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Abstract. We define a notion of Morita equivalence between algebras with antiautomorphisms
such that two equivalent algebras have the same category of sesquilinear forms. This generalizes
the Morita equivalence of algebras with involutions defined by Frölich and Mc Evett [FMcE],
and their categories of ε-hermitian forms.

For two Morita equivalent algebras with involution, with an additional technical property
(which is true for central simple algebras), we define a new algebra with antiautomorphism,

called the orthogonal sum, which generalizes the usual notion of orthogonal sum of forms. We
explore the invariants of this sum.

Introduction - Morita equivalence of rings was introduced in the 1950’s by K. Morita [M].
Hermitian Morita theory was developed in the late 1960’s by A. Frölich and A. McEvett [FMcE]
for algebras with involution. By an involution we mean an antiautomorphism of period 2.

In the theory of central simple algebras, it is well known that an involution is always the adjoint
of some ε-hermitian or ε-symmetric form (with ε = ±1), i.e. a form that has a kind of symmetry.
The Morita theory for forms developed by Frölich and McEvett, C.T.C. Wall [W], M.-A. Knus
[K], always requires this sort of symmetry. We develop here a Morita theory which works for
sesquilinear and bilinear forms in general, without assuming any symmetry, and generalizes the
Frölich-McEvett theory to the category of sesquilinear forms.

In the late 1990’s, I. Dejaiffe [D] introduced the notion of orthogonal sum of two Morita equiv-
alent central simple algebras with involution. We here consider the the case of two algebras
(not necessarily central simple) with antiautomorphism (not necessarily of period two), which are
Morita equivalent in the sense described earlier. We generalize the Dejaiffe orthogonal sum in this
situation under the technical assumption that the sesquilinear form needed to describe a Morita
equivalence data has what we call an asymmetry.

We then briefly outline some properties of this sum, and examine its invariants when the anti-
automorphisms are linear and the algebras are central simple.

Notation -

Let F be a field and A be an F -algebra. Let σ : A → A be an antiautomorphism of A, i.e. an
isomorphism of groups such that

∀x, y ∈ A σ(xy) = σ(y)σ(x).

Two antiautomorphisms of F -algebras are said to be compatible if they have the same restriction
to the base field F . An antiautomorphism σ is called an involution if it has exponent 2, i.e. if
σ2 = IdA.

Let M be a right A-module. A map h : M ×M → A is called an (A, σ)-sesquilinear form if it
is a morphism for the additive law and

∀a, a′ ∈ A ∀m,m′ ∈M h(ma,m′a′) = σ(a)h(m,m′)a′.
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If (M,h) and (N, k) are two modules with sesquilinear form, we call an isometry from (M,h)
to (N, k) any isomophism u : M → N such that

∀m,m′ ∈M k(u(m), u(m′)) = h(m,m′).

If h is a sesquilinear form and − is an involution, then (x, y) 7→ h(y, x) is also a sesquilinear form.
Let ε be an element of the center Z(A) of A. A sesquilinear form h on M is called ε-hermitian if

∀x, y ∈M h(y, x) = εh(x, y).

Such ε-hermitian forms may exist only if εε = 1.

The category of sesquilinear forms over (A, σ) with isometries will be denoted by Sesq(A, σ), and
if σ is involutive, the category of ε-hermitian forms will be denoted by Hermε(A, σ). The category
of right-A-modules (respectively left-A-modules) will be denoted by Mod-A (resp. A-Mod).

If A is an algebra, we denote by Aop the opposite algebra : it is isomorphic to A as a vector
space, by a bijection A → Aop ; a 7→ aop, and the multiplication is defined by aopbop = (ba)op for
all a, b ∈ A.

If (A, σ) and (B, τ) are algebras with compatible antiautomorphism, a B-A-bimodule P is then
a Bop⊗A-module. Since τop ⊗F σ (which is well defined using the compatibility of σ and τ) is an
antiautomorphism of Bop ⊗F A, we simply denote it by x 7→ x. As restrictions of − on B and A,
we then use the same notation − instead of τ and σ.

Let ∼= −−1 be the inverse antiautomorphism of − (we can consider it over Aop ⊗B).
We then denote by P the A-B-bimodule whose elements are the x for x ∈ P , where P → P ;x 7→

x is an isomorphism of additive groups, and the multiplications are defined by the twisted action

of A and B by ∼ : for x ∈ P, a ∈ A, b ∈ B we have a.x.b = b̃.x.ã, and hence

bxa = a.x.b.

Let f be a morphism of B-A-bimodules P1 → P2, we then define a morphism of A-B-bimodules
f : P 1 → P 2 by f(x) = f(x). Note that in the particular case where f = b ∈ B = EndA P , since
b has another meaning, we will write b for this morphism P → P .

Note that with the above notation, P̃ = P̃ = P and α̃ = α̃ = α.

Let now P be a right A-module and P ⋆ = HomA(P,A). It is naturally a left A-module by
(a.l)(p) = a.l(p) (in A) for a ∈ A, l ∈ P ⋆, p ∈ P . If P is a B-A-bimodule then P ⋆ is naturally an
A-B-bimodule by l.b(p) = l(bp) if b ∈ B, p ∈ P and l ∈ P ⋆.

If B is not specified, then we take B = EndA(P ), and the natural B-A-bimodule structure for
P given by bp = b(p).

In this situation, we obtain two morphisms of bimodules :
fP : P ⊗A P

⋆ → B = EndA(P ) and gP : P ⋆ ⊗B P → A

x⊗ l 7→ (y 7→ x.l(y)) l ⊗ x 7→ l(x)
.

1. Morita equivalent algebras with antiautomorphism

1.1. The classical results about Morita equivalence. In this subsection, we recall the defi-
nition and the main results about Morita equivalent F -algebras. All these results can be found in
Bass [B] or Lam [Lam], and we refer the reader to the proofs in this book or in [K].

Let A be an F -algebra.

Definition 1.1. A right A-module P is said to be faithfully projective if it is finitely generated
projective, and if for any left A-module N , P ⊗A N = 0 ⇒ N = 0.

Proposition 1.2. A finitely generated right A-module P is faithfully projective if and only if fP
and gP are isomorphisms of bimodules.
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Theorem 1.3. (Morita equivalence for modules)
Let P be a faithfully projective A-module and B = EndA(P ). Then

(a) P ⋆ is a faithfully projective B-module and P ≃ HomB(P ⋆, B).
(b) The natural maps

A → EndB(P ⋆) and Aop → (EndB(P ))
a 7→ (l 7→ al) aop 7→ (p 7→ pa)

are isomorphisms of algebras.
(c) Tensor products on the right by P and P ⋆ respectively over B and A, induce equivalences

between the categories Mod-B and Mod-A, and between Mod-A and Mod-B.
Tensor products on the left by P and P ⋆ respectively over A and B, induce equivalences

between the categories A-Mod and B-Mod, and between B-Mod and A-Mod.
(d) The functors HomA(P, .) : Mod-A→ Mod−B and HomB(P ⋆, .) : Mod-B → Mod-A

are equivalences of categories.

Theorem 1.4. Let A and B be two F -algebras such that the categories Mod-B and Mod-A are
equivalent. Then there exists a B-A-bimodule P and an A-B-bimodule Q, together with associative
isomorphisms of bimodules f : P⊗AQ→ B and g : Q⊗BP → A such that the above equivalence
of category is the tensor product on the right by P over B and its converse is the tensor product
by Q over A.

Moreover, P is faithfully projective, B is isomorphic to EndA(P ) and Q to P ⋆.

Here the morphisms f : P ⊗A Q → B and g : Q ⊗B P → A of bimodules are said to be
associative if for any p, p′ ∈ P and q, q′ ∈ Q we have f(p⊗q)p′ = pg(q⊗p′) and g(q⊗p)q′ = qf(p⊗q′).
For example, the above fP and gP are clearly associative.

In this theorem, the isomorphism Q→ P ⋆ is (IdP⋆ ⊗ f) ◦ (gP ⊗ IdQ).

Definition 1.5. A Morita equivalence data for modules is a collection (A,B, P,Q, f, g) where
A and B are F -algebras,
P is a B-A-bimodule and Q an A-B-bimodule,
f : P ⊗A Q→ B and g : Q⊗B P → A are associative isomorphisms of bimodules.

We say that the algebras A and B are Morita equivalent if there exists a Morita equivalence
data (A,B, P,Q, f, g).

Remark 1.6 - In the context of 1.3, we can deduce from (b) that we also have isomorphisms of
algebras

A → EndB(P ) and A → (EndB(P̃ ))
a 7→ (p 7→ ap) a 7→ (p̃ 7→ ap̃).

