bi] · · · [bn−1 − bi]

(
[bi]([bn] − [bn − bi])

)

= (−〈−1〉)n−i[b1 − bi] · · · [bn−1 − bi]

(
[bi − bn][bn]

)

= [b1 − bi] · · · [bi − bn] · · · [bn−1 − bi][bn].

So the identity to be proved reduces to
( n−1∑

i=1

[b1 − bi] · · · [bi − bn] · · · [bn−1 − bi]

)
[bn] = [b1 − bn] · · · [bn−1 − bn][bn].

Letting b′i = bi − bn for 1 ≤ i ≤ n− 1, then bj − bi = b′j − b′i for i, j ≤ n− 1 and this
reduces to the case n− 1. �

Theorem 3.9.

(1) For all n ≥ 1, there is a well-defined homomorphism of Z[F×]-modules

Tn : S̃(F n) → KMW
n (F )

sending ⌊a1, . . . , an⌉ to [a1] · · · [an].
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(2) The maps {Tn} define a homomorphism of graded Z[F×]-algebras S̃(F •) →
KMW

• (F ): We have

Tn+m(x ∗ y) = Tn(x) · Tm(y), for all x ∈ S̃(F n), y ∈ S̃(Fm).

Proof.

(1) By Theorem 3.3, in order to show that Tn is well-defined we must prove the
identity

[b1a1] · · · [bnan]−[a1] · · · [an] =

n∑

i=1

(−〈−1〉)n+i〈ai〉[a1(b1−bi)] · · · [ ̂ai(bi − bi)] · · · [an(bn−bi][bi]

in KMW
n (F ).

Writing [biai] = [ai] + 〈ai〉[bi] and [aj(bj − bi)] = [aj ] + 〈aj〉[bj − bi] and
expanding the products on both sides and using (3) of Lemma 2.3 to permute
terms, this identity can be rewritten as

∑

∅6=I⊂{1,...,n}

(−〈−1〉)sgn(σI )〈ai1 · · ·aik〉[aj1] · · · [ajs
][bi1 ] · · · [bik ] =

∑

∅6=I⊂{1,...,n}

(−〈−1〉)sgn(σI )〈ai1 · · ·aik〉[aj1 ] · · · [ajs
]

( k∑

t=1

[bi1 − bit ] · · · [bit ] · · · [bik − bit ]

)

where I = {i1 < · · · < ik} and the complement of I is {j1 < · · · < js} (so
that k + s = n) and σI is the permutation

(
1 . . . s s+ 1 . . . n
j1 . . . js i1 . . . ik

)
.

The result now follows from the identity of Lemma 3.8.
(2) We can assume that x = ⌊a1, . . . , an⌉ and y = ⌊a′1, . . . , a

′
m⌉ with ai, a

′
j ∈ F×.

¿From the definition of Tn+m and the formula of Lemma 3.4,
(−1)n+mTn+m(x ∗ y) =

n∑

i=1

m∑

j=1

(−1)i+j
〈
(−1)i+jaia

′
j

〉
[a1(b1 − bi)] · · · [ ̂ai(bi − bi)] · · · [bi][a

′
1(b

′
1 − b′j)] · · · [

̂a′j(b
′
j − b′j)] · · · [b

′
j ]

+(−1)m

n∑

i=1

(−1)i+1
〈
(−1)i+1ai

〉
[a1(b1 − bi)] · · · [ ̂ai(bi − bi)] · · · [bi][b

′
1a

′
1] · · · [b

′
ma

′
m]

+(−1)n

m∑

j=1

(−1)j+1
〈
(−1)j+1a′j

〉
[b1a1] · · · [bnan][a′1(b

′
1 − b′j)] · · · [

̂a′j(b
′
j − b′j)] · · · [b

′
j ]

+(−1)n+m[b1a1] · · · [bnan][bi][b
′
1a

′
1] · · · [b

′
ma

′
m]

which factors as X · Y with X =

n∑

i=1

(−1)i+1
〈
(−1)i+1ai

〉
[a1(b1 − bi)] · · · [ ̂ai(bi − bi)] · · · [bi] + (−1)n[b1a1] · · · [bnan]

= (−1)n[a1] · · · [an] = (−1)nTn(x) by part (1)
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and Y =
m∑

j=1

(−1)j+1
〈
(−1)j+1a′j

〉
[a′1(b

′
1 − b′j)] · · · [

̂a′j(b
′
j − b′j)] · · · [b

′
j ] + (−1)m[b′1a

′
1] · · · [b

′
ma

′
m]

= (−1)m[a′1] · · · [a
′
m] = (−1)mTm(y) by (1) again.

�

Note that T1 is the natural surjective map S̃(F ) ∼= IF× → KMW
1 (F ), ⌊a⌉ ↔ 〈〈a〉〉 7→

[a]. It has a nontrivial kernel in general.

Note furthermore that SH2(F ) = H2(SL2(F ),Z). It is well-known ([23],[11], and
[7]) that H2(SL2(F ),Z) ∼= KM

2 (F ) ×kM
2

(F ) I
2(F ) ∼= KMW

2 (F ).

In fact we have:

Theorem 3.10. The composite T2 ◦ ǫ2 : H2(SL2(F ),Z) → KMW
2 (F ) is an isomor-

phism.

Proof. For p ≥ 1, let X̄p(F ) denote the set of all p-tuples (x1, . . . , xp) of points of
P1(F ) and let X̄0(F ) = ∅. We let C̄p(F ) denote the GL2(F ) permutation module
Z[X̄p(F )] and form a complex C̄•(F ) using the natural simplicial boundary maps,
d̄p. This complex is acyclic and the map F 2 \ {0} → P1(F ), v 7→ v induces a map
of complexes C•(F

2) → C̄•(F ).

Let H̄2(F ) := Ker(d̄2 : C̄2(F ) → C̄1(F )) and let S̄2(F ) = H0(SL2(F ), H̄2(F )).

We obtain a commutative diagram of SL2(F )-modules with exact rows:

C4(F
2)

��

d4
// C3(F

2)

��

d3
// H(F 2)

��

// 0

C̄4(F )
d̄4

// C̄3(F )
d̄3

// H̄2(F ) // 0

Taking SL2(F )-coinvariants gives the diagram

H0(SL2(F ), C4(F
2))

��

d4
// H0(SL2(F ), C3(F

2))

��

d3
// S̃(F 2)

φ
��

// 0

H0(SL2(F ), C̄4(F ))
d̄4

// H0(SL2(F ), C̄3(F ))
d̄3

// S̄2(F ) // 0

Now the calculations of Mazzoleni, [11], show that H0(SL2(F ), C̄3(F )) ∼= Z[F×/(F×)2]
via

class of (∞, 0, a) 7→ 〈a〉 ∈ Z[F×/(F×)2],

where a ∈ P1(F ) = e1 + ae2 and ∞ := e1. Furthermore S̄2(F ) ∼= GW(F ) in such a
way that the induced map Z[F×/(F×)2] → GW(F ) is the natural one.

Since ⌊a, b⌉ = d3(e1, e2, ae1+be2), it follows that φ(⌊a, b⌉) = 〈a/b〉 = 〈ab〉 in GW(F ).

Associated to the complex C̄•(F ) we have an iterated connecting homomorphism
ω : H2(SL2(F ),Z) → S̄2(F ) = GW(F ). Observe that ω = φ◦ǫ2. In fact, (Mazzoleni,
[11], Lemma 5) the image of ω is I2(F ) ⊂ GW(F ).

On the other hand, the module S̃(F 2)+ is generated by the elements
[[a, b]] := ⌊a, b⌉ −D2(⌊a, b⌉) · E (where E, as above, denotes the element ⌊−1, 1⌉).

Note that T2([[a, b]]) = T2(⌊a, b⌉) = [a][b] since T2(E) = [−1][1] = 0 in KMW
2 (F ).



Homology of SLn(F ) 19

Furthermore,

φ([[a, b]]) = φ(⌊a, b⌉) −D2(⌊a, b⌉)φ(E)

= 〈ab〉 − (〈−a〉 − 〈b〉 + 〈1〉)〈−1〉

= 〈ab〉 − 〈a〉 + 〈−b〉 − 〈−1〉

= 〈ab〉 − 〈a〉 − 〈b〉 + 〈1〉

= 〈〈a, b〉〉

(using the identity 〈b〉 + 〈−b〉 = 〈1〉 + 〈−1〉 in GW(F )).

Using these calculations we thus obtain the commutative diagram

H2(SL2(F ),Z)
ǫ2

//

ω

''OOOOOOOOOOOO
S̃(F 2)+

φ
��

T2
// KMW

2 (F )

yyrrrrrrrrrr

I2(F )

Now, the natural embedding F× → SL2(F ), a 7→ diag(a, a−1) := ã induces a homo-
morphism, µ:

2∧(
F×

)
∼= H2(F

×,Z) → H2(SL2(F ),Z),

a ∧ b 7→
(
[ã|b̃] − [̃b|ã]

)
⊗ 1 ∈ B2(SL2(F )) ⊗Z[SL2(F )] Z.

Mazzoleni’s calculations (see [11], Lemma 6) show that µ(
∧2 (F×)) = Ker(ω) and

that there is an isomorphism µ(
∧2 (F×)) ∼= 2 ·KM

2 (F ) given by µ(a ∧ b) 7→ 2{a, b}.

