ON THE FIRST STEENROD SQUARE FOR CHOW GROUPS

OLIVIER HAUTION

ABSTRACT. We construct a weak version of the homological first Steenrod
square, a natural transformation from the modulo two Chow group to the Chow
group modulo two and two-torsion. No assumption is made on the character-
istic of the base field. As an application, we generalize a theorem of Nikita
Karpenko on the parity of the first Witt index of quadratic forms to the case
of a base field of characteristic two.

1. INTRODUCTION

Good progress has been made lately towards a uniform treatment of the the-
ory of (non-degenerate) quadratic forms, regardless of the fact the base field has
characteristic two or not. This approach is developed in the book [EKMO0S]. The
main obstruction that remains, in order to accomplish this program, is that the
Steenrod operations modulo two are not available when the base field has char-
acteristic two. Indeed several constructions of the Steenrod operations for Chow
groups modulo a prime number p are known, but none of them works over a field
of characteristic p.

In this article we construct a weak version of the first homological Steenrod
operation on modulo two Chow groups, over a field of arbitrary characteristic.
More precisely, if Ch denotes the modulo two Chow group, and Ch the Chow
group modulo its torsion subgroup, tensored with Z/2, we construct group homo-
morphisms

SqX: Ch(X) — Ch(X),

for all separated schemes X of finite type over a field. These morphisms commute
with proper push-forwards, scalars extension and external product. They satisfy
the formula

Say [X] = 1 (Tx)

when X is a smooth variety with tangent bundle T'x.
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Using the operation constructed here, we prove a statement about the parity
of the first Witt index of a quadratic form over an arbitrary field. When the base
field is of characteristic different from two, this result is a particular case of a more
precise statement known as Hoffmann’s Conjecture, [EKMOS, Proposition 79.4].
But since we only construct the first Steenrod square, we only get a partial state-
ment.

This work is part of my Ph.D. thesis at the university of Paris 6 under the
direction of Nikita Karpenko. I am very grateful to him for introducing me to the
subject, raising the question studied here, and guiding me during this work.

2. NOTATIONS

A wariety is a separated scheme of finite type over a field, which need not be
irreducible, reduced nor quasi-projective. A regular variety is a variety whose
local rings are all regular local rings.

Grothendieck group of coherent sheaves. Let X be a variety. We shall write
Ko(X) for the Grothendieck group of coherent Ox-sheaves. Such a sheaf F has
a class [F] € Ko(X), and if f: X — Y is a proper morphism of varieties, there is
a push-forward map

for Ko(X) = Ko(Y) , [Flm= ) (-)'Rf(F)].
If f: X — Y is flat, there is a pull-back f*: Ky(Y) — Ky(X) induced by the
tensor product with Ox over Oy-.

Topological filtration. The group Ky(X) is endowed with a topological filtra-
tion 0 = Ko(X)1y C Ko(X)@o) C -+ C Ko(X)@imx) = Ko(X). For every
integer d, Ko(X)q) is the subgroup of Ky(X) generated by classes of coherent
Ox-sheaves supported in dimension < d. This filtration is compatible with proper
push-forwards. The associated graded group shall be denoted by gr, Ky(X).

External product. Let X and Y be varieties over a common field, and px: X x
Y - X, py: X XY — Y be the two projections. There is an external product
—X—: Ko(X)® Ko(Y) = Ko(X xY)
induced by the association
(€, F) = (px"E) @0y, (py™F).
For any integers m and n, we have

KO(X)(m) X KO(Y)(n) C KO(X X Y)(ern).
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Comparison with Chow groups. There is a morphism of graded abelian groups
¢x: CHo(X) — gr, Ko(X) , [Z]— [Oz] mod Ko(X)imz-1)

which commutes with proper push-forwards (see [Ful98, Example 15.1.5]). Let X
denote the external product for Chow groups. If X and Y are varieties over a
common field, and z € Ky(X), y € Ko(Y), we have

(1) pxxy (T X y) = px(r) ¥ oy(y).

Scalars extension. For a variety X over a field F, and L/F a field extension,
we shall write X, for the variety X Xgpec(ry Spec(L) over the field L. The flat
morphism X; — X induces pull-backs

z+— xr, CH(X)— CH(X.) and Ko(X) — Ko(XL),
which satisfy, for all z € Ky(X)

(2) ox,(rr) = px ()L

3. SINGULAR GROTHENDIECK-RIEMANN-ROCH THEOREM

For a variety X, we write CH(X )q for CH(X) ®z Q. An element x € CH(X)
has an image * ® 1 € CH(X)g.