1.2. Product of sesquilinear forms.

We here extend the definitions given in the case of hermitian forms in Knus book [K], and
originally by Fröhlich and McEvett [FMcE] for any pairing but with a trivial involution on B, to
the more general context of sesquilinear forms and antiautomorphisms.

Let first (A,−) be an algebra with involution, P be a right-A-module, and B = EndA P . Let
h : P × P → A be a map. Then it is an (A,−)-sesquilinear form if and only if the map

H : P → P̃ ⋆

x 7→ h̃x,

where hx(y) = h(x, y), is a morphism of right-A-modules , or equivalently if

H : P → P ⋆

x 7→ (y 7→ h(x, y))

is a morphism of left-A-modules.
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Definition 1.7. We say that the sesquilinear form h is nonsingular if the associated morphism H

(or equivalently H) is an isomorphism of A-modules.

When h is non singular, and the transposition t : EndA P → EndA P
⋆ is bijective (which is

the case for example for a faithfully projective module over a central simple algebra), this allows
us to define the adjunction for h (on the right), usually denoted by adh : if b ∈ B, then adh(b) is
the unique element of B that satisfies

∀x, y ∈ P h(bx, y) = h(x, adh(b)y).

It can also be defined by (adhb)
t = H ◦ b ◦ H

−1
(where we write b for the morphism of left A-

modules P → P associated to the morphism of right A-modules b : P → P ). The adjunction is
an antiautomorphism on B, and we can then denote it by −. (Note that its inverse is then the

adjunction on the left and is defined by b̃ = H
−1
btH, where b̃ is the endomorphism of P associated

to b̃).
The definition of − then means thatH is a morphism ofB-A-bimodules, or thatH is a morphism

of A-B-bimodules, and we can then define the morphism of A-A-bimodules :

H : P ⊗B P → A ; x⊗ y 7→ h(x, y).

Suppose now that A andB are two F -algebras with antiautomorphism and P is a B-A-bimodule.

Definition 1.8. We say that the (A,−)-sesquilinear form h : P × P → A admits (B,−) if one
of the following equivalent propositions is true :

• ∀x, y ∈ P h(bx, y) = h(x, by);

• H (respectively H̃) is a morphism of B-A-bimodules (resp. A-B-bimodules ) ;

• H : P̃ ⊗B P → A ; x̃⊗ y 7→ h(x, y) is a morphism of A-A-bimodules.

Remark 1.9 - If (A,−) is an involution and h is a ε-hermitian form which admits (B,−), then
− is also an involution of B.

Assuming that B = EndA P , then the following diagram commutes :

P ⊗B P
H //

H⊗IdP

��

A.

P ⋆ ⊗B P

gP

::
v

v
v

v
v

v
v

v
v

v

Using 1.2, we can deduce :

Proposition 1.10. If P is faithfully projective, B = EndA(P ) and h : P × P → A is an
(A,−)-sesquilinear form that admists (B,−), then the following are equivalent :

(1) h is nonsingular ;
(2) H is an isomorphism of B-A-bimodules ;
(3) H is an isomorphism of A-B-bimodules ;
(4) H is an isomorphism of A-A-bimodules.

Definition 1.11. Let P be a faithfully projective A-module, B = EndA(P ), and h : P × P → A

a nonsingular (A,−)-sesquilinear form that admists (B,−). Let (M,k) be a (B,−)-sesquilinear
module. We then define the form hk : M ⊗B P ×M ⊗B P → A by

∀m,m′
∈M ∀x, x′ ∈ P hk(m⊗ x,m′

⊗ x′) = h(x, k(m,m′)x′).

Proposition 1.12. The form hk is an (A,−)-sesquilinear form over the right-A-module M ⊗B P .
If M is finitely generated B-projective, then hk is nonsingular if and only if k is nonsingular.

This was proved in the case where (A,−) is an algebra with involution and (B,−) = (B, IdB) in
[FMcE], and we can extend their proof to our more general context ; we will also use the following :
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Lemma 1.13. Let P be a B-A-bimodule and M a finitely generated projective right-B-module.
Let P ⋆ = HomA(P,A),M⋆ = HomB(M,B) and (M ⊗B P )⋆ = HomA(M ⊗B P,A). Then the map
α : P ⋆ ⊗B M

⋆ → (M ⊗B P )⋆ defined by

α(l ⊗ t)(m⊗ x) = (l.t(m))(x) = l(t(m).x)

(for t ∈M⋆, l ∈ P ⋆, x ∈ P,m ∈M) is an isomorphism of left-A-modules.

Proof. First note that α has values in (M ⊗B P )⋆, i.e. that with the above notations, α(l ⊗ t) is
A− linear : if a ∈ A, and x ∈ P,m ∈M , then

α(l ⊗ t)(m⊗ xa) = (l.t(m))(xa) = (l.t(m))(x)a

since l.t(m) ∈ P ⋆. This proves that the map α is well defined.
Now prove that α is a morphism of left A-modules : let l, t,m, x, a be as above.Then

α(al ⊗ t)(m⊗ x) = (al)(t(m))(x) = a(l(t(m)(x) = aα(l ⊗ t)(m⊗ x)

as desired.
To prove that if M is a finitely generated projective B-module then α is bijective, it is enough

by additivity to prove it for M = B. But then α is the identity map

P ⋆ ⊗B B
⋆

⋍ P ⋆ ⊗B B ⋍ P ⋆ ⋍ (B ⊗B P )⋆.

�

Proof. (of proposition 1.12) The sesquilinearity is clear.
Let j = hk and J : M ⊗B P → (M ⊗B P )⋆ associated to j. Then if m,m′ ∈M and x, x′ ∈ P ,

J(m⊗ x)(m′ ⊗ x′) = h(x, k(m,m′)x′) = H(x)(K(m)x′) = α ◦ (H ⊗K)(m′ ⊗ x′),

hence J = α ◦ (H ⊗K). This proves, since α and H are isomorphisms, that hk is nonsingular if
and only if k is nonsingular. �

Lemma 1.14. If (P, h) and (M,k) are respectively an (A,−)-sesquilinear form which admits
(B,−) and a (B,−)-sesquilinear form which admits (C,−), then (M ⊗B P, hk) admits (C,−), and
for any (C,−)-sesquilinear module (N, l) we have

(hk)l = h(kl)

(over N ⊗C (M ⊗B P ) ≃ (N ⊗C M) ⊗B P ).

This is a straightforward computation.

1.3. Morita equivalence for sesquilinear forms.

We will here state the main theorem of this section which gives a sufficient condition for two
algebras with antiautomorphism to have the same category of sesquilinear forms. This will be
proved in the next subsection.

Definition 1.15. We call a Morita equivalence data for sesquilinear forms any collection

((A,−), (B,−), P,Q, f, g,HQ)

where ((A,−), (B,−), P,Q, f, g) is a Morita equivalence for modules and HQ : P → Q is an
isomorphism of B-A-bimodules.

We say that two algebras with antiautomorphism (A,−) and (B,−) are Morita equivalent if
there exists a Morita equivalence data ((A,−), (B,−), P,Q, f, g,HQ).

Given such a Morita equivalence data, we know that P is faithfully projective, and Q is iso-
morphic to P ⋆. Hence HQ gives an isomorphism H : P → P ⋆, which induces a nonsingular
(A,−)-sesquilinear form h over P which admits (B,−).

We now can formulate the main result of this section :
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Theorem 1.16. Let ((A,−), (B,−), P,Q, f, g,HQ) be a Morita equivalence data, and h the (A,−)-

sesquilinear form over P induced by HQ. Then the functor

F : Sesq(B,−) → Sesq(A,−)

defined by
F(M,k) = (M ⊗B P, hk)
F(u) = u⊗ IdP

is an equivalence of categories that preserves the orthogonal sums, and the nonsingularity for finitely
generated projective modules.

Moreover, if the two antiautomorphisms are involutions and h is ε0-hermitian for an ε0 in
Z(B) = Z(A) such that ε0ε0 = 1, then F induces an equivalence of categories between the ε-
hermitian modules over (B,−) and the εε0-hermitian modules over (A,−) (for any ε in the center
of B such that εε = 1). This equivalence preserves the orthogonal sums, the hyperbolicity, and the
nonsingularity for finitely generated projective modules.

This last statment was proved by Fröhlich and Mc Evett [FMcE] when (B,−) = (B, IdB), and
Knus proves it in general in his book [K] ; C.T.C. Wall announces in [W] that they also proved
the general statement for certain classes of algebras, including central simple algebras, for which
sesquilinear forms are simply the hermitian forms for an acceptable notion of duality. The proof
we give here, inspired by the proof in [K], is nevertheless shorter and treats directly the general
case.