On the other hand, a straightforward calculation shows that

ǫ2 (µ(a ∧ b)) = 〈a〉 ⌊b,
1

ab
⌉−⌊b,

1

b
⌉−〈a〉 ⌊1,

1

a
⌉+〈b〉 ⌊1,

1

b
⌉+⌊a,

1

a
⌉−〈b〉 ⌊a,

1

ab
⌉ := Ca,b

Now by the diagram above,

T2(Ca,b) = T2(ǫ2 (µ(a ∧ b))) ∈ Ker(KMW
2 (F ) → I2(F )) ∼= 2KM

2 (F ).

Recall that the natural embedding 2KM
2 (F ) → KMW

2 (F ) is given by 2{a, b} 7→
[a2][b] = [a][b] − [b][a] and the composite

2KM
2 (F ) // KMW

2 (F )
κ2

// KM
2 (F )

is the natural inclusion map. Since

κ2 (T2(Ca,b)) =

{
b,

1

ab

}
−

{
b,

1

b

}
−

{
1,

1

a

}
+

{
1,

1

b

}
+

{
a,

1

a

}
−

{
a,

1

ab

}

= {a, b} − {b, a} = 2{a, b},

it follows that we have a commutative diagram with exact rows

0 // µ(
∧2 (F×)) //

∼=
��

H2(SL2(F ),Z)
ω

//

T2◦ǫ2
��

I2(F ) //

=

��

0

0 // 2KM
2 (F ) // KMW

2 (F ) // I2(F ) // 0

proving the theorem. �
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4. AM-modules

¿From the results of the last section, it follows that there is a Z[F×]-decomposition

S̃(F 2) ∼= KMW
2 (F ) ⊕ Z[F×]⊕?

It is not difficult to determine that the missing factor is isomorphic to the 1-
dimensional vector space F (with the tautological F×-action). However, as we will
see, this extra term will not play any role in the calculations of Hn(SLk(F ),Z).

As Z[F×]-modules, our main objects of interest (Milnor-Witt K-theory, the ho-
mology of the special linear group, the powers of the fundamental ideal in the
Grothendieck-Witt ring) are what we call below ‘multiplicative ’; there exists m ≥ 1
such that, for all a ∈ F×, 〈am〉 acts trivially. This is certainly not true of the vector
space F above. In this section we formalise this difference, and use this formalism
to prove an analogue of Suslin’s Theorem 1.8 ([23]).

Throughout the remainder of this paper, F is a field of characteristic 0. The prime
subfield will be denoted k; i.e. k = Q.

We will say that a Z[F×]-moduleM is a simple multiplicative module with parameter
r if there exists r ≥ 1 such that (F×)r acts trivially on M .

Example 4.1. Any trivial Z[F×]-module is a simple multiplicative module with
parameter 1.

Example 4.2. GW(F ) is a simple multiplicative module with parameter 2.

Example 4.3. KMW
n (F ) is a simple multiplicative module with parameter 2, since

it is a GW(F )-module.

Example 4.4. In(F ) is a simple multiplicative module with parameter 2.

Example 4.5. The groups Hn(SLk(F ),Z) are simple multiplicative modules with
parameter k (see the proof of Theorem 4.21 below).

We will say that a Z[F×]-module is multiplicative if it admits a filtration by sub-
modules

0 = F0M ⊂ F1M ⊂ · · · ⊂ FtM = M

such that the quotients

griM :=
FiM

Fi−1M
are all simple multiplicative .

Lemma 4.6. Let
0 →M1 →M →M2 → 0

be a short exact sequence of Z[F×]-modules.

(1) If M is multiplicative so are M1 and M2.
(2) If M1 and M2 are multiplicative so is M .

Proof. This is clear from the definition. �

Lemma 4.7. Let M be a multiplicative Z[F×]-module. Then there exist r, t ∈ N
such that (

I(F×)s

)m
·M = 0

whenever r|s and m ≥ t.
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Proof. If M is a simple multiplicative module with parameter r then

I(F×)s ·M = 0

for any s divisible by r.

Now suppose that M has a filtration of length t whose associated quotients griM
are simple multiplicative with parameters ri. Let r = lcm(r1, . . . , rt). Then

(
I(F×)s

)m
·M = 0

for any m ≥ t and s divisible by r. �

Let A be a Z[F×]-module which is also a k-vector space. (Recall that k = Q.) Thus
A is equipped with two (possibly different) Z[k×]-actions:

(1) The action obtained by restricting from Z[F×], which we will denote by
a 7→ 〈x〉 a for x ∈ k×, a ∈ A

(2) The action by scalar multiplication, denoted a 7→ xa.

Remark 4.8. Since k is a prime field, if A1 and A2 are k-vector spaces, any additive
group homomorphism A1 → A2 is automatically a vector space homomorphism.

We will say that A is a simple additive Z[k×]-module with parameter r if for all
x ∈ (k×)r \ {1} there exists λx ∈ k× \ {1} such that 〈x〉 a = λxa

Example 4.9. Of course, the vector space F with the natural F×-action is additive
with parameter 1. We will see other examples below (proof of Theorem 4.21).

We will say that a Z[k×]-module A is additive if A is a k-vector space and A admits
a finite filtration by submodules

0 = F0A ⊂ F1A ⊂ · · · ⊂ FsA = A

for which the associated quotients griA are simple additive .

Lemma 4.10. Let
0 → A1 → A→ A2 → 0

be a short exact sequence of Z[F×]-modules which are k-vector spaces.

(1) If A is additive so are A1 and A2.
(2) If A1 and A2 are additive so is A.

Proof. This is clear from the definition. �

Lemma 4.11. If A is an additive Z[k×]-module, then H0(k
×, A) = 0; i.e.

Ik× · A = A.

Proof. Choose a filtration of A whose quotients are simple additive with parameters
r1, . . . , rs and let r = lcm(r1, . . . , rs).

Let x ∈ (k×)r \ {1}. 〈x〉 − 1 acts on griA as multiplication by the nonzero scalar
µi = λi

x − 1 ∈ k×. Thus 〈x〉 − 1 gives an automorphism of each griA, and thus acts
on A itself as an automorphism.

So 〈x〉 − 1 ∈ Ik× and (〈x〉 − 1)A = A.

�

Lemma 4.12. Let M be a multiplicative Z[k×]-module and A an additive Z[k×]-
module.
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(1) If f : M → A is a Z[k×]-module homomorphism, then f = 0.
(2) If g : A→ M is a Z[k×]-module homomorphism, then g = 0.

Proof. By the arguments above, we can find x ∈ k× \ {1} and s ≥ 1 such that
(〈x〉−1)sm = 0 for allm ∈M , while 〈x〉−1, and hence (〈x〉−1)s is an automorphism
of A. Let b = (〈x〉 − 1)s.

(1) For all m ∈ M , we have 0 = f(0) = f(b · m) = b · f(m), which forces
f(m) = 0.

(2) For all a ∈ A, there exists a′ ∈ A with a = b · a′. Thus g(a) = b · g(a′) = 0.

�

Corollary 4.13. If B is a Z[k×]-module and if A is an additive submodule and M
a multiplicative submodule, then A ∩M = 0.

Proof. The identity map of A ∩M is 0 by Lemma 4.12. �

Lemma 4.14.

(1) If

0 // M // H
π

// A // 0

is an exact sequence of Z[F×]-modules with M multiplicative and A an ad-
ditive Z[k×]-module, then the sequence splits over Z[F×].

(2) Similarly, if

0 // A // H // M // 0

is an exact sequence of Z[F×]-modules with M multiplicative and A an ad-
ditive Z[k×]-module, then the sequence splits over Z[F×].

Proof.

(1) As above we can find b ∈ Z[k×] such that b · M = 0 and b acts as an
automorphism of A. Then b · H is a Z[F×]-submodule of H and π induces
an isomorphism b ·H ∼= A.

(2) Choose b as before so that b annihilates M and multiplication by b gives a
Z[F×]-automorphism, α of A. Then b·H = A and the Z[F×]-homomorphism
H → A, h 7→ α−1(b · h) splits the sequence.

�

We will say that a Z[F×]-module H is an AM module if there exists a multiplica-
tive Z[F×]-module M and a Z[F×] module A which is additive over Z[k×] and an
isomorphism of Z[F×]-modules H ∼= A⊕M .

Lemma 4.15. Let H be an AM module and let φ : H → A⊕M be an isomorphism
of Z[F×]-modules, with M multiplicative and A additive .

Then

φ−1(A) =
⋃

A′⊂H,A′additive

A′ and φ−1(M) =
⋃

M ′⊂H,M ′multiplicative

M ′

Proof. Let M ′ ⊂ H be multiplicative. Then the composite

M ′ // H
φ

// A⊕M // A

is zero by Lemma 4.12, and thus M ′ ⊂ φ−1(M). �
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It follows that the submodules φ−1(A) and φ−1(M) are independent of the choice
of φ, A and M . We will denote the first as HA and the second as HM.

Thus if H is an AM module then there is a canonical decomposition H = HA⊕HM,
where HA (resp. HM) is the maximal additive (resp. multiplicative ) submodule of
H . We have canonical projections

πA : H → HA, πM : H → HM.

Lemma 4.16. Let H be a AM module. Suppose that H is also a module over a
ring R and that the action of R commutes with that of Z[k×]. Then HA and HM

are R-submodules of H.

Proof. Let r ∈ R. Then the composite

HA
r·

// H
πM

// HM

is a Z[k×]-homomorphism and thus is 0 by Lemma 4.12. It follows that r · HA ⊂
Ker(πM) = HA. �

Lemma 4.17. Let f : H → H ′ be a Z[k×]-homomorphism of AM modules.