Theorem 3.1. For all varieties X there is a homomorphism
7™ Ko(X) — CH(X)g

with the following properties.
(a) If f: X =Y is a proper morphism of varieties, we have

frot* =1"0f..
(b) For an integral variety X, we have

7™[0x] = [X] mod CH_gimx(X)g.

(c) If u: U — X 1is an open embedding of quasi-projective varieties, then

™V ou* =u*or¥.

(d) If X is a variety over a field F', L]/ F a field extension, then for all x € Ky(X)
we have in CH(XL)g
TX(.’L')L = TXL(.’L'L).
(e) Let i: X — M be a regular closed embedding, with M a smooth variety. Let

N be the normal bundle of i and Ty the tangent bundle of M. Then, writing
Td for the Todd class, we have

X [0x] = Td(i*[Ta] — [N]).
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Proof. The existence of the map 7% satisfying (@) and () is proven in [Ful98,

Theorem 18.3]. Applying loc.cit., (4) with f: X — point the structure morphism,
and o« = 1 € Ky(point), we obtain (@). Putting f =u: U — X, we get (Q).

We now prove (dl). We first assume that X is quasi-projective over F', and choose
a closed embedding i: X — M into a smooth F-variety M. We can assume that
x = [F] for some coherent Ox-sheaf F, and take a resolution & — #.JF — 0 by
locally free Oy -sheaves. Then by [Eul98, Theorem 18.3, (3)]

X (z) = ch¥ (&) N Td(Twy),

where Td(T};) is the Todd class of tangent bundle of M, and ch (£,)n—: CH(M)g —
CH(X)g the localized Chern character.

We have a closed embedding iy,: X, — M, with My smooth over L. Let
f: Xy, — X, g: M, — M be the morphisms induced by the field extension
L/F. Then zj = [f*F], we have an isomorphism ¢* o i, F ~ (ir). o f*F, and a
resolution ¢*E, — (ir)« o f*F — 0. The tangent bundle T}, of My is isomorphic
to ¢*Tas = (Th) 1, therefore using [Ful98, Theorem 18.1], we have

X0 (1) = ch{*(g"E) N Td(g*Tar) = f*(ch¥ (&) N Td(Thr)) = 7% (2)r.

Now we drop the assumption that X is quasi-projective over F'. Let p: X' — X
be a Chow envelope. The map p.: Ko(X') — Ko(X) is surjective, let y be an
antecedent of . Then we have, by compatibility with proper push-forwards
).

The fiber product pr: X';, — X is also a Chow envelope by [Ful98, Lemma 18.3,
(2)], and

™ (x) =1% opu(y) =p.oT

M (yy).

X0 (xp) =7 (pu(y)r) =7 0 (pr)u(yr) =psoT

The latter is equal to p,or~ (y)1 by the quasi-projective case, and (dl) follows. O

The morphism 7% is the homological Chern character. Individual components
Tt Ko(X) — CHi(X)g

are defined by composing with the projections CH(X)g — CHg(X)o.

4. A 2-INTEGRALITY PROPERTY OF THE HOMOLOGICAL CHERN CHARACTER

The result obtained in this section, Corollary E4], can be thought of as an al-
gebraic analog of [Ada61l, Theorem 1] (with r = 1).

Let X be a variety. We denote by CH(X)z C CH(X)g the Chow group of
X modulo its torsion subgroup, and view it as the image of the map CH(X) —
CH(X)g given by z — z ® 1.
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Lemma 4.1. Let X be a reqular, connected and quasi-projective variety of dimen-
sion d. Then

2. Tj(_l[OX] € CHd_l(X)Z.

Proof. Since X is quasi-projective, we can find a smooth connected variety M and
a closed embedding j: X — M. As is any closed embedding of regular varieties,
j is a regular closed embedding ([Bon(7, Proposition 2, §5, N°3, p.65]). Letting N
be its normal bundle and T}, the tangent bundle of M, we can apply Theorem BTl
@). Using [Ful98, Example 3.2.4] asserting that the first term of the Todd class
is the half of the first Chern class ¢;, we obtain in CH(X)g mod CHgim x—2(X)o
the congruence

X[0x] = Td(j* Ty — N) = (id+e,(j*Tw) @ 27") - (id +¢ (V) @ 2—1)*1[)(]
=[X]+a(* Ty - N)®2™".
The statement follows. O

Lemma 4.2. Let X be a normal, connected and quasi-projective variety of di-
mension d. Then

2. Tj(_l[OX] € CHd_l(X)Z.

Proof. The set S of points x € X such that Ox, is not a regular local ring is
closed in X ([Bou(7, Corollaire 4, §7, N°9, p.102]). We consider S as a closed
subscheme of X, by endowing it with the reduced scheme structure. Since X is
normal, the subscheme S has codimension at least two in X.