This particular case gives a definition of a Morita equivalence data for hermitian forms. In [D],
this definition in incomplete : the condition for h to be ε0 hermitian has been forgotten.

Definition 1.17. We call a Morita equivalence data for hermitian forms any collection

((A,−), (B,−), P,Q, f, g,HQ)

where ((A,−), (B,−), P,Q, f, g) is a Morita equivalence for modules and HQ : P → Q is an iso-
morphism of B-A-bimodules, which corresponds after identification of Q and P ⋆ to an ε0-hermitian
form over P for a ε0 ∈ Z(A).

We say that two algebras with involution (A,−) and (B,−) are Morita equivalent if there exists
a Morita equivalence data ((A,−), (B,−), P,Q, f, g,HQ) for hermitian forms.

Remark 1.18 - In her thesis (cf. [D]), I. Dejaiffe claims that there is a converse to theorem 1.16
in the hermitian case, and that this is an easy consequence of the classical case. But there is no
reason, even in the hermitian case, that if F : Sesq(B,−) → Sesq(A,−) is an equivalence of
categories with product (the product being given by the orthogonal sum), the image of two forms
over the same B-module should define forms over a same A-module. Hence we can not even try
to use the classical case to solve this inverse problem.

Remark 1.19 - The authors think that there should exist a useful definition (for example in wiew
of a Witt group) of an hyperbolic sesquilinear form (maybe with asymmetry as defined in the next
part) and which would be preserved by the product.

1.4. Proof of 1.16.

The proof relies on the following important lemma, which is not stated in [K] even though it is
partially used there.

Lemma 1.20. Let (A,−) be an algebra with antiautomorphism, P be a faithfully projective right-
A-module, B = EndA(P ) and − an antiautomorphism over B. Suppose also that P is faithfully
projective over B.

Then the map

ΘP,− : P ⋆ −→ HomB(P ,B)

l 7−→ ΘP,−(l ) : P → B

x 7→ fp(x ⊗ l)
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is an isomorphism of B-A-bimodules.

Remark 1.21 - With the hypothesis of 1.16, since P ≃ P ⋆, all the assumptions we need here are
realized.

Proof. We first prove that ΘP,−(l ) ∈ HomB(P ,B) for l ∈ P ⋆. The map fP : P ⊗A P
⋆ → B is a

morphism of B-B-bimodules hence if x ∈ P and b ∈ B then

ΘP,−(l )(x.b) = ΘP,−(l )(̃bx) = fp(̃bx⊗ l) = b̃fp(x⊗ l) = fp(x⊗ l).b.

Now ΘP,− is a morphism of B-A-bimodules : if moreover a ∈ A,

ΘP,−(bla)(x) = ΘP,−(ãl̃b)(x) = fp(x ⊗ ãl̃b) = fp(xã⊗ l)̃b

= bfp(ãx ⊗ l) = bΘP,−(l)(ax) = (bΘP,−(l)a)(x).

To prove that it is an isomorphism, since P is a faithfully projective right-B-module and since
by 1.6 we have an isomorphism A ≃ EndB(P ), we can also define

ΘP,∼ : ˜HomB(P ,B) → HomA(P̃ , A) = P ⋆.

It is such that if t ∈ HomB(P ,B) then ΘP,∼(t̃)(x) = ˜fP (x⊗ t). Here fP is an isomorphism of

A-A-bimodules P ⊗B HomB(P ,B) → A.
The result will be given by the fact that ΘP,∼ is the inverse of ΘP,−. To prove it, using symmetry,

it is enough to see that ΘP,− ◦ ΘP,∼ = IdHomB(P,B) : applying it to the A-B-bimodule P , we get

ΘP,∼ ◦ Θ̃e
P,−

= ΘP,∼ ◦ Θ̃P,− = IdHomA(P,A) = IdP⋆ . Hence ΘP,∼ ◦ Θ̃P,− = ΘP,∼ ◦ ΘP,− = IdP⋆ ,

which gives ΘP,∼ =
(
ΘP,−

)−1
.

Let x ∈ P and t ∈ HomB(P ,B). Then ΘP,− ◦ΘP,∼(t)(x) = fP (x⊗A ΘP,∼(t̃)) ∈ B = EndA(P ).

The endomorphism fP (x ⊗A ΘP,∼(t̃)) ∈ B = EndA(P ) is befined by : if y ∈ P , then

fP (x ⊗A ΘP,∼(t̃))(y) = xΘP,∼(t̃)(y) = x ˜fP (y ⊗ t) ∈ P.

But for a ∈ A, ax = xã ∈ P , hence x̃ã = xã = ãx ∈ P = P̃ .
We deduce that

fP (x ⊗A ΘP,∼(t̃))(y) = (fP (y ⊗ t)x)∼ = ỹt(x) =
˜
t̃(x)y = t̃(x)y,

hence fP (x⊗AΘP,∼(t̃)) = t̃(x) and fP (x⊗A Θ eP,∼(t)) = t(x). We get ΘP,− ◦ Θ̃P,∼(t) = t which

finishes the proof. �

We now use this isomorphism to construct inverse functors on the right and on the left to the
functor F in the theorem.

Let K1 = ΘP,− ◦H : P → HomB(P ,B). This is an isomorphism of B-A-bimodules and hence

defines a nonsingular (B,−)-sesquilinear form k1 over P which admits (A,−). We can then define
the functor G1 : Sesq(A,−) → Sesq(B,−) by

G1(N, l) = (N ⊗B P , k1l)
G1(v) = v ⊗ IdP

,

as we defined F . The composite F ◦ G1 is then defined by

F ◦ G1(N, l) = F(N ⊗A P , k1l) = (N ⊗A (P ⊗B P ), ((hk1)l)
F ◦ G1(u) = u⊗A (IdP ⊗B IdP ) = u⊗ IdP⊗BP

,

using 1.14.
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Define the unit (A,−)-sesquilinear form 1A on A by 1A(x, y) = xy for x, y ∈ A. It is clearly
nonsingular and admits (A,−). Moreover if (N, l) is an (A,−)-sesquilinear module, then the form
(N ⊗A A, 1Al) is trivially isometric to (N, l).

To prove that the functor F ◦ G1 is isomorphic to the identity functor of Sesq(A,−), it is then
enough to prove the following

Lemma 1.22. H is an isometry (P ⊗B P, hk1) → (A, 1A).

Proof. For m,m′ ∈ P , k1(m,m
′) = K1(m)(m′) = ΘP,−(H(m))(m′) = fP (m′ ⊗H(m)).

Now take x, x′,m,m′ ∈ P , then

hk1(m⊗ x,m′ ⊗ x′) = h(x, k1(m,m
′)x′) = h(x, fP (m′ ⊗H(m))x′)

= h(fP (m′ ⊗H(m))x, x′) = h(m′H(m)(x), x′)

= h(m′h(m,x), x′) = h(m,x)h(m′, x′) = H(m⊗ x)H(m′ ⊗ x′)
= 1A(H(m⊗ x),H(m′ ⊗ x′)).

�

We now define symmetrically K2 such that H = Θ eP,− ◦K2, i.e

K2 = Θ
eP,∼

◦H = ΘP,∼ ◦H : P̃ = P → HomB(P̃ , B).

This isomorphism defines a nonsingular (B,−)-sequilinear form k2 over P̃ which admits (A,−).

Applying the previous results to (P̃ , k2) instead of (P, h), we get that K2 defines an isometry

between (P ⊗A P̃ , k2h) and (B, 1B), and hence that the functor G2 : Sesq(A,−) → Sesq(B,−)
defined by

G2(N, l) = (N ⊗B P̃ , k2l)
G2(v) = v ⊗ Id eP

is sucht that G2 ◦ F is isomorphic to the identity functor of Sesq(B,−).

Remark 1.23 - If the antiautomorphism − is an involution, then ∼= −, P̃ = P and k1 = k2

(this is the case in particular if (A,−) is an algebra with involution, P a faithfully projective A-
module with an ε0-hermitian form h which admits (B,−)). Then we have proved that F defines
an equivalence of categories Sesq(B,−) → Sesq(A,−).

Now in the general case, we have found isomorphisms of functors G2◦F ≃ IdSesq(B) and F◦G1 ≃

IdSesq(A). This proves that G1 and G2 are isomorphic, hence that G1 ◦F ≃ G2 ◦F ≃ IdSesq(B), and
finally that F defines an equivalence of categories Sesq(B) → Sesq(A).