Then there exist Z[k×]-homomorphisms fA : HA → H ′
A and fM : HM → H ′

M

such that f = fA ⊕ fM.

Suppose that H and H ′ are modules over a ring R and that the R-action commutes
with the Z[k×]-action in each case. If f is an R-homomorphism, then so are fA and
fM.

Proof. This is immediate from Lemmas 4.12 and 4.16. �

Lemma 4.18. If

0 // L
j

// H
π

// K // 0

is a short exact sequence of Z[k×]-modules and if L and K are AM modules, then
so is H.

Proof. Let H̃ = π−1(KM). Then the exact sequence

0 → L→ H̃ → KM → 0

gives the exact sequence

0 →
L

LM
→

H̃

j(LM)
→ KM → 0.

Since L/LM
∼= LA is additive , this latter sequence is split, by Lemma 4.14 (2).

So H̃/j(LM) is a AM module, and there is a Z[k×]-isomorphism

H̃/j(LM)
φ

∼=
// LA ⊕KM.

Let φ̄ be the composite

H̃ // H̃/j(LM)
φ

// LA ⊕KM.

Let Hm = φ̄−1(LA) ⊂ H̃ ⊂ H . Then, we have an exact sequence

0 → LM → Hm → KM → 0
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so that Hm is multiplicative .

On the other hand, since H̃/Hm
∼= LA and H/H̃ ∼= KA, we have a short exact

sequence

0 → LA →
H

Hm
→ KA → 0.

This implies that H/Hm is additive , and thus H is AM by Lemma 4.14 (1). �

Lemma 4.19. Let (C•, d) be a complex of Z[k×]-modules. If each Cn is AM, then
H•(C) is AM, and furthermore

H•(CA) = H•(C)A
H•(CM) = H•(C)M

Proof. The differentials d decompose as d = dA ⊕ dM by Lemma 4.17. �

Theorem 4.20. Let (Er, dr) be a first quadrant spectral sequence of Z[k×]-modules
converging to the Z[k×]-module H• = {Hn}n≥0.

If for some r0 ≥ 1 all of the modules Er0

p,q are AM, then the same holds for all the
modules Er

p,q for all r ≥ r0 and hence for the modules E∞
p,q.

Furthermore, H• is AM and the spectral sequence decomposes as a direct sum
Er = Er

A ⊕ Er
M (r ≥ r0) with Er

A converging to H•A and Er
M converging to

H•M.

Proof. Since Er+1 = H(Er, dr) for all r, the first statement follows from Lemma
4.19.

Since Er is a first quadrant spectral sequence (and, in particular, is bounded), it
follows that for any fixed (p, q), E∞

p,q = Er
p,q for all sufficiently large r. Thus E∞ is

also AM.

Now Hn admits a filtration 0 = F0Hn ⊂ · · · ⊂ FnHn = Hn with corresponding
quotients grpHn

∼= E∞
p,n−p.

Since all the quotients are AM, it follows by Lemma 4.18, together with an induc-
tion on the filtration length, that Hn is AM.

The final two statements follow again from Lemma 4.19. �

If G is a subgroup of GL(V ), we let SG denote G ∩ SL(V ).

Theorem 4.21. Let F be a field of characteristic 0.

Let V , W be finite-dimensional vector spaces over F and let G1 ⊂ GL(W ), G2 ⊂
GL(V ) be subgroups and suppose that G2 contains the group F× of scalar matrices.

Let M be a subspace of HomF (V,W ) for which G1M = M = MG2.

Let

G =

(
G1 M
0 G2

)
⊂ GL(W ⊕ V ).

Then the groups Hi(SG,Z) are AM and the natural embedding j : S(G1 × G2) →
SG induces an isomorphism

Hi(S(G1 ×G2),Z) ∼= Hi(SG,Z)M.
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Proof. We begin by noting that the groups Hi(SG,Z) are Z[F×]-modules, and hence
Z[k×]-modules by restriction. The action of F× is derived from the short exact
sequence

1 // SG // G
det

// F× // 1

We have a split extension of groups (split by the map j) which is F×-stable:

0 // M // SG
π

// S(G1 ×G2) // 1.

The resulting Hochschild-Serre spectral sequence has the form

E2
p,q = Hp(S(G1 ×G2),Hq(M,Z)) =⇒ Hp+q(SG,Z).

This spectral sequence exists in the category of Z[F×]-modules and thus all differ-
entials and edge homomorphisms are Z[F×]-maps.

Since the map π is split by j it induces a split surjection on integral homology
groups. Thus

Hn(S(G1 ×G2),Z) = E2
n,0 = E∞

n,0 for all n ≥ 0.

Observe furthermore that the Z[F×]-module Hn(S(G1 × G2),Z) is multiplicative :
Given a ∈ F×, the element

ρa :=

(
IdW 0
0 a · IdV

)
∈ G

has determinant am and centralizes S(G1 × G2). It follows that 〈am〉 acts trivially
on Hn(S(G1 ×G2),Z) for all n.

Now M is k-vector space and hence so are the groups Hq(M,Z) and Hp(S(G1 ×
G2),Hq(M,Z)). We will show that these are additive Z[k×]-modules when q > 0.

For q > 0, Hq(M,Z) =
∧q (M) and scalar multiplication by λ ∈ k on M induces

multiplication by λq om Hq(M,Z).

Now if a ∈ k×, then conjugation by ρa is trivial on S(G1 × G2) but acts on M as
scalar multiplication by a.

It follows that 〈xm〉 ∈ Z[k×] acts as scalar multiplication by xq on Hq(M,Z) and
on each of the groups Hp(S(G1 ×G2),Hq(M,Z)). Thus, for q > 0, these groups are
additive with parameter m; i.e., all E2

p,q are additive for q > 0. It follows at once
that the groups E∞

p,q are additive for all q > 0. Thus, from the convergence of the
spectral sequence, we have a short exact sequence

0 → H → Hn(SG,Z) → E∞
n,0 = j (Hn(S(G1 ×G2),Z)) → 0

and H has a filtration whose graded quotients are all additive .

So Hn(SG,Z) is AM as claimed, and Hn(SG,Z)M
∼= Hn(S(G1 ×G2),Z).

�

Corollary 4.22. Suppose that W ′ ⊂ W . Then there is a corresponding inclusion
SA(W ′, V ) → SA(W,V ). This inclusion induces an isomorphism

Hn(SA(W ′, V ),Z)M ∼=
// Hn(SA(W,V ),Z)M

∼= Hn(SL(V ),Z)

for all n ≥ 0.
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5. The spectral sequences

Recall that F is a field of characteristic zero and k = Q throughout this section.

In this section we use the complexes C•(W,V ) to construct spectral sequences con-
verging to 0 in dimensions less than n = dimF (V ), and to S̃(W,V ) in dimension
n. By projecting onto the multiplicative part, we obtain spectral sequences with
good properties: the terms in the E1-page are just the kernels and cokernels of the
stabilization maps ft,n : Hn(SLt(F ),Z) → Hn(SLt+1(F ),Z). We then prove that the
higher differentials are all zero. Since the spectral sequences converge to 0 in low
degrees, this already implies the main stability result (Corollary 5.11); the maps ft,n

are isomorphisms for t ≥ n + 1 and are surjective for t = n. The remainder of the
paper is devoted to an analysis of the case t = n − 1, which requires some more
delicate calculations.

Let Cτ
• (W,V ) denote the truncated complex.

Cτ
p (W,V ) =

{
Cp(W,V ), p ≤ dimF (V )

0, p > dimF (V )

Thus

Hp(C
τ
• (W,V )) =

{
0, p 6= n
H(W,V ), p = n

where n = dimF (V ).

Thus the natural action of SA(W,V ) on Cτ
• (W,V ) gives rise to a spectral sequence

E(W,V ) which has the form

E1
p,q = Hp(SA(W,V ), Cτ

q (W,V )) =⇒ Hp+q−n(SA(W,V ), H(W,V )).

The groups Cτ
q (W,V ) are permutation modules for SA(W,V ) and thus the E1-terms

(and the differentials d1) can be computed in terms of the homology of stabilizers.

Fix a basis ǫ={e1, . . . , en} of V . Let Vr be the span of {e1, . . . , er} and let V ′
s be the

span of {en−s, . . . , en}, so that V = Vr ⊕ V ′
n−r if 0 ≤ r ≤ n.

For any 0 ≤ q ≤ n−1, the group SA(W,V ) acts transitively on the basis of Cτ
q (W,V )

and the stabilizer of (
(0, e1), . . . , (0, eq)

)

is SA(W ⊕ Vq, V
′
n−q).

Thus, for q ≤ n− 1,

E1
p,q = Hp(SA(W,V ), Cτ

q (W,V )) ∼= Hp(SA(W ⊕ Vq, V
′
n−q),Z)

by Shapiro’s Lemma.

By the results in section 4 we have:

Lemma 5.1. The terms E1
p,q in the spectral sequence E(W,V ) are AM for q > 0,

and

(E1
p,q)M = Hp(SL(V ′

n−q),Z) ∼= Hp(SLn−q(F ),Z).

For q = n, the orbits of SA(W,V ) on the basis of Cτ
n(W,V ) are in bijective corre-

spondence with F× via

(
(w1, v1), . . . , (wn, vn)

)
7→ det ([v1| · · · |vn]E) .
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The stabilizer of any basis element of Cτ
n(W,V ) is trivial. Thus

E1
p,n =

{
Z[F×], p = 0
0, p > 0

Of course, E1
p,q = 0 for q > n.