Let u: U — X be the open complement of S in X. The variety U is regular,
connected and quasi-projective, hence Lemma Tl applies to U: we find an integral
cycle yy € CHy_(U) satistying 2 - 7¥ ,[Oy] = yy ® 1. We have the localization
sequence

CH(S) — CH(X) 5 CH(U) — 0.
Let y € CHy—1(X) be such that u*(y) = yy. By Theorem Bl (), we have
w21 [Ox] —y® 1) =2 7,[Oy] —yw @1 =0,

hence 2 - 7 ,[Ox] — y ® 1 belongs to the image of CH(S)g — CH(X)g, which is
contained in CH_y4_;(X)g. But 275 ,[Ox] —y ® 1 belongs to CHy_1(X)g, hence
it is zero. U

Proposition 4.3. Let X be an integral variety of dimension d. Then
2. Tj(_l[OX] € CHd_l(X)Z.

Proof. First, using Chow’s Lemma [Gro61l, IT, Théoreme 5.6.1], choose a projective
birational morphism e: X’ — X, with X’ quasi-projective and integral. Let
n: X — X’ be the normalization of X'. Tt is a finite birational morphism ([Bou6l
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Théoreme 2, Chapitre V, §3, N°2, p.59]), with X normal, connected, and quasi-
projective. Setting p = e on, we have p,[O%] = [Ox] + i.(2) for some closed
subvariety i: Z <— X, with dim Z < d, and some element z € Ky(Z). Then

2751 [0x] = 2 pao T\ [Og] = 2+ i 0 71 (2).
Since dim Z < d — 1, we have by Theorem BT, (B, 77 (2) € CHy_1(Z)z, and we
conclude by applying Lemma to X. 0
Corollary 4.4. Let X be a variety, and x € Ko(X)u). Then
2-7i 1 (z) € CHy_1(X)z.

5. THE FIRST HOMOLOGICAL STEENROD SQUARE

We define functors from the category of varieties and proper morphisms to
the category of graded abelian groups by setting, for every variety X, Ch(X) =
Z/2 ® CH(X) and

Ch(X) = CH(X)/(2-torsion + 2 CH(X)) = Z/2 ® CH(X)z.
There is a natural surjective map
Ch(X) — Ch(X), 2+ 7.
Theorem 5.1. The association
T 2.1 (1)

induces a natural transformation of functors from the category of varieties and
proper morphisms to the category of graded abelian groups

Sq,: Che — Che_; .
Proof. Let X be a variety. From Corollary L4l we get a homomorphism of abelian

groups, for integer k
Sk KO(X)(k) - Ckal(X>Z - é\}/lkfl(X)a
Now take z € Ko(X)x-1) C Ko(X)w. By Theorem BTl (H), we have 2 -
% (z) € 2- CHy_1(X)z, hence si(z) = 0 € Chy_1(X).
This gives a homomorphism of graded abelian groups
Z/2 @ gr, Ko(X) = Cha_1(X).

The fact that it commutes with push-forwards along proper morphisms follows
from Theorem Bl (&). It only remains to compose with the natural transforma-
tion idz, ®¢: Che — Z/2 ® gr, Ko. O

For a variety X, we write Sq;* : Che(X) — (AJB.(X ) for the morphism given by
Theorem b1



ON THE FIRST STEENROD SQUARE FOR CHOW GROUPS 7

Remark 5.2. One can expect the map Sq; to lift to a morphism
Che — Ch,e_; .

However one can not expect that Sq; descends to a morphism
613. - 61?1.71,

as suggested by the following example.

Let X be an anisotropic projective 3-dimensional quadric over a field F' of char-
acteristic not two, defined by a quadratic form of type ({(a,b)) L c. In this case,
by [Kar9(, Theorem 5.3] there is an element ly € Ko (X)) such that ly & Ko(X) (o)
and 2y € Ko(X)q). Note that ¢x: CHe(X) — gr, Ko(X) is an isomorphism :
this is a general fact concerning smooth varieties in codimension 0, 1 and 2 ([Ful98,
Example 15.3.6]); in codimension 3 this follows from the fact that CHy(X) ~ Z
([EKMOS, Corollary 71.4]) and the fact that ¢x has torsion kernel ([Eul98, Ex-
ample 15.3.6]). Let + € Chy(X) be the antecedent of I, mod Ky(X)() under px,
and y € Chy(X) the class of a point of degree two. We have ¢x(y) = 2ly, and
using Theorem B1], ()

TX(ZO) = 2_17'X(2l0) =y 21

hence Sq;' (x) = y, which is non-zero in 6}/10()( ). On the other hand x is zero in
Chy (X).