Now prove that the multiplication by h preserves the orthogonal sums. Recall that the orthog-
onal sum of the forms (M1, f1) and (M2, f2) is the form (M1 ⊕M2, f1 ⊥ f2) with

(f1 ⊥ f2)(m1 +m2,m
′
1 +m′

2) = f1(m1,m
′
1) + f2(m2,m

′
2)

if mi,m
′
i ∈Mi.

Hence the form h(f1 ⊥ f2) is defined over the module M1 ⊗ P ⊕M2 ⊗ P ≃ (M1 ⊕M2) ⊗ P by

h(f1 ⊥ f2)(m1 ⊗ p1 +m2 ⊗ p2,m
′
1 ⊗ p′1 +m′

2 ⊗ p′2)
= h(f1 ⊥ f2)(m1 ⊗ p1,m

′
1 ⊗ p′1) + h(f1 ⊥ f2)(m1 ⊗ p1,m

′
2 ⊗ p′2)

+h(f1 ⊥ f2)(m2 ⊗ p2,m
′
1 ⊗ p′1) + h(f1 ⊥ f2)(m2 ⊗ p2,m

′
2 ⊗ p′2)

= h(p1, f1(m1,m
′
1)p1) + h(p2, f2(m2,m

′
2)p2)

since (f1 ⊥ f2)(m1,m
′
2) = (f1 ⊥ f2)(m2,m

′
1) = 0.

This proves that

h(f1 ⊥ f2)(m1 ⊗ p1 +m2 ⊗ p2,m
′
1 ⊗ p′1 +m′

2 ⊗ p′2)
= (hf1 ⊥ hf2)(m1 ⊗ p1 +m2 ⊗ p2,m

′
1 ⊗ p′1 +m′

2 ⊗ p′2).

The proof of the first statement of 1.16 is complete.
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Now suppose that − is an involution and h is ε0-hermitian. We want to prove that if (M,k) is
an ε-hermitian module over (B,−), then hk is an ε0ε hermitian form.

Let m,m′ ∈M,x, x′ ∈ P . Then since ε and ε0 are in the center of A,

hk(m′ ⊗ x′,m⊗ x) = h(x′, k(m′,m)x)

= h(x′, εk(m,m′)x)
= εh(k(m,m′)x′, x)

= εε0h(x, k(m,m′)x′)

= εε0hk(m′ ⊗ x′,m⊗ x),

which proves the hermitian symmetry.

It remains to prove that the product preserves the hyperbolicity of hermitian forms. Recall that
an hyperbolic ε-hermitian space over (B,−) is a space isometric to a certain (M⊕HomB(M,B), kM )

where M is finitely generated projective and kM (m1 + t1,m2 + t2) = t1(m2)+ εt2(m1) for mi ∈M

and ti ∈ HomB(M,B).
Then using 1 ⊗H and the isomorphism α of 1.13 we obtain an isomorphism

˜HomB(M,B) ⊗B P ≃ ˜HomB(M,B) ⊗B P̃ ⋆ ≃ ˜P ⋆ ⊗B HomB(M,B) ≃ ˜(M ⊗ P )⋆.

Hence when − =∼, we get an isomorphism γ : (M⊕HomB(M,B))⊗BP → (M⊗BP )⊕(M ⊗ P )⋆

defined by γ((m+ t) ⊗ x) = m⊗ x+ α(H(x) ⊗ t).
We can then compute

hkM ((m1 + t1) ⊗ x1, (m2 + t2) ⊗ x2) = h(x1, kM (m1 + t1,m2 + t2)x2)

= h(x1, t1(m2)x2) + h(x1, εt2(m1)x2) = h(x1, t1(m2)x2) + εh(t2(m1)x1, x2)

= h(x1, t1(m2)x2) + εε0h(x2, t2(m1)x1) = H(x1)(t1(m2)x2) + εε0H(x2)(t2(m1)x1)

= α(H(x1) ⊗ t1)(m2 ⊗ x2) + εε0α(H(x2) ⊗ t2)(m1 ⊗ x1)

= kM⊗P (m1 ⊗ x1 + α(H(x1) ⊗ t1),m2 ⊗ x2 + α(H(x2) ⊗ t2)
= kM⊗P (γ((m1 + t1) ⊗ x1), γ((m2 + t2) ⊗ x2).

This proves that hkM is isometric to kM⊗P , hence hyperbolic.

Remark 1.24 - The form k1 : P × P → B = EndA P in the proof of the theorem is defined by

k1(m,m
′) = fP (m′ ⊗H(m)),

which means :

∀m,m′, x ∈ P ˜k1(m,m
′)x = m′h(m,x).

Similarly the form k2 : P̃ × P̃ → A = EndB P̃ is defined by

∀m,m′, x ∈ P ˜h(m,m′)x̃ = m̃′k2(m̃, p̃).

Remark 1.25 - The isomorphism ϕ between G2 and G1 can be given explicitly : for any sesquilinear
module (N, l) ∈ Sesq(A,−), the isomorphism

ϕ(N,l) : G2(N, l) = (N ⊗A P̃ , k2l) −→ G1(N, l) = (N ⊗A P , k1l)

is given by ϕ(N,l) : N ⊗A P̃ → N ⊗A P is the product of IdN by the composite isomorphism

(IdP ⊗BK2) ◦ (H−1 ⊗A Id eP ) : P̃ = A⊗A P̃ → P = P ⊗B B .

The forms used in the proof of the theorem are the main ingredients to prove the following

Corollary 1.26. The Morita equivalence between algebras with antiautomorphism is an equivalence
relation.
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Proof. The reflexivity is obvious. Suppose that ((A,−), (B,−), P, P ⋆, fP , gP , H) is a Morita equiv-
alence data. We have proved that then the above k1 is a nonsingular (B,−)-sesquilinear form over
the A-B-bimodule P (which is isomorphic to P ⋆ hence B-faithfully projective) and that this form
admits (A,−). This proves that ((B,−), (A,−), P ,HomB(P ,B), fP , gP ,K1) is a Morita equiva-
lence data. We have proved the symmetry.

Now assume that we have two Morita equivalence datas ((A,−), (B,−), P, P ⋆, fP , gP , H) and
((B,−), (C,−),M,HomB(M,B), fM , gM ,K). Then M ⊗B P is a C-A-bimodule, A-faithfully pro-
jective, and endows the nonsingular (A,−)-sesquilinear form hk which admits (C,−). This proves
the transitivity. �

1.5. The case of central simple algebras.

A natural question is : given two F -algebras with antiautomorphism which are Morita equiva-
lent, is the equivalence data ((A,−), (B,−), P,Q, f, g,H) uniquely defined ?

First note that in the classical case, if A and B are Morita equivalent, then P,Q, f and g are
unique up to isomorphism.

In our case, suppose that P,Q, f, g are chosen, hence we get an identification B = EndA(P ).
Assume moreover that the transposition is bijective EndA(P ) → EndA(P ⋆). Then H is an iso-
morphism of A-B-bimodules if and only if the antiautomorphism − over B is the adjunction for

the sesquilinear form h associated to H , i.e. for all b ∈ B we have (̃b)t = H ◦ b ◦ H
−1

. Hence
two sesquilinear forms h and h′ define the same adjunction if and only if for any b ∈ EndA P , we
have (H−1H ′)b(H−1H ′)−1 = b, which means if and only if H−1H ′ is invertible and in the center
of EndA P , i.e. in the center of B, which is also the center of A. (Remark that if λ ∈ Z(A), then
H−1H ′ = λ means h′ = λh).

Hence H is unique up to multiplication by an invertible central element of A. In particular :

Proposition 1.27. Let A be central over F . Suppose that the two algebras with antiautomorphism
(A,−) and (B,−) are Morita equivalent. Then the Morita equivalence data

((A,−), (B,−), P,Q, f, g,HQ)

is unique up to isomorphism and multiplication of HQ by a non zero scalar (in F ).

If now the antiautomorphisms are involutions and ((A,−), (B,−), P,Q, f, g,HQ) is a Morita
equivalence data for hermitian forms with central simple algebras A and B, then the hermitianity
factor ε0 can be choosen arbitrarily (in F , with ε0ε0 = 1), and if we fix it, then, as announced in

[D], the scalar is invariant by the involution : if h is ε0-hermitian, then h′ = λh is ε = ε0λλ
−1

-
hermitian. Since the algebras are central simple, for any ε in F such that εε = 1, we get by Hilbert
90 that there exists a λ ∈ F such that εε0 = λλ−1, which gives the results.