The first column of the E1-page of the spectral sequence E(W,V ) has the form

E1
0,q =






Z, q < n
Z[F×], q = n
0, q > n

and the differentials are easily computed: For q < n

d1
0,q : E1

0,q → E1
0,q =

{
IdZ, q is odd
0, q is even

and

d1
0,n : Z[F×] → Z =

{
augmentation , n odd
0, n even

It follows that E2
0,q = 0 for q 6= n and

E2
0,n =

{
IF×, n odd
Z[F×], n even

Note that the composite

S̃(W,V )
edge

// E∞
0,n ⊂ E2

0,n = An

is just the map DW,V of section 3 above.

Lemma 5.2. The map DW,V is a split surjective homomorphism of Z[F×]-modules.

Proof. If W = 0, this is Lemma 3.7 (1) and (3), since V ∼= F n.

In general the natural map of complexes Cτ
• (V ) → Cτ

• (W,V ) gives rise to a commu-
tative diagram of Z[F×]-modules

S̃(V ) //

DV ""DD
DD

DD
DD

S̃(W,V )

DW,V{{vv
vv

vv
vv

v

An

�

We let S̃(W,V )+ := Ker(DW,V : S̃(W,V ) → An), so that S̃(W,V ) ∼= S̃(W,V )+⊕An

for all W,V .

Corollary 5.3. In the spectral sequence E(W,V ), we have E2
0,q = E∞

0,q for all q ≥ 0.

All higher differentials dr
0,q : Er

0,q → Er
r−1,q+r are zero.

It follows that the spectral sequences E(W,V ) decompose as a direct sum of two
spectral sequences

E(W,V ) = E0(W,V ) ⊕ E+(W,V )

where E0(W,V ) is the first column of E(W,V ) and E+(W,V ) involves only the terms
Er

p,q with q > 0.
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The spectral sequence E0(W,V ) converges in degree d to
{

0, d 6= n
An, d = n

The spectral sequence E+(W,V ) converges in degree d to





0, d < n

S̃(W,V )+, d = n
Hd−n(SA(W,V ), H(W,V )), d > n

By Lemma 5.1 above, all the terms of the spectral sequence E+(W,V ) are AM.
We thus have

Corollary 5.4.

(1) The Z[F×]-modules S̃(W,V )+ are AM.

(2) The graded submodule S̃(F •)+
A ⊂ S̃(F •) is an ideal.

Proof.

(1) This follows from Theorem 4.20.
(2) This follows from Lemma 4.16, since S̃(F •)+ is an ideal in S̃(F •) by Lemma

3.7 (2).

�

Corollary 5.5. The natural embedding H(V ) → H(W,V ) induces an isomorphism

S̃(V )+
M

∼=
// S̃(W,V )+

M.

Proof. The map of complexes of SL(V )-modules Cτ
• (V ) → Cτ

• (W,V ) gives rise to
a map of spectral sequences E+(V ) → E+(W,V ) and hence a map E+(V )M →
E+(W,V )M. The induced map on the E1-terms is

Hp(SLn−q(F ),Z)
Id

//

∼=
��

Hp(SLn−q(F ),Z)

∼=
��

Hp(SL(V ), Cτ
q (V ))

M
// Hp(SA(W,V ), Cτ

q (W,V ))
M

and thus is an isomorphism.

It follows that there is an induced isomorphism of abutments

S̃(V )+
M

∼= S̃(W,V )+
M

and
Hk(SL(V ), H(V ))M

∼= Hk(SA(W,V ), H(W,V ))M.

�

For convenience, we now define

S̃(W,V )M :=
S̃(W,V )

S̃(W,V )+
A

(even though S̃(W,V ) is not an AM module).

This gives:
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Corollary 5.6.

S̃(W,V )M
∼= S̃(W,V )+

M ⊕An
∼= S̃(V )+

M ⊕An
∼= S̃(V )M

as Z[F×]-modules, and S̃(F •)M is a graded Z[F×]-algebra.

Lemma 5.7. For any k ≥ 1, the corestriction map

cor : Hi(SLk(F ),Z) → Hi(SLk+1(F ),Z)

is F×-invariant;i.e. if a ∈ F× and z ∈ Hi(SLk(F ),Z), then

cor(〈a〉 z) = 〈a〉 cor(z) = cor(z).

Proof. Of course, cor is a homomorphism of Z[F×]-modules. However, for a ∈ F×,〈
ak

〉
acts trivially on Hi(SLk(F ),Z) while

〈
ak+1

〉
acts trivially on Hi(SLk+1(F ),Z)

so that

cor(〈a〉 z) = cor(
〈
ak+1

〉
z) =

〈
ak+1

〉
cor(z) = cor(z).

�

Lemma 5.8. For 0 ≤ q < n, the differentials of the spectral sequence E+(W,V )M

d1
p,q : (E1

p,q)M
∼= Hp(SLn−q(F ),Z) → (E1

p,q−1)M
∼= Hp(SLn−q+1(F ),Z)

are zero when q is even and are equal to the corestriction map when q is odd.

Proof. d1 is derived from the map dq : Cτ
q (W,V ) → Cτ

q−1(W,V ) of permutation
modules. Here

dq

(
(0, e1), . . . , (0, eq)

)
=

q∑

i=1

(−1)i+1
(
(0, e1), . . . , (̂0, ei), . . . , (0, eq)

)

=

q∑

i=1

(−1)i+1φi

(
(0, e1), . . . , (0, eq−1)

)

where φi ∈ SA(W,V ) can be chosen to be of the form

φi =

(
IdW 0
0 ψi

)
, ψi =

(
σi 0
0 τi

)
∈ GL(V )

with σi ∈ GL(Vq) a permutation matrix of determinant ǫi and τi ∈ GL(V ′
n−q) also

of determinant ǫi.

φi normalises SA(W ⊕ Vq, V
′
n−q,) and SL(V ′

n−q). Thus for z ∈ Hp(SL(V ′
n−q),Z),

d1(z) =

q∑

i=1

(−1)i+1cor(τiz)

=

q∑

i=1

(−1)i+1cor(〈ǫi〉 z)

=

q∑

i=1

(−1)i+1cor(z) =

{
cor(z), q odd
0, q even

�
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Let E := ⌊−1, 1⌉ ∈ S̃(F 2)M. E is represented by the element

Ẽ := d3(e1, e2, e2 − e1) = (e2, e2 − e1) − (e1, e2 − e1) + (e1, e2) ∈ H(F 2) ⊂ Cτ
2 (F 2).

Multiplication by Ẽ induces a map of complexes of GLn−2(F )-modules

Cτ
• (F n−2)[2] → Cτ

• (F n)

There is an induced map of spectral sequences E(F n−2)[2] → E(F n), which in
turn induces a map E+(F n−2)[2] → E+(F n), and hence a map E+(F n−2)M[2] →
E+(F n)M.

By the work above, the E1-page of E+(F n)M has the form

E1
p,q = Hp(SLn−q(F ),Z) (p > 0)

while the E1-page of E+(F n−2)M[2] has the form

E ′1
p,q =

{
Hp(SL(n−2)−(q−2)(F ),Z) = Hp(SLn−q(F ),Z), q ≥ 2, p > 0
0, q ≤ 1 or p = 0

Lemma 5.9. For q ≥ 2 (and p > 0), the map

E ′1
p,q

∼= Hp(SLn−q(F ),Z) → E1
p,q = Hp(SLn−q(F ),Z)

induced by Ẽ ∗ − is the identity map.

Proof. There is a commutative diagram

E ′1
p,q = Hp(SLn−q(F ),Z) //

(Ẽ∗−)
M

��

Hp(SA(F q−2, F n−q),Z)
∼=

//

Ẽ∗−
��

Hp(SLn−2(F ), Cτ
q−2(F

n−2))

Ẽ∗−
��

E1
p,q = Hp(SLn−q(F ),Z) // Hp(SA(F q, F n−q),Z)

∼=
// Hp(SLn(F ), Cτ

q (F n))

We number the standard basis of F n−2 e3, . . . , en so that the inclusion SLn−2(F ) →
SLn(F ) has the form

A 7→

(
I2 0
0 A

)
.

So we have a commutative diagram of inclusions of groups

SLn−q(F ) //

=

��

SA(F q−2, F n−q) //

��

SLn−2(F )

��

SLn−q(F ) // SA(F q, F n−q) // SLn(F ).

Let B• = B•(SLn(F )) be the right bar resolution of SLn(F ). We can use it to
compute the homology of any of the groups occurring in this diagram.

Suppose now that q ≥ 2 and we have a class, w, in E ′1
p,q = Hp(SLn−q(F ),Z)

represented by a cycle
z ⊗ 1 ∈ Bp ⊗Z[SLn−q(F )] Z.

Its image in Hp(SLn−2(F ), Cτ
q−2(F

n−2)) is represented by z⊗(e3, . . . , eq). The image
of this in Hp(SLn(F ), Cτ

q (F n)) is

z ⊗
[
Ẽ ∗ (e3, . . . , eq)

]
= z ⊗ [(e2, e2 − e1, e3, . . .) − (e1, e2 − e1, e3, . . .) + (e− 1, e2, e3, . . .)]

= z ⊗ [(g1 − g2 + 1)(e1, e2, e3, . . .)] ∈ Bp ⊗Z[SLn(F )] C
τ
q (F n)
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where

g1 =





0 −1 0 . . . 0
1 1 0 . . . 0

0 0 1 0
...

...
... 0

. . . 0
0 0 0 . . . 1




, g2 =





1 −1 0 . . . 0
0 1 0 . . . 0

0 0 1 0
...

...
... 0

. . . 0
0 0 0 . . . 1




∈ SLn(F ).

This corresponds to the element in Hp(SLn−q(F ),Z) represented by

z(g1 − g2 + 1) ⊗ 1 ∈ Bp ⊗Z[SLn−q(F )] Z

Since the elements gi centralize SLn−q(F ) it follows that this is (g1 − g2 + 1) · w =
w. �

Recall that the spectral sequence E+(F n)M converges in degree n to S̃(F n)+
M.

Thus there is a filtration

0 = Fn,−1 ⊂ Fn,0 ⊂ Fn,1 ⊂ · · ·Fn,n = S̃(F n)+
M

with
Fn,i

Fn,i−1

∼= E∞
n−i,i.

The E1-page of E+(F n)M has the form

0 0 0 . . . 0

0 H1(SL2(F ),Z)

��

H2(SL2(F ),Z)

��

. . . Hn(SL2(F ),Z)

��

...
...

cor

��

...

cor

��

. . . ...

cor

��

0 H1(SLn−2(F ),Z)

0
��

H2(SLn−2(F ),Z)

0
��

. . . Hn(SLn−2(F ),Z)

0
��

0 H1(SLn−1(F ),Z)

cor

��

H2(SLn−1(F ),Z)

cor

��

. . . Hn(SLn−1(F ),Z)

cor

��

0 H1(SLn(F ),Z) H2(SLn(F ),Z) . . . Hn(SLn(F ),Z)

Theorem 5.10.

(1) The higher differentials d2, d3, . . . , in the spectral sequence E+(F n)M are all
0.

(2) S̃(F n−2)M
∼= E ∗ S̃(F n−2)M and this latter is a direct summand of S̃(F n)M.

Proof.

(1) We will use induction on n. For n ≤ 2 the statement is true for trivial
reasons.
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On the other hand, if n > 2, by Lemma 5.9, the map

Ẽ ∗ − : E+(F n−2)M[2] → E+(F n)M

induces an isomorphism on E1-terms for q ≥ 2. By induction (and the fact
that E ′1

p,q = 0 for q ≤ 1), the result follows for n.

(2) The map of spectral sequences E+(F n−2)M[2] → E+(F n)M induces a homo-
morphism on abutments

S̃(F n−2)+
M

E∗−
// S̃(F n)+

M

By Lemma 5.9 again, it follows that the composite

S̃(F n−2)+
M

E∗−
// S̃(F n)+

M
//

(
S̃(F n)+

M

)
/Fn,1

is an isomorphism.
Thus S̃(F n−2)+

M
∼= E ∗ S̃(F n−2)+

M and

S̃(F n)+
M

∼=
(
E ∗ S̃(F n−2)+

M

)
⊕ Fn,1.

�

As a corollary we obtain the following general homology stability result for the
homology of special linear groups:

Corollary 5.11.

The corestriction maps Hp(SLn−1(F ),Z) → Hp(SLn(F ),Z) are isomorphisms for
p < n− 1 and are surjective when p = n− 1.

Proof. Using (1) of Theorem 5.10 and Lemma 5.8, we have (for the spectral sequence
E+(F n)M):

E∞
p,q = E2

p,q =
Ker(d1)

Im(d1)
=

{
Ker(Hp(SLn−q(F ),Z) → Hp(SLn−q+1(F ),Z)) q odd
Coker(Hp(SLn−q−1(F ),Z) → Hp(SLn−q(F ),Z)) q even

But the abutment of the spectral sequence is 0 in dimensions less than n. It follows
that E∞

p,q = 0 whenever p+ q ≤ n− 1. �

Remark 5.12. Note that in the spectral sequence E+(F n)M,

E∞
n,0 = Coker(Hn(SLn−1(F ),Z) → Hn(SLn(F ),Z)) = SHn(F ).

Clearly, the edge homomorphism Hn(SLn(F ),Z) → E∞
n,0 → S̃(F n)M is just the

iterated connecting homomorphism ǫn of section 3 above. Thus we have:

Corollary 5.13. The maps

ǫ• : SH•(F ) → S̃(F •)M

define an injective homomorphism of graded Z[F×]-algebras.

Corollary 5.14. S̃(F 2)M = F2,1 ⊕ Z[F×]E and for all n ≥ 3,

S̃(F n)M = (E ∗ S̃(F n−2)M) ⊕ Fn,1
∼= S̃(F n−2)M ⊕Fn,1.
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Proof. Clearly S̃(F 2)+
M = F1,2, while for n ≥ 3 we have

S̃(F n)M =

{
S̃(F n)+

M ⊕ Z[F×]E∗n
2 n even

S̃(F n)+
M ⊕

(
S̃(F ) ∗ E∗n−1

2

)
n odd

�

Corollary 5.15. For all n ≥ 3,

S̃(F n)M
∼=

{
Fn,1 ⊕Fn−2,1 ⊕ · · · ⊕ F2,1 ⊕ Z[F×] n even
Fn,1 ⊕Fn−2,1 ⊕ · · · ⊕ F3,1 ⊕ IF× n odd

as a Z[F×]-module.

Note that, by definition, Fn,1 fits into an exact sequence associated to the spectral
sequence E+(F n)M:

0 → E∞
n,0 = Fn,0 → Fn,1 → E∞

n−1,1 → 0.

Corollary 5.16. For all n ≥ 2 we have an exact sequence

Hn(SLn−1(F ),Z) → Hn(SLn(F ),Z) → Fn,1 → Hn−1(SLn−1(F ),Z) → Hn−1(SLn(F ),Z) → 0.

Lemma 5.17. For all n ≥ 2, the map Tn induces a surjective map Fn,1 → KMW
n (F ).

Proof. First observe that since KMW
n (F ) is generated by the elements of the form

[a1] · · · [an] it follows from the definition of Tn that Tn : S̃(F n) → KMW
n (F ) is

surjective for all n ≥ 1.

Next, sinceKMW
• (F ) is multiplicative, T• factors through an algebra homomorphism

S̃(F •)M → KMW
• (F ). The lemma thus follows from Corollary 5.14 and the fact that

T2(E) = 0. �

Lemma 5.18. T2 : F2,1 → KMW
2 (F ) is an isomorphism.

Proof. Since H1(SL1(F ),Z) = 0, F2,1 = E∞
2,0 = ǫ2(H2(SL2(F ),Z)). Now apply

Theorem 3.10. �

It is natural to define elements [a, b] ∈ F2,1 ⊂ S̃(F 2)M by [a, b] := T−1
2 ([a][b]).

Lemma 5.19. In S̃(F 2)M we have the formula

[a, b] = ⌊a⌉ ∗ ⌊b⌉ − 〈〈a〉〉〈〈b〉〉E.

Proof. The results above show that the maps T2 and D2 induce an isomorphism

(T2, D2) : S̃(F 2)M
∼= KMW

2 (F ) ⊕ Z[F×].

Since D2(⌊a⌉ ∗ ⌊b⌉) = 〈〈a〉〉〈〈b〉〉, while D2(E) = 1, the result follows. �

Lemma 5.20. For all a ∈ F×, ⌊a⌉ ∗ E = E ∗ ⌊a⌉ in S̃(F 3)M.

Proof. By the calculations above, F3,1 = S̃(F 3)+
M = Ker(D3). Thus

Ra := ⌊a⌉ ∗ E − E ∗ ⌊a⌉ ∈ F3,1.

Consider the short exact sequence

0 → E∞
3,0 → F3,1 → E∞

2,1 → 0.

Here ǫ3 induces an isomorphism

E∞
3,0

∼= Coker(H3(SL2(F ),Z) → H3(SL3(F ),Z)).
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By the main result of [8] (Theorem 4.7 - see also section 2.4 of this article), T3 thus
induces an isomorphism E∞

3,0
∼= 2KM

3 (F ) ⊂ KMW
3 (F ).

On the other hand,

E∞
2,1

∼= Ker(H2(SL2(F ),Z) → H2(SL3(F ),Z)) ∼= I3(F )

Thus we have a commutative diagram

0 // E∞
3,0

T3
∼=

��

// F3,1

T3

��

ρ
// I3(F )

α

��

// 0

0 // 2KM
3 (F ) // KMW

3 (F ) // I3(F ) // 0

where the vertical arrows are surjections. Now a tedious but direct calculation shows
that ρ(Ra) = 0. It follows that Ra ∈ E∞

3,0. Since T3(Ra) = 0 it now follows that
Ra = 0 as required. �

Remark 5.21. The results below will show that the map α above (and hence T3

also) is an isomorphism. A direct proof of this fact would shorten our argument.

Lemma 5.22.

(1) For all a, b, c ∈ F×

⌊a⌉ ∗ [b, c] = [a, b] ∗ ⌊c⌉ in S̃(F 3)M.

(2) For all a, b, c ∈ F×

⌊a⌉ ∗ ⌊b⌉ ∗ ⌊c⌉ = ⌊c⌉ ∗ ⌊a⌉ ∗ ⌊b⌉ in S̃(F 3)M.

(3) For all a, b, c, d ∈ F×

[a, b] ∗ [c, d] = [a, c−1] ∗ [b, d] in S̃(F 4)M.

Proof. We begin by observing that, since S̃(F ) ∼= IF× as a Z[F×]-module we have
〈〈a〉〉⌊b⌉ = ⌊ab⌉ − ⌊a⌉ − ⌊b⌉ = 〈〈b〉〉⌊a⌉ for all a, b ∈ F×.