In particular, we can chose an equivalence data with a 1-hermitian form.

If A and B are central simple algebras, we know exactly when they are Morita equivalent :

Theorem 1.28. Two central simple algebras with antiautomorphism are Morita equivalent if and
only if they are Brauer equivalent with compatible antiautomorphisms.

Two central simple algebras with involution are Morita equivalent if and only if they are Brauer
equivalent and the involutions are of the same kind and type.

The second statement is partially proved in [D], up to checking that the sesquilinear form
obtained is hermitian. The notions of kind and type of an involution are define in [BOI]. Note
that two involutions have the the same kind if and only if they are compatible.

Proof. First note that if there is an equivalence data, then there exists a faithfully projective P
over A, hence free, such that B ≃ EndA(P ). This proves that A and B are Brauer equivalent and
the antiautomorphisms are compatible.
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Suppose that A and B are Brauer equivalent, and let A = Ms(D), B = Mr(D) (the matrix
algebras of size s, r), for a division algebra D. Let − be compatible antiautomorphisms of A and
B, and let ∧ be an antiautomorphism of D compatible with −.

The map τ(dij) 7→ (d̂ij)
t defines another antiautomorphism of A (resp. B). Hence, by Skolem-

Noether theorem, there exist invertible elements u ∈ A and v ∈ B such that

∀a ∈ A a = u−1τ(a)u and ∀b ∈ B b = v−1τ(b)v.

Let P = Mr×s(D), which is naturally a B-A-bimodule, and Q = Ms×r(D), which is naturally a
A-B-bimodule isomorphic to the dual of P . Denote again τ(pij) = (p̂ij)

t ∈ Q for (pij) ∈ P .

Then the map H : P → Q̃ ; p 7→ H(x) = (u−1τ(x)v)∼ is an isomorphism of B-A-
bimodules since if p ∈ P, a ∈ A, b ∈ B then

H(bxa) = (u−1τ(bxa)v)∼ = (u−1τ(a)τ(x)τ(b)v)∼ = (a(u−1τ(x)v)b)∼ = b(u−1τ(x)v)∼a = bH(x)a.

If now the antiautomorphisms − are involutions of the same kind and type, we may assume that
∧ is an involution of the same kind and type as well. It means that τ(u)−1u = τ(v)−1v = ε = ±1
(ε = 1 if they are of the second kind or of the first kind and of orthogonal type, and ε = −1 if they
are of symplectic type). We check that H defines an hermitian form h : the form h is defined by
h(x, y) = u−1τ(x)vy, hence

h(x, y) = u−1τ(u−1τ(x)vy)u = u−1τ(y)τ(v)xτ(u)−1u = u−1τ(y)vεxε = u−1τ(y)vx = h(y, x).

�

2. Orthogonal sum of antiautomorphisms

We here generalize the definition of the sum of algebras with involution to algebras with anti-
automophism that satisfy a technical hypothesis.

2.1. Asymmetry for a sesquilinear form.

Definition 2.1. Let (A,−) and (B,−) be F -algebras with antiautomorphism, P a right-A-module,
∼ the inverse antiautomorphisms.

Let h : P × P → A be an (A,−)-sesquilinear form which admits (B,−). We say that a map
α : P → P is an asymmetry for h if :

(a) The induced map α : P → P̃ ; x 7→ α̃(x) is an isomorphism of A-B-bimodules.

(b) ∀x, y ∈ P h(y, x) = (h(x, α(y)))∼, or equivalently h(y, x) = h(x, α(y))

Example 2.2 - If the antiautomorphisms are involutions and h is an ε-hermitian form, then ε IdP
is an asymmetry for h.

Remark 2.3 - Since α(x) = α(x), proving that for all a ∈ A, b ∈ B and x ∈ P , α(axb) = aα(x)b

is equivalent to proving that α(bxa) = bα(x)a.
Remark 2.4 - We can prove the existence and uniqueness of an asymmetry in the very general
case when the sesquilinear form admits (B,−) and is nonsingular on both sides : if x ∈ P , then

the map y 7→ h̃(y, x) is an element of P ⋆ = HomA(P,A). If we denote Hr(x̃) this map, then it

defines a morphism Hr : P̃ → P ⋆ of A-B-bimodules as soon as h admits (B,−) : for x, y ∈ P

and a ∈ A, b ∈ B,

Hr(ax̃b)(y) = Hr

(
b̃xa

)
(y) = (h(y, bxa))∼ = (h(by, x)a)∼ = a ˜h(by, x) = (aHr(x̃)b)(y).
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If moreover h admits (B,−) and is nonsingular, then the composite ξ = H
−1

◦Hr : P̃ → P is
a morphism of A-B-bimodules which satisfies : for x, y ∈ P ,

H ◦ ξ(x̃) = Hr(x̃) ∈ P ⋆

hence h
(
ξ̃(x̃), y

)
= h̃(y, x)

and h(z, y) = (h
(
y, ξ−1(z)

)
)∼

for z = ξ̃(x̃).
This means that as soon as Hr is an isomorphism (i.e h is non singular on both sides), there

exists an asymmetry : the map α : z 7→ ξ−1(z) which gives α = ξ−1.
It is then clear that we found the only asymmetry of h in this case.

Remark 2.5 - Our choice of definition is coherent with the case of bilinear forms, where a
definition can be found in [CT]. It would have been possible in this work to use α−1 instead of α
but this is not the choice we make. Remark that we also get

h(y, x) = h(ξ̃(x̃), y) = h(α−1(x), y),

which means that α−1 is what we could call an asymmetry on the other side.
Remark 2.6 - We can write the corresponding formula for H :

H(y ⊗ x) = (H(x⊗ α(y)))∼.

Example 2.7 - For central simple algebras A and B, we can define an asymmetry explicitly. We
use the notations of 1.5, and suppose that ∧ is involutive. We get

h(y, x) = u−1τ(h(y, x))u = u−1τ(u−1τ(y)vx)u = u−1τ(x)vα(y)

for α(y) = v−1τ(v)yτ(u)−1u = V −1yU if we put U = τ(u)−1u and V = τ(v)−1v.
It is clear that α is bijective. To check that it induces a morphism α of A-B-bimodules, remind

that b = V −1bV and a = U−1aU hence :

α(bxa) = V −1bxaU = (V −1bV )(V −1xU)(U−1aU) = bα(x)a

which means that α is a morphism. We have proved that α(y) = V −1yU defines the asymmetry
α of h.

2.2. Morita equivalence when there is an asymmetry.

We here suppose that we are in the situation of theorem 1.16 and keep the notation of its proof.

We assume moreover that h has got an asymmetry α and that α : P → P̃ is the associated
isomorphism of bimodules. We then defined isomorphisms of bimodules H : P ⊗B P → A and

K1 : P ⊗A P → B. Via the isomorphism (α)−1 : P → P ; y 7→ α−1(y), we can define a new
isomorphism of B-B-bimodules : F = K1 ◦ ((α)−1 ⊗ IdP ) : P ⊗ P → B.

Lemma 2.8. Under the above hypothesis, the maps F and H are associative isomorphisms and
hence ((A,−), (B,−), P, P ,F,H, IdP ) is a Morita equivalence data for sesquilinear forms.

Proof. We want to prove that for any x, y, z ∈ P we have both

xH(y ⊗ z) = F(x⊗ y)z ∈ P and H(x⊗ y)z = xF(y ⊗ z) ∈ P .

Changing x into α(x) in the first equality and y into α(y) in the second and using F(p ⊗ p′) =

K1(α
−1(p) ⊗ p′) = k1(α−1(p), p′), this is equivalent to proving that

∀x, y, z ∈ P α(x)h(y, z) = k1(x, y)z ∈ P and h(x, α(y))z = xk1(y, z) ∈ P.

To prove the first equality, we use 1.22 : if t ∈ P then

h(t, k1(x, y)z) = hk1(x⊗ t, y ⊗ z) = h(x, t)h(y, z),

but since h(x, t) = h(t, α(x)) we get h(t, k1(x, y)z) = h(t, α(x)h(y, z)) which gives the result because
h is nonsingular and has an asymmetry.
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To prove the second equality we use 1.24 : ˜k1(y, z)x = zh(y, x) ∈ P , hence we get in P :

˜k1(y, z)x = zh(y, x), which is to say xk1(y, z) = h(y, x)z. Now use the definition of α. It gives
xk1(y, z) = h(x, α(y))z as desired. �

Definition 2.9. We say that two algebras with antiautomorphism (A,−) and (B,−) are Morita
equivalent with asymmetry if there exists a Morita equivalence data for sesquilinear forms
((A,−), (B,−), P, P ⋆, fP , gP , H) with H corresponding to a sesquilinear form which has an asym-
metry.