(1) Now by Lemma 5.19 we have

⌊a⌉ ∗ [b, c] − [a, b] ∗ ⌊c⌉ = ⌊a⌉ ∗ (〈〈b〉〉〈〈c〉〉E)− (〈〈a〉〉〈〈b〉〉E) ∗ ⌊c⌉.

However, by the observation above and the fact that ∗ is F×-balanced

⌊a⌉ ∗ (〈〈b〉〉〈〈c〉〉E) = (〈〈b〉〉〈〈c〉〉⌊a⌉) ∗ E

= (〈〈a〉〉〈〈b〉〉⌊c⌉) ∗ E

= 〈〈a〉〉〈〈b〉〉 (⌊c⌉ ∗ E)

= 〈〈a〉〉〈〈b〉〉 (E ∗ ⌊c⌉)

= (〈〈a〉〉〈〈b〉〉E) ∗ ⌊c⌉.

(2) Since [x][y] = [y−1][x] in KMW
2 (F ), we have [x, y] = [y−1, x] in S̃(F 2)M. Thus

⌊a⌉ ∗ ⌊b⌉ ∗ ⌊c⌉ = ⌊a⌉ ∗ [b, c] + ⌊a⌉ ∗ (〈〈b〉〉〈〈c〉〉E)

= ⌊a⌉ ∗ [c−1, b] + ⌊c⌉ ∗ (〈〈a〉〉〈〈b〉〉E)

= [a, c−1] ∗ ⌊b⌉ + ⌊c⌉ ∗ (〈〈a〉〉〈〈b〉〉E)

= [c, a] ∗ ⌊b⌉ + ⌊c⌉ ∗ (〈〈a〉〉〈〈b〉〉E)

= ⌊c⌉ ∗ [a, b] + ⌊c⌉ ∗ (〈〈a〉〉〈〈b〉〉E)

= ⌊c⌉ ∗ ⌊a⌉ ∗ ⌊b⌉
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(3) For x1, . . . , xn ∈ F× and i, j ≥ 1 with i+ j = n we set

Li,j(x1, . . . , xn) := 〈〈x1〉〉 · · · 〈〈xi〉〉 (⌊xi+1⌉ ∗ · · · ∗ ⌊xn⌉) ∈ S̃(F j)M.

By the observation at the start of the proof we have

Li,j(x1, . . . , xn) = Li,j(xσ(1), . . . , xσ(n))

for any permutation σ of 1, . . . , n.
So

[a, b] ∗ [c, d] = (⌊a⌉ ∗ ⌊b⌉ − 〈〈a〉〉〈〈b〉〉E) ∗ (⌊c⌉ ∗ ⌊d⌉ − 〈〈c〉〉〈〈d〉〉E)

= ⌊a⌉ ∗ ⌊b⌉ ∗ ⌊c⌉ ∗ ⌊d⌉ − 2L2,2(a, b, c, d) ∗ E + 〈〈a〉〉〈〈b〉〉〈〈c〉〉〈〈d〉〉E∗2

Let R = [a, b] ∗ [c, d] − [a, c−1] ∗ [b, d].
So R =

⌊a⌉ ∗ ⌊b⌉ ∗ ⌊c⌉ ∗ ⌊d⌉ − ⌊a⌉ ∗ ⌊c−1⌉ ∗ ⌊b⌉ ∗ ⌊d⌉ − 2(L2,2(a, b, c, d) − L2,2(a, c
−1, b, d)) ∗ E

+〈〈a〉〉〈〈d〉〉
[
(〈〈b〉〉〈〈c〉〉 − 〈〈c−1〉〉〈〈b〉〉)E

]
∗ E.

However, since [b, c] = [c−1, b] in S̃(F 2)M we have (by Lemma 5.19)

(〈〈b〉〉〈〈c〉〉 − 〈〈c−1〉〉〈〈b〉〉)E = ⌊b⌉ ∗ ⌊b⌉ − ⌊c−1⌉ ∗ ⌊b⌉.

Thus

〈〈a〉〉〈〈d〉〉
[
(〈〈b〉〉〈〈c〉〉 − 〈〈c−1〉〉〈〈b〉〉)E

]
∗ E = (L2,2(a, b, c, d) − L2,2(a, c

−1, b, d)) ∗ E

and hence R =

⌊a⌉ ∗ ⌊b⌉ ∗ ⌊c⌉ ∗ ⌊d⌉ − ⌊a⌉ ∗ ⌊c−1⌉ ∗ ⌊b⌉ ∗ ⌊d⌉ − (L2,2(a, b, c, d)− L2,2(a, c
−1, b, d)) ∗E.

Now

(L2,2(a, b, c, d) − L2,2(a, c
−1, b, d)) ∗ E = ⌊a⌉ ∗ ⌊d⌉ ∗

[
(〈〈b〉〉〈〈c〉〉 − 〈〈c−1〉〉〈〈b〉〉)E

]

= ⌊a⌉ ∗ ⌊d⌉ ∗
[
⌊b⌉ ∗ ⌊c⌉ − ⌊c−1⌉ ∗ ⌊b⌉

]

= ⌊a⌉ ∗ (⌊d⌉ ∗ ⌊b⌉ ∗ ⌊c⌉) − ⌊a⌉ ∗ (⌊d⌉ ∗ ⌊c−1⌉ ∗ ⌊b⌉)

= ⌊a⌉ ∗ ⌊b⌉ ∗ ⌊c⌉ ∗ ⌊d⌉ − ⌊a⌉ ∗ ⌊c−1⌉ ∗ ⌊b⌉ ∗ ⌊d⌉

using (2) in the last step.

�

Theorem 5.23. For all n ≥ 2 there is a homomorphism µn : KMW
n (F ) → Fn,1 such

that the composite Tn ◦ µn is the identity map.

Proof. For n ≥ 2 and a1, . . . , an ∈ F×, let

{{a1, . . . , an}} :=

{
[a1, a2] ∗ · · · ∗ [an−1, an], n even
⌊a1⌉ ∗ [a2, a3] ∗ · · · ∗ [an−1, an], n odd

}
∈ Fn,1 ⊂ S̃(F n)M.

By Lemma 5.22 (1) and (3), as well as the definition of [x, y], the elements {{a1, . . . , an}}
satisfy the ‘Matsumoto-Moore’ relations (see Section 2.4 above), and thus there is
a well-defined homomorphism of groups

µn : KMW
n (F ) → Fn,1, [a1] · · · [an] 7→ {{a1, . . . , an}}.

Since Tn({{a1, . . . , an}}) = [a1] · · · [an], the result follows. �

Corollary 5.24. The subalgebra of SH2•(F ) generated by SH2(F ) = H2(SL2(F ),Z)
is isomorphic to KMW

2• (F ) and is a direct summand of SH2•(F ).
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Proof. This is immediate from Theorems 3.10 and 5.23. �

6. Decomposabilty

Recall that F is a field of characteristic zero and k = Q throughout this section.

In [23], Suslin proved that Hn(GLn(F ),Z)/Hn(GLn−1(F ),Z) ∼= KM
n (F ). This is,

in particular, a decomposability result. It says that Hn(GLn(F ),Z) is generated,
modulo the image of Hn(GLn−1(F ),Z) by products of 1-dimensional cycles. In this
section we will prove analogous results for the special linear group, with Milnor-Witt
K-theory replacing Milnor K-theory. To do this, we prove the decomposability of
the algebra S̃(F •)M (for n ≥ 3). Theorem 6.2 is an analogue of Suslin’s Proposition
3.3.1. The proof is essentially identical, and we reproduce it here for the convenience
of the reader. From this we deduce our decomposability result (Theorem 6.8), which
requires still a little more work than in the case of the general linear group.

Lemma 6.1. For any finite-dimensional vector spaces W and V , the image of the
pairing

S̃(W,V ) ⊗H(W ) → S̃(W ⊕ V )M(2)

coincides with the image of the pairing

S̃(V ) ⊗ S̃(W ) → S̃(W ⊕ V )M(3)

Proof. The image of the pairing (2) is equal to the image of

S̃(W,V )M ⊗H(W ) → S̃(W ⊕ V )M

which coincides with the image of

S̃(V )M ⊗ S̃(W )M → S̃(W ⊕ V )M

by the isomorphism of Corollary 5.6. �

Let S̃(F n)dec ⊂ S̃(F n)M be the Z[F×]-submodule of decomposable elements ; i.e.

S̃(F n)dec is the image of

⊕
p+q=n,p,q>0

(
S̃(F p)M ⊗ S̃(F q)M

)
∗

// S̃(F n)M.

More generally, note that if V = V1⊕V2 = V ′
1 ⊕V

′
2 and if dimF (Vi) = dimF (V ′

i ) for

i = 1, 2, then the image of S̃(V1) ⊗ S̃(V2) → S̃(V ) coincides with S̃(V ′
1) ⊗ S̃(V ′

2) →
S̃(V ). This follows from the fact that there exists φ ∈ SL(V ) with φ(Vi) = V ′

i for
i = 1, 2.

Therefore S̃(F n)dec is the image of

⊕
F n=V1⊕V2,Vi 6=0

(
S̃(V1)M ⊗ S̃(V2)M

)
∗

// S̃(F n)M.

If x =
∑

i ni(x
i
1, . . . , x

i
p) ∈ Cp(V ) and y =

∑
j mj(y

j
1, . . . , y

j
q) ∈ Cq(V ) and if

(xi
1, . . . , x

i
p, y

j
1, . . . , y

j
q) ∈ Xp+q(V ) for all i, j, then we let

x⊛ y :=
∑

i,j

nimj(x
i
1, . . . , x

i
p, y

j
1, . . . , y

j
q) ∈ Cp+q(V ).
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Of course, if x ∈ Cp(V1) and y ∈ Cq(V2) with V = V1 ⊕ V2, then x ⊛ y = x ∗ y.
Furthermore, when x⊛ y is defined, we have

d(x⊛ y) = d(x) ⊛ y + (−1)px⊛ d(y).

Theorem 6.2. Let n ≥ 1. For any a1, . . . , an, b ∈ F× and for any 1 ≤ i ≤ n

⌊a1, . . . , bai, . . . , an⌉ ∼= 〈b〉 ⌊a1, . . . , an⌉ (mod S̃(F n)dec).

Proof. Let a = a1e1 + · · ·+ baiei + · · ·anen.

We have

⌊a1, . . . , bai, . . . , an⌉ − 〈b〉 ⌊a1, . . . , an⌉ = d(e1, . . . , ei, . . . , en, a) − d(e1, . . . , biei, . . . , en, a)

= d

(
(e1, . . . , ei−1) ⊛ ((ei) − (bei)) ⊛ (ei+1, . . . , en, a)

)

= d(e1, . . . , ei−1) ⊛ ((ei) − (bei)) ⊛ (ei+1, . . . , en, a)

+ (−1)i(e1, . . . , ei−1) ⊛ ((ei) − (bei)) ⊛ d(ei+1, . . . , en, a)

Let u = a1e1 + · · ·+ ai−1ei−1 + baiei = a−
∑n

j=i+1 ajej .Then

(−1)i−1(e1, . . . , ei−1) = d
(
(e1, . . . , ei−1) ⊛ (u)

)
− d(e1, . . . , ei−1) ⊛ (u)

and

(ei+1, . . . , en, a) = d
(
(u) ⊛ (ei+1, . . . , en, a)

)
+ (u) ⊛ d(ei+1, . . . , en, a).

Thus ⌊a1, . . . , bai, . . . , an⌉ − 〈b〉 ⌊a1, . . . , an⌉ = X1 −X2 +X3 where

X1 = d(e1, . . . , ei−1) ⊛
(
(ei) − (bei)

)
⊛ d(u, ei+1, . . . , en, a),

X2 = d(e1, . . . , ei−1, u) ⊛
(
(ei) − (bei)

)
⊛ d(ei+1, . . . , en, a), and

X3 = d(e1, . . . , ei−1) ⊛

[(
(ei) − (bei)

)
⊛ (u) + (u) ⊛

(
(ei) − (bei)

)]
⊛ d(ei+1, . . . , en, a)

We show that each Xi is decomposable: Let V ⊂ F n be the span of u, ei+1, . . . , en

(which is also equal to the span of a, ei+1, . . . , en), and let V ′ be the span of
e1, . . . , ei−1. Then F n = V ′ ⊕ V and d(u, ei+1, . . . , en, a) ∈ H(V ) while
d(e1, . . . , ei−1) ⊛

(
(ei) − (bei)

)
∈ H(V, V ′).

Thus X1 lies in the image of

H(V, V ′) ⊗H(V )
∗

// S̃(F n)M

and so is decomposable.

Similarly, if we let W be the span of e1, . . . , ei and W ′ the span of ei+1, . . . , en, then

d(e1, . . . , ei−1, u)⊛
(
(ei)−(bei)

)
, d(e1, . . . , ei−1)⊛

[(
(ei)−(bei)

)
⊛(u)+(u)⊛

(
(ei)−(bei)

)]
∈ H(W )

and d(ei+1, . . . , en, a) ∈ H(W,W ′).Thus X2, X3 lie in the image of

H(W ) ⊗H(W,W ′)
∗

// S̃(F n)M

and are also decomposable. �
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Let S̃(F n)ind := S̃(F n)M/S̃(F n)dec.

The main goal of this section is to show that S̃(F n)ind = 0 for all n ≥ 3 (Theorem
6.8 below).

Lemma 6.3. For all n ≥ 3, S̃(F n)ind is a multiplicative Z[F×]-module.

Proof. We have

An
∼=

{
Z[F×]E∗n/2, n even

S̃(F ) ∗ E∗(n−1)/2, n odd

and these modules are decomposable for all n ≥ 3. It follows that the map

S̃(F n)+
M → S̃(F n)ind

is surjective for all n ≥ 3. �

Remark 6.4. Since E∗S̃(F n−2)M ⊂ S̃(F n)dec, in fact we have that Fn,1 → S̃(F n)ind

is surjective.

Theorem 6.2 shows that for all a1, . . . , an ∈ F×

⌊a1, . . . , an⌉ ∼=

〈
∏

i

ai

〉

⌊1, . . . , 1⌉ (mod S̃(F n)ind).

In other words the map

Z[F×] → S̃(F n)ind, α 7→ α⌊1, . . . , 1⌉

is a surjective homomorphism of Z[F×]-modules. Thus, we are required to establish

that ⌊1, . . . , 1⌉ ∈ S̃(F n)dec for all n ≥ 3.

For convenience below, we will let Σ̃n(F ) denote the free Z[F×]-module on the

symbols
[
a1, . . . , an

]
, a1, . . . , an ∈ F×. Let pn : Σ̃n(F ) → S̃(F n) be the Z[F×]-

module homomorphism sending
[
a1, . . . , an

]
to ⌊a1, . . . , an⌉. We will say that σ ∈

S̃(F n) is represented by σ̃ ∈ Σ̃n(F ) if pn(σ̃) = σ.

Note that Σ̃•(F ) can be given the structure of a graded Z[F×]-algebra by setting
[
a1, . . . , an

]
·
[
an+1, . . . , an+m

]
:=

[
a1, . . . , an+m

]
;

i.e., we can identify Σ̃•(F ) with the tensor algebra over Z[F×] on the free module
with basis

[
a
]
, a ∈ F×.

Let Π• : Σ̃•(F ) → Z[F×][x] be the homomorphism of graded Z[F×]-algebras sending[
a
]

to 〈a〉x.

For all n ≥ 1 we have a commutative square of surjective homomorphisms of Z[F×]-
modules

Σ̃n(F )
Πn

//

pn

��

Z[F×] · xn

γn

��

S̃(F n) // S̃(F n)ind

where γn(x
n) = ⌊1, . . . , 1⌉.

Lemma 6.5. If n is odd and n ≥ 3 then S̃(F n)ind = 0; i.e.,

S̃(F n)M = S̃(F n)dec.
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Proof. From the fundamental relation in S̃(F n) (Theorem 3.3), if b1, . . . , bn are dis-
tinct elements of F×, then 0 ∈ S̃(F n) is represented by

Rb :=
[
b1, . . . , bn

]
−

[
1, . . . , 1

]
−

n∑

j=1

(−1)n+j
〈
(−1)n+j

〉 [
b1−bj , . . . , b̂j − bj , . . . , bn−bj

]
∈ Σ̃n(F ).

Now

Πn(Rb) =

[〈
∏

i

bi

〉

− 〈1〉 −
n∑

j=1

(−1)n+j 〈(bj − b1) · · · (bj − bj−1) · (bj+1 − bj) · · · (bn − bj)〉

]

xn.

Now choose bi = i, i = 1, . . . , n. Then

Πn(Rb) =

[
〈n!〉 − 〈1〉 −

n∑

j=1

(−1)n+j 〈j!(n− j)!〉

]
xn = −〈1〉xn since n is odd.

It follows that −⌊1, . . . , 1⌉ = 0 in S̃(F n)ind as required. �

The case n even requires a little more work. We will use the following easy obser-
vation:

Lemma 6.6. If M is a multiplicative Z[F×]-module, then

M = 0 ⇐⇒ M/(I(F×)r ·M) = 0 for all r ≥ 1.

The maps {pn}n do not define a map of graded algebras. However, we do have the
following:

Lemma 6.7. For 1 6= a ∈ F×, let

L(x) := 〈−1〉
[
1 − x, 1

]
− 〈x〉

[
1 −

1

x
,
1

x

]
+

[
1, 1

]
∈ Σ̃2(F ).

Then for all a1, . . . , an ∈ F× \ {1}, the product
n∏

i=1

⌊1, ai⌉ = ⌊1, a1⌉ ∗ · · · ∗ ⌊1, an⌉ ∈ S̃(F 2n)

is represented by
∏

i L(ai) ∈ Σ̃2n(F ).

Proof. For convenience of notation, we will represent standard basis elements of
Cq(F

n) as n× q matrices [v1| · · · |vq].

Let e = (1, . . . , 1) and let σi(C) denote the sum of the entries in the ith row of
the n × n matrix C. By Remark 3.2, if A ∈ GLn(F ) and [A|e] ∈ Xn+1(F

n) then
dn+1([A|e]) represents 〈detA〉 ⌊σ1(A

−1), . . . , σn(A−1)⌉ ∈ S̃(F n).

Now, for a 6= 1, ⌊1, a⌉ is represented in S̃(F 2) by

d3

([
1 0 1
0 1 a

])
=

[
0 1
1 a

]
−

[
1 1
0 a

]
+

[
1 0
0 1

]
= T1(a) − T2(a) + T3(a) ∈ C2(F

2).