Remark 2.10 - We have seen in 1.5 that for two Morita equivalent algebras with antiautomor-
phism (and under the condition that the transposition is bijective), the form h in the equivalence
data is unique up to a central element in B : if h and h′ are two nonsingular sesquilinear forms
which admit (B,−), then there exists a λ in the center of A such that h′ = λh. If α is an asym-

metry for h, we deduce that α′ = λ−1λα is an asymmetry for h′, because the corresponding map
α

′ : x 7→ α(x)λλ̃−1 is a morphism of bimodules since α is a morphism and λλ̃−1 is in the center
of B.

We can conclude that the fact of having an asymmetry is independent of the choice of the Morita
equivalence data.

When the Morita equivalence is realized with a form h which has an asymmetry, we get a

isomorphism of B-B-bimodules F : P̃ ⊗A P = P ⊗A P → B, which gives a form f : P ×P → B

defined by (x, y) 7→ f(x, y) = F(x⊗ y). This form is a non-singular (B,∼)-sesquilinear form which
admits (A,∼). Moreover

Lemma 2.11. The map P → P ; y 7→ α−1(y), which corresponds to the isomorphism of bimodules

α
−1 : P = P̃ → P , is an asymmetry for the sesquilinear form f .

Proof. We want to prove that for any x, y ∈ P , f(y, x) = f(x, α−1(y)), which means, using the
definitions of f and F, that

F(x⊗ y) = (F(α(y) ⊗ x))∼,

or that

k1(α−1(x), y) = ˜k1(y, x).

To show this, consider auxiliary z, t ∈ P . Then by 1.24

h(t, ˜k1(y, x)z) = h(t, xh(y, z)) = h(t, x)h(y, z)

and
h(t, k1(α−1(x), y)z) = h

((
k1(α−1(x), y)

)∼
t, z
)

= h(yh(α−1(x), t), z)

= h(α−1(x), t)h(y, z) = h(t, x)h(y, z).

We proved that for any x, y, z, t ∈ P we have h(t, ˜k1(y, x)z) = h(t, k1(α−1(x), y)z), which implies
the result because h is nonsingular.

�

Corollary 2.12. The Morita equivalence with asymmetry is an equivalence relation.

Proof. The reflexivity is trivial. To prove the symmetry, let ((A,−), (B,−), P, P ⋆, fP , gP , H) be
a Morita equivalence data with asymmetry α. We want to prove that the corresponding Morita
equivalence data ((B,−), (A,−), P ,HomB(P ,B), fP , gP ,K1) has an asymmetry. It follows from

the proof above that the map α : x 7→ α(x), which corresponds to the bimodule isomorphism

α : P → P̃ , is an asymmetry for k1.
To prove the transitivity, let (A,−), (B,−), (C,−) be F -algebras with antiautomorphism such

that (A,−) and (B,−) (reps. (B,−) and (C,−)) are Morita equivalent with asymmetry. We want
to prove that (A,−) and (C,−) are still Morita equivalent with asymmetry. Assume that the
first equivalence is given by a sesquilinear form h with asymmetry α over the bimodule P and the
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second by a sesquilinear form k with asymmetry β over the bimodule M . Then the form hk over
the module M ⊗B P gives a Morita equivalence between (A,−) and (C,−). It remains to proves
that this form has an asymmetry. Let then x, x′ ∈ P and m,m′ ∈M . We have :

hk(m′ ⊗ x′,m⊗ x) = h(x′, k(m′,m)x) = h(k(m′,m)x′, x)

= h(k(β(m),m)x′, x) = h(α(x), k(β(m),m)x′)

which proves that β ⊗B α is an asymmetry for hk. �

2.3. Definition of the orthogonal sum.

The orthogonal sum of two Morita equivalent central simple algebras with involutions has been
defined by I. Dejaiffe in [D] and this notion extends the notion of orthogonal sum of hermitian
or symmetric or antisymmetric bilinear forms. We here give a definition for any algebras with
antiautomorphism which are Morita equivalent with asymmetry. We will see that our definition
extends Dejaiffe’s definition and the notion of orthogonal sum of sesquilinear forms.

Definition 2.13. Let (A,−) and (B,−) be algebras with antiautomorphism. Suppose that they
are Morita equivalent with asymmetry, and let ((A,−), (B,−), P, P ⋆, fP , gP , H) be a Morita equiv-
alence data such that the sesquilinear form h corresponding to H has an asymmetry α. Let
((A,−), (B,−), P, P ,F,H, IdP ) be the corresponding Morita equivalence data.

The orthogonal sum (A,−) ⊥h (B,−) is the algebra with antiautomorphism
((

B P

P A

)
,−
)

where

(a) the multiplication is given via H and F by

(
b x

y a

)(
b′ x′

y′ a′

)
=

(
bb′ + F(x⊗ y′) bx′ + xa′

yb′ + ay′ aa′ + H(y ⊗ x′)

)

if a, a′ ∈ A, b, b′ ∈ B, x, x′y, y′ ∈ P ;
(b) the antiautomorphism − over the sum is given by

(
b x

y a

)
=

(
b α(y)
x a

)
.

Lemma 2.14. The above formulae define an algebra with antiautomorphism for which (A,−) and
(B,−) are subalgebras with antiautomorphism.

Proof. (a) It is clear that the product is F -bilinear and that the matrix

(
1 0
0 1

)
is neutral. It

remains to prove that the product is associative. It comes directly from the associativity
of the products on A and B and from the associativity of F and H.

(b) It is clear that − over the sum is a group isomorphism. It remains to prove that it changes
the order in the products. We then compute for a, a′ ∈ A, b, b′ ∈ B, x, x′y, y′ ∈ P ,

(
b x

y a

)(
b′ x′

y′ a′

)
=

(
bb′ + F(x⊗ y′) bx′ + xa′

yb′ + ay′ aa′ + H(y ⊗ x′)

)
=

(
b
′
b+ F(x⊗ y′) α( ˜yb′ + ay′)

bx′ + xa′ a′a+ H(y ⊗ x′)

)

while
(
b′ x′

y′ a′

) (
b x

y a

)
=

(
b
′

α(y′)
x′ a′

)(
b α(y)
x a

)
=

(
b
′
b+ F(α(y′) ⊗ x) b

′
α(y) + α(y′)a

x′b+ a′x a′a+ H(x′ ⊗ α(y))

)
.

But
bx′ + xa′ = x′b+ a′x

and α( ˜yb′ + ay′) = α(yb′ + ay′) = α(y)b′ + aα(y′)

= α̃(y)b′ + aα̃(y′) = b
′
α(y) + α(y′)a,
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and since α is an asymmetry for h and α−1 is an asymmetry for f ,

H(y ⊗ x′) = H(x′ ⊗ α(y))

and F(x⊗ y′) = F(α(y′) ⊗ x),

which proves that the two above matrices are equal.
�

Remark 2.15 - This definition of the sum depends on the choice of a Morita equivalence data.
However we can use the remarks 2.10 and 1.5 to compare the sums : if we take another equivalence
data and if the transposition is bijective, then it is defined by another sesquilinear form h′ over P
which is a multiple of h, say h′ = λh with λ in the center of A. Using the associativity of H′ and
F′ we get

F′(x⊗ y)z = xH′(y ⊗ z) = λxH(y ⊗ λz) = λF(x ⊗ y)z

and hence F′ = λF.
The product on the algebra (A,−) ⊥h′ (B,−) is then given by the formula

(
b x

ỹ a

)(
b′ x′

ỹ′ a′

)
=

(
bb′ + λF(x ⊗ ỹ′) bx′ + xa′

ỹb′ + aỹ′ aa′ + λH(ỹ ⊗ x′)

)

if a, a′ ∈ A, b, b′ ∈ B, x, x′y, y′ ∈ P .
The antiautomorphism − over this sum is given by

(
b x

y a

)
=

(
b λ−1λα(y)
x a

)
.

Other expressions of the sum. To define the sum we used a specific Morita equivalence data,
but if we start with a Morita equivalence data with asymmetry ((A,−), (B,−), P,Q, f, g,HQ), we
can define the corresponding sum directly : denote iQ : P ⋆ → Q the isomorphism such that

g ◦ (iQ ⊗B IdP ) = gP and f ◦ (IdP ⊗AiQ) = fP , and let H = i−1
Q ◦HQ : P → P ⋆.

We get for x, y, z ∈ P ,

g(HQ(y) ⊗ x) = gP (H(y) ⊗ x) = H(y)(x) = H(y ⊗ x)
and f(x⊗HQ(y))(z) = fP (x⊗H(y))(z) = xH(y)(z) = xH(y ⊗ z) = F(x⊗ y)(z)

hence f(x⊗HQ(y)) = F(x⊗ y).

We deduce that HQ induces an isomorphism between A ⊥h B and the algebra

(
B P

Q A

)
with

the natural product given by f and g.
The corresponding antiautomorphism on this algebra is a little bit more complicated to describe

and requires a description of the asymmetry in terms of the initial Morita equivalence data : the

existence of an asymmetry α for h is equivalent to the existence of an isomorphism αQ : Q→ P̃

such that

∀x ∈ P ∀q ∈ Q g(q ⊗ x) =
(
g
(
HQ(x) ⊗ αQ(q)

))∼
:

they are related by α = αQ ◦HQ since g(HQ(x) ⊗ αQ(HQ(y))) = H(x̃⊗ α(y)).

By transport of structure, we then define an antiautomorphism over

(
B P

Q A

)
by

(
b x

q a

)
=

(
b αQ(q)

HQ(x) a

)
,

which makes this algebra with antiautomorphism be isomorphic to the sum (A ⊥h B,−).

In particular, a Morita equivalence data with asymmetry ((A,−), (B,−), P, P ⋆, fP , gP , H) gives

the orthogonal sum A ⊥h B =

(
B P

P ⋆ A

)
with the natural product given by fP and gP and the
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antiautomorphism defined by
(
b x

l a

)
=

(
b α ◦H−1(l̃)

H(x) a

)
,

Example 2.16 - Take again the central simple case. With the notations of 1.5, the sum Ms(D) ⊥h
Mr(D) is the usual matrix algebra Mr+s(D). To obtain explicitly the antiautomorphism, we
need first to find an isomorphism between P and Ms×r(D), i.e to find a group isomorphism
− : P = Mr×s(D) →Ms×r(D) which satisfies

∀x ∈ P, ∀a ∈ A, ∀b ∈ B ax b = bxa.

Since a = u−1τ(a)u and b = v−1τ(b)v, this condition can be written τ(a)(uxv−1)τ(b) =
ubxav−1. It is clear that we can take

x = u−1τ(x)v.

The antiautomorphism is then defined by
(
b x

q a

)
=

(
b α(q̃)
x a

)
=

(
v−1τ(b)v v−1τ(q)u
u−1τ(x)v u−1τ(a)u

)
=

(
v−1 0
0 u−1

)
τ
((b x

q a

))(v 0
0 u

)
.

These computations prove that this notion of orthogonal sum extends both Dejaiffe’s definition
and the usual definition of orthogonal sum of sesquilinear forms.

2.4. Associativity of the orthogonal sum.

It is clear that the orthogonal sum is commutative : (A ⊥h B,−) ≃ (B ⊥k1 A,−).
In [D], I. Dejaiffe proves that the orthogonal sum of central simple algebras with involution is

associative. To extend this result to the orthogonal sum of algebras with antiautomorphism, we
will need the following :

Proposition 2.17. Let (A,−), (B,−), (C,−) be F -algebras with antiautomorphism which are
Morita equivalent with asymmetry. Then (A ⊥ B,−) and (C,−) remain Morita equivalent with
asymmetry.

Proof. Let ((A,−), (B,−), P, P ⋆, fP , gP , H) and ((B,−), (C,−),M,HomB(M,B), fM , gM ,K) be
Morita equivalence datas. Denote N the matrix set N =

(
M M ⊗ P

)
. This is naturally a C-

(A ⊥h B)-bimodule (we multiply the matrices in blocs and use the identification fP ). Similarly,

N ′ =

(
HomB(M,B)

(M ⊗ P )⋆

)
=

(
HomB(M,B)

P ⋆ ⊗ HomB(M,B)

)
is naturally a (A ⊥h B)-C-bimodule.

Using the bloc matrix product and the isomorphisms fM and fM⊗P , we get a natural product

f :
(
M M ⊗ P

)
×

(
HomB(M,B)

(M ⊗ P )⋆

)
→ C

((m, y),

(
t

q

)
) 7→ fM (m⊗ t) + fM⊗P (y ⊗ q)

and with the isomorphisms gM and gM⊗P a natural product

g :

(
HomB(M,B)

(M ⊗ P )⋆

)
×
(
M M ⊗ P

)
→ A ⊥h B =

(
B P

P ⋆ A

)

(

(
t

l ⊗ t′

)
, (m,m′ ⊗ x)) 7→

(
gM (t⊗m) gM (t⊗m′)x
lgM (t′ ⊗m) gM⊗P ((l ⊗ t′) ⊗ (m′ ⊗ x))

)
.

We prove that they induce isomorphisms from the tensor products respectively over A ⊥h B and
C to respectively C and A ⊥h B. This is obvious for g since gM and gM⊗P are well defined
isomorphisms. For f , we need the following

Lemma 2.18. Under the identification of 1.13, if x ∈ P,m ∈ M, l ∈ P ⋆, t ∈ HomB(M,B), we
have

fM⊗P ((m⊗ x) ⊗ (l ⊗ t)) = fM (m⊗ fP (x⊗ l)t) ∈ C.
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Proof. We prove the equality by applying those linear maps in C = EndA(M ⊗ P ) to an element
m′ ⊗ x′ ∈M ⊗ P . Recall that (l ⊗ t)(m′ ⊗ x′) = l(t(m′)x′) according to 1.13.

We get

fM⊗P ((m⊗ x) ⊗ (l ⊗ t))(m′ ⊗ x′) = m⊗ xl(t(m′)x′) = m⊗ fP (x⊗ l)t(m′)x′

= mfP (x⊗ l)t(m′) ⊗ x′ = fM (m⊗ fP (x⊗ l)t)m′ ⊗ x′

which gives the lemma. �

We now compute

f
(
(m,m′ ⊗ x′)

(
b x

l a

)
,

(
t

l′ ⊗ t′

))
= f

(
mb+m′fP (x′ ⊗ l),m⊗ x+m′ ⊗ x′a),

(
t

l′ ⊗ t′

))

= fM ((mb+m′fP (x′ ⊗ l)) ⊗ t) + fM⊗P ((m⊗ x+m′ ⊗ x′a) ⊗ (l′ ⊗ t′))
= fM (m⊗ bt) + fM (m′ ⊗ fP (x′ ⊗ l)t) + fM⊗P ((m⊗ x) ⊗ (l′ ⊗ t′))

+fM⊗P ((m′ ⊗ x′a) ⊗ (l′ ⊗ t′)),

while

f
(
(m,m′ ⊗ x′),

(
b x

l a

)(
t

l′ ⊗ t′

))
= f

(
(m,m′ ⊗ x′),

(
bt+ fP (x⊗ l′)t′

l⊗ t+ al′ ⊗ t′

))

= fM (m⊗ (bt+ fP (x ⊗ l′)t′)) + fM⊗P ((m′ ⊗ x′) ⊗ (l ⊗ t+ al′ ⊗ t′))
= fM (m⊗ bt) + fM (m⊗ fP (x ⊗ l′)t′) + fM⊗P ((m′ ⊗ x′) ⊗ (l ⊗ t))

+fM⊗P ((m′ ⊗ x′) ⊗ (al′ ⊗ t′)).

Those two expressions are the same according to the lemma. This proves that f induces a morphism
N ⊗A⊥B N

′ → C. It is clear that this is then an isomorphism of C-C-bimodules.
We have proved that (A ⊥h B,C,N,N

′, f, g) is a Morita equivalence data of algebras, and hence
identifyed N ′ and HomA⊥B(N,A ⊥ B).

A natural candidate to define a Morita equivalence data between algebras with antiautomor-
phism is then the isomorphism of right-C-modules

Φ =

(
K

H ⊗K

)
: N =

(
M

P ⊗M

)
→ N ′ =

(
Hom(M,B)

Hom(P,A) ⊗ Hom(M,B)

)
.

We first can check that N is the (A ⊥ B)-C-bimodule

(
M

P ⊗M

)
with the action of A ⊥ B

given by the product in bloc and using F and H
−1

: by the formula in 2.3 which defines the

antiautomorphism − over A ⊥h B, we get

(
b x

l a

)∼

=

(
b̃ H−1(l̃)

H ◦ α
−1(x̃) ã

)
and hence

(m,m′ ⊗ x′)

(
b x

l a

)∼

= (mb̃+m′fP (x′ ⊗H ◦ α
−1(x̃)),m⊗H−1(l̃) +m⊗ x′ã)

=

(
bm+ fP (x′ ⊗H ◦ α

−1(x̃))m′

H
−1

(l) ⊗m+ ax′ ⊗m′

)
.