¿From the definition of the product ∗, it follows that ⌊1, a1⌉ ∗ · · · ∗ ⌊1, an⌉ is repre-
sented by

Z :=
∑

j=(j1,...,jn)∈(1,2,3)n

(−1)k(j)




Tj1(a1)

. . .
Tjn

(an)



 =
∑

j

(−1)k(j)T (j, a).
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where k(j) := |{i ≤ n|ji = 2}|

Since ai 6= 1 for all i, the vector e = (1, . . . , 1) is in general position with respect to
the columns of all these matrices. Thus we can use the partial homotopy operator
se to write this cycle as a boundary:

Z =
∑

j

(−1)k(j)d2n+1 ([T (j, a)|e]) .

By the remarks above

d2n+1 ([T (j, a)|e]) =

〈
∏

i

detTji
(ai)

〉

⌊σ1(Tj1(a1)), σ2(Tj1(a1)), σ1(Tj2(a2)), . . . , σ1(Tjn
(an)), σ2(Tjn

(an))⌉

This is represented by
〈

∏

i

detTji
(ai)

〉
[
σ1(Tj1(a1)), σ2(Tj1(a1)), σ1(Tj2(a2)), . . . , σ1(Tjn

(an)), σ2(Tjn
(an))

]

=

n∏

i=1

(
〈detTji

(ai)〉
[
σ1(Tji

(ai)), σ2(Tji
(ai))

])
∈ Σ̃2n(F ).

Thus Z is represented by

∑

j

(−1)k(j)
n∏

i=1

(
〈detTji

(ai)〉
[
σ1(Tji

(ai)), σ2(Tji
(ai))

])

=
n∏

i=1

( 3∑

j=1

(−1)j+1 〈detTj(ai)〉
[
σ1(Tj(ai)), σ2(Tj(ai))

])
=

n∏

i=1

L(ai) ∈ Σ̃2n(F ).

�

Theorem 6.8. S̃(F n)ind = 0 for all n ≥ 3.

Proof. The case n odd has already been dealt with in Lemma 6.5

For the even case, by Lemma 6.6 it will be enough to prove that for all r ≥ 1

Z[F×/(F×)r] ⊗Z[F×] S̃(F n)ind = 0.

Fix r ≥ 1. If a ∈ (F×)r \ {1}, then

Π2(L(a)) =

(
〈a− 1〉 −

〈
1 −

1

a

〉
+ 〈1〉

)
x2 = 〈1〉x2 ∈ Z[F×/(F×)r]x2

since

1 −
1

a
=
a− 1

a
≡ a− 1 (mod (F×)r).

Now let n > 1 and choose a1, . . . , an ∈ (F×)r \ {1}. Let σ = ⌊1, a1⌉ ∗ · · · ∗ ⌊1, an⌉ ∈
S̃(F 2n), so that σ 7→ 0 in S̃(F 2n)ind. By Lemma 6.7, σ is represented by σ̃ =∏n

i=1 L(ai) in Σ̃2n(F ) and thus

Π2n(σ̃) =
n∏

i=1

(
Π2(L(ai))

)
= 〈1〉 ∈ Z[F×/(F×)r]x2n

so that the image of σ in Z[F×/(F×)r]⊗Z[F×] S̃(F 2n)ind is 1⊗⌊1, . . . , 1⌉. This proves
the theorem. �
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Corollary 6.9. For all n ≥ 2, the map Tn induces an isomorphism Fn,1
∼= KMW

n (F ).

Proof. Since, by the computations above, S̃(F 2)M = S̃(F )∗2 + Z[F×]E it follows,

using Theorem 6.8 and induction on n, that S̃(F •)M is generated as a Z[F×]-algebra

by {⌊a⌉ ∈ S̃(F )|1 6= a ∈ F×} and E.

Thus E is central in the algebra S̃(F •)M and for all n ≥ 2,

S̃(F n)M
E ∗ S̃(F n−2)M

is generated by the elements of the form ⌊a1⌉ ∗ · · · ∗ ⌊an⌉, and hence also by the
elements {{a1, . . . , an}} since [a, b] ≡ ⌊a⌉ ∗ ⌊b⌉ (mod 〈E〉) for all a, b ∈ F×.

Since

Fn,1
∼=

S̃(F n)M
E ∗ S̃(F n−2)M

by Corollary 5.14, it follows that Fn,1 is generated by the elements {{a1, . . . , an}},
and thus that the homomorphisms µn of Theorem 5.23 are surjective. �

Corollary 6.10. For all n ≥ 3,

S̃(F n)M
∼=

{
KMW

n (F ) ⊕KMW
n−2 (F ) ⊕ · · · ⊕KMW

2 (F ) ⊕ Z[F×] n even

KMW
n (F ) ⊕KMW

n−2 (F ) ⊕ · · · ⊕KMW
3 (F ) ⊕ IF× n odd

as a Z[F×]-module.

Corollary 6.11. For all even n ≥ 2 the cokernel of the map

Hn(SLn−1(F ),Z) → Hn(SLn(F ),Z)

is isomorphic to KMW
n (F ).

Proof. Recall that ǫ2 induces an isomorphism H2(SL2(F ),Z) ∼= F2,1. Let 〈a, b〉
denote the generator ǫ−1

2 ([a, b]) of H2(SL2(F ),Z). Then for even n

{{a1, . . . , an}} = [a1, a2] ∗ · · · ∗ [an−1, an]

= ǫ2(〈a1, a2〉) ∗ · · · ∗ ǫ2(〈an−1, an〉)

= ǫn(〈a1, a2〉 × · · · × 〈an−1, an〉)

by Lemma 3.5 (2).

Since Fn,1 is generated by the elements {{a1, . . . , an}}, it follows that Fn,1 =
ǫn(Hn(SLn(F ),Z)) = E∞

n,0, proving the result. �

Corollary 6.12. For all odd n ≥ 1 the maps

Hn(SLk(F ),Z) → Hn(SLk+1(F ),Z)

are isomorphisms for k ≥ n.

Proof. In view of Corollary 5.11, the only point at issue is the injectivity of

Hn(SLn(F ),Z) → Hn(SLn+1(F ),Z).

But the proof of Corollary 6.11 shows that the term

Fn+1,1/E
∞
n+1,0

∼= E∞
n,1 = Ker(Hn(SLn(F ),Z) → Hn(SLn+1(F ),Z))

in the spectral sequence E+(F n+1)M is zero. �
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Corollary 6.13. Let ft,n be the stabilization homomorphism Hn(SLt(F ),Z) → Hn(SLt+1(F ),Z).

For all odd n ≥ 3 there is an exact sequence

0 → Coker(fn−1,n) → KMW
n (F ) → Ker(fn−1,n−1) → 0.

Proof. This follows from Corollaries 5.16 and 6.9 �

By our calculations above, we note that when n = 3 we have Coker(f2,3) ∼=
2KM

3 (F ) ⊂ KMW
3 (F ) and Ker(f2,2) ∼= I3(F ). We expect that for all odd n ≥ 3,

the analogous statement should hold; i.e. that Coker(fn−1,n) ∼= 2KM
n (F ) and that

Ker(fn−1,n−1) ∼= In(F ) when n ≥ 3 is odd. This may involve a finer analysis of
products in the spectral sequence.

In any case, observe that for odd n ≥ 3 we always have

2KM
n (F ) ⊂ Coker(fn−1,n) ⊂ KMW

n (F )F×

.

The first inclusion follows from the fact that ǫ• : SH•(F ) → KMW
• (F ) is an algebra

map and that 2KM
3 (F ) ·KMW

2n−2(F ) = 2KM
2n+1(F ) ⊂ KMW

2n+1(F ) for all n. The second
inclusion follows from the fact that for all a ∈ F×, 〈a2〉 acts trivially on KMW

n (F ),
while 〈an〉 acts trivially on SHn(F ) = Coker(fn−1,n).

Taking F×-invariants of the short exact sequence

0 → 2KM
n (F ) → KMW

n (F ) → In(F ) → 0

gives an exact sequence

0 → 2KM
n (F ) → KMW

n (F )F×

→ In(F )F×

.

Now

In(F )F×

= {φ ∈ In(F ) | 〈〈a〉〉φ = 0 for all a ∈ F×}

= {φ ∈ In(F ) | I(F )φ = 0} ⊂Wt(F ) ∩ In(F )

where Wt(F ) is the torsion subgroup of W (F ). In particular, if Wt(F )∩ In(F ) = 0,

then 2KM
n (F ) = KMW

n (F )F×

. It is known that if F is a finitely generated field then
Wt(F )∩ In(F ) = 0 for all sufficiently large n. If F is a number field, then this even
holds for all n ≥ 3. Thus

Corollary 6.14. If F is a finitely generated field and n is a sufficiently large odd
integer, or if F is a number field and n ≥ 3 is odd, then

Coker(Hn(SLn−1(F ),Z) → Hn(SLn(F ),Z)) ∼= 2KM
n (F )

Ker(Hn−1(SLn−1(F ),Z) → Hn−1(SLn(F ),Z)) ∼= In(F ).
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groupes de Witt. C. R. Acad. Sci. Paris Sér. I Math., 328(3):191–196, 1999.

[2] Stanislaw Betley. Hyperbolic posets and homology stability for On,n. J. Pure Appl. Algebra,
43(1):1–9, 1986.

[3] Kenneth S. Brown. Cohomology of groups, volume 87 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1982.



Homology of SLn(F ) 43

[4] Ruth M. Charney. Homology stability of GLn of a Dedekind domain. Bull. Amer. Math. Soc.
(N.S.), 1(2):428–431, 1979.
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