But by 1.24, fP (x′ ⊗H ◦ α
−1(x̃)) = k1(α−1(x), x′) = K1(α−1(x̃) ⊗ x′) = F(x⊗ x′) hence

(m,m′ ⊗ x′)

(
b x

l a

)∼

=

(
bm+ F(x⊗ x′)m′

H
−1

(l) ⊗m+ ax′ ⊗m′

)
=

(
b x

l a

)(
m

x′ ⊗m′

)
.

We have proved that the (A ⊥ B)-C-bimodule structure of N is the natural structure of

(
M

P ⊗M

)
.

We use this to prove that Φ =

(
K

H ⊗K

)
is a morphism of left (A ⊥ B)-module :

Φ
((b x

l a

)(
m

x′ ⊗m′

))
=

(
bK(m) + F(x⊗ x′)K(m′)
l⊗K(m) + aH(x) ⊗K(m′)

)
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while(
b x

l a

)
Φ
(( m

x′ ⊗m′

))
=

(
b x

l a

)(
K(m)

H(x′) ⊗K(m′)

)
=

(
bK(m) + fP (x⊗H(x′))K(m′)
l⊗K(m) + aH(x) ⊗K(m′)

)
.

Those terms are equal by applying 1.24.
It remains to prove that if h as the asymmetry α and k has the asymmetry β, then the sesquilin-

ear form ϕ over N which corresponds to Φ has the asymmetry (β, β ⊗ α). Here

ϕ
(
(m,m1 ⊗ x1), (m

′,m′
1 ⊗ x′1)

)
=

(
K(m)

H(x1) ⊗K(m1)

)
(m′,m′

1 ⊗ x′1)

=

(
K(m)(m′) K(m)(m′

1)x
′
1

H(x1)(K(m1)(m
′)) gM⊗P

(
(H(x1) ⊗K(m1)) ⊗ (m′

1 ⊗ x′1)
)
)

=

(
k(m,m′) k(m,m′

1)x
′
1

H(x1)k(m1,m
′) H(x1)

(
K(m1)(m

′
1)x

′
1

)
)

=

(
k(m,m′) k(m,m′

1)x
′
1

H
(

˜k(m1,m′)x1

)
hk(m1 ⊗ x1,m

′
1 ⊗ x′1)

)

We have already proved in 2.12 that β ⊗ α is an asymmetry for hk, hence

ϕ
(
(m,m1 ⊗ x1), (β, β ⊗ α)(m′,m′

1 ⊗ x′1)
)

=

(
k(m,β(m′)) k(m,β(m′

1))α(x′1)

H(x1)k(m1, β(m′)) hk(m1 ⊗ x1, (β ⊗ α)(m′
1 ⊗ x′1))

)

=

(
k(m′,m) k(m′

1,m)α(x′1)

H(x1)k(m′,m1) hk(m′
1 ⊗ x′1,m1 ⊗ x1)

)

=

(
k(m′,m) α( ˜k(m′

1,m)x′1)

H(k(m′,m1)x1) hk(m′
1 ⊗ x′1,m1 ⊗ x1)

)

=

(
k(m′,m) k(m′,m1)x1

H
(

˜k(m′
1,m)x′1)

)
hk(m′

1 ⊗ x′1,m1 ⊗ x1)

)

which ends the proof.�

Corollary 2.19. With the above notations the sum (A ⊥h B) ⊥ϕ C is the algebra



C M M ⊗ P

HomB(M,B) B P

HomC(M ⊗ P,C) HomA(P,A) A




with the the product in bloc using fP , gP , fM , gM , fM⊗P , gM⊗P and the antiautomorphism defined
by 


c m q

t b x

u l a


 =




c β−1 ◦K−1(t̃) γ−1 ◦ J−1(ũ)

K(m) b α−1 ◦H−1(l̃)

J(q) H(x) a


 ,

where J and J are the bimodule isomorphisms corresponding to the form j = hk, and γ = β ⊗ α.

This is just a rewriting of the results obtained in the previous proof, and from this we get
directly :

Theorem 2.20.

Let ((A,−), (B,−), P, P ⋆, fP , gP , H) and ((B,−), (C,−),M,HomB(M,B), fM , gM ,K) be Morita

equivalence datas. Let j = hk and J̃ the corresponding isomorphism.

Let Φ =

(
K

H ⊗K

)
,Ψ = (H ⊗K,H) and ϕ and ψ the corresponding sesquilinear forms.

Then the algebras with antiautomorphism (A ⊥h B) ⊥φ C and A ⊥ψ (B ⊥k C) are equal.
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2.5. Invariants in the linear central simple case.

When the algebras are central simple and the antiautomorphisms are linear, some invariants
have been defined : the asymmetry and the determinant in [CT] and the Clifford algebra in [C].
The authors don’t know yet how to compute the Clifford algebra of an orthogonal sum, but think
it should be related to the Clifford algebras of the two algebras with antiautomorphism. This was
done in [D] in the case of Morita equivalent algebras with involution, ie for linear involutions of the
same type over Brauer equivalent algebras. We here describe the other invariants of the orthogonal
sum :

Theorem 2.21. Let (A,−) and (B,−) be Morita equivalent central simple algebras with F -linear
antiautomorphism. Then independently of the sesquilinear form h chosed to define the orthogonal
sum :

(a) deg(A ⊥ B) = degA+ degB ;
(b) Denote U( resp. V ) the asymmetry of (A,−) (resp. (B,−)). Then the asymmetry of

(A ⊥ B,−) is W =

(
V 0
0 U

)
;

(c) Suppose that A and B are of even degree. Then det(A ⊥ B,−) = det(A,−) det(B,−).

Proof. The first point is clear from the definition of the sum. To prove (b), using scalar extension
to F sep, it is enough to prove it when the algebras are split.

Then D = F,∧ = IdF and τ = t is the transposition. Let u and v be respectively the matrices
of some bilinear forms over F r and F s associated to − (via adjonction). Then the asymmetries of
(A,−) and (B,−) are respectively U = u−tu and V = v−tv.

We already used the sesquilinear form h over P defined by h(x, y) = u−1xtvy. For this form, the

antiautomorphism over (A,−) ⊥h (B,−) is defined by

(
b x

q a

)
=

(
v−1 0
0 u−1

)(
b x

q a

)t(
v 0
0 u

)

hence the antiautomorphism of − is the adjonction for the bilinear form of matrix

(
v 0
0 u

)
and,

according to [CT], its asymmetry is

(
v 0
0 u

)−t(
v 0
0 u

)
=

(
V 0
0 U

)
.

If we take another form h′ = λh, we just have to change v to v′ = λv in all the previous formulae.
We can see that it does not change the asymmetry.

To prove (c), assume that the degrees are even. Then by definition, the determinant of (A,−)
is det(A,−) = Nrd(a − aU) for any a ∈ A which satisfies that a − aU is invertible. Choose such

an a and similarly choose a b ∈ B such that b− bV ∈ B×, hence det(B,−) = Nrd(b − bV ).

Then

(
b 0
0 a

)
−

(
b 0
0 a

)(
V 0
0 U

)
=

(
b− bV 0

0 a− aU

)
is invertible in A ⊥ B, and hence

det(A ⊥ B,−) = Nrd
((b− bV 0

0 a− aU

))
= det(A,−) det(B,−).

�

Remark 2.22 - If two Brauer equivalent central simple algebras are endowed with involutions
of different type, their asymmetries are respectively 1 and −1, and hence the asymmetry of the

antiautomorphism over their orthogonal sum is

(
1 0
0 −1

)
. This antiautomorphism is hence of

order 4 and is no longer an involution.

In [Le1], D. Lewis defines the trace form of an antiautomorphism over a central simple algebra :
T(A,−)(x) = TrA/F (xx), and gives a criterion to check if this quadratic form is or not degenerate :

T(A,−) is non degenerate if and only if there exists no non-zero element x ∈ A such that x+ x = 0.
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Since (
b x

q a

)
=

(
V −1bV V −1xU

U−1qV U−1aU

)
=

(
b α(x)

α(q̃) a

)
,

we get :

Proposition 2.23. The trace form of
(
(A,−) ⊥h (B,−),−

)
is non degenerate if and only if the

trace forms of (A,−) and (b,−) are both non degenerate and there is no non-zero x ∈ P such that
α(x) + x = 0.

The authors don’t know yet how to interpret this in terms of properties of h or of the algebras.
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