Proposition 5.3. Let X and Y be two varieties over the same field, x € CH,,(X),
and y € CH,,,(Y). We have

Sar Y (z x y) =T x Sqy (y) + Say (z) x 7.

Proof. We know by Theorem B, (H) that 7 (z) = 0 and 7Y (y) for £ > n and
[ > m. Then, using [Ful98, Example 18.3.1] and (), we compute

2. Téﬁfa o pxxy (T X Yy)

=2 7Y (o (z) Koy (y))

=T ©Ox(2) X 2+ T, 0oy (y) + 2 Ty 0 ox(2) X 7, 0 9y (y)
=(@®1) x2: 7,y 0y (y) + 2 7y 0 px(z) X (y®1). O
Proposition 5.4. Let X be a smooth variety, with tangent bundle Tx. Then
Sap [X] = e1(Tx).
Proof. This follows from the proof of Lemma ET O

Remark 5.5 (cohomological operation). For a smooth variety X, define

—_——

Sa: Ch*(X) — Ch™ (X), = Saf(2) + e1(Tx) - 7.
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One can prove that Sq' commutes with pull-backs along arbitrary morphisms of
smooth varieties. The formula Sq¥ (z-y) = 7-Sq’ (y) +Sd () -7 then follows from
Proposition Using the fact that the group CH'(X) is generated by regularly
embedded subvarieties when X is smooth, we get the formula Sqy () = 72 for
z € Ch'(X).

In order to prove Theorem below, it would suffice to use this cohomological
operation, which can also be constructed directly using a simpler form of the
Riemann-Roch theorem instead of Theorem Bl However it is not clear how to
reconstruct the homological operation on singular varieties from the cohomological
one.

We now consider a variety X over a field F, and a field extension F/F such
that variety X = X has a torsion-free Chow group. Examples of such varieties
include those X such that X is cellular. In particular X could be a projective
homogeneous variety under a semi-simple algebraic group, and F/F an algebraic
closure.

Since Sq; commutes with field extensions by () and Theorem B, (d), we
have a commutative diagram, where vertical arrows are pull-backs along the flat
morphism X — X,

Saf

Ch(X)

Ch(X)
Ch(X) Ch(

X).

Saf

Note that Ch(X) ~ 61?1(7), hence the operation Squ is an endomorphism of
Ch(X) which preserves rationality, i.e. induces an endomorphism of the image of
the map Ch(X) — Ch(X).

6. PARITY OF THE FIRST WITT INDEX OF A QUADRATIC FORM

Let X be a smooth projective quadric over a field F, and F/F a splitting field
extension for X, i.e. an extension such that the quadric X = X contains a
projective space of the maximal possible dimension d (d is the greatest integer
such that 2d < dim X). The variety X and the field extension F/F satisfy the
assumption of the previous section. Indeed a basis for the free abelian group
CH(X) is given by elements h’,[;,0 < i < d, see for example [EKNMO0S]. The cycle
h € CH*(X) is the hyperplane class, and I; € CH;(X) is the class of a projective
subspace of dimension 1.

A cycle in Ch(X) is said to be rational if it is the restriction of a cycle in Ch(X).
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Lemma 6.1. Let X be a smooth projective quadric, and X the restriction of X
to a splitting field. Then we have in Ch;_1(X)

S (L) = (i +1) - l;_y.
Proof. Let j: P — X be a closed embedding representing the cycle {;. Then since
4« 0S¢t = Sq;* oj,, and by Proposition B4 we have
Say (1) = ju o 1 (T).
By [EKMO0S, Example 104.20], this is equal to
jeoer((i+1)-[0M)] = [Op]) =4 (@ + 1) - [P7Y]) = (@ + 1) - L1 O

Theorem 6.2. Let ¢ be an anisotropic non-degenerate quadratic form over an
arbitrary field. Let i, be the first Witt index of p. If dim p —1i; s odd then i; = 1.

Proof. Let F' be the ground field, X be the smooth projective quadric of ¢, and
F/F a splitting field extension for X. We assume that i, # 1. We use the
notion of a cycle contained in another ([EKMOS, p.313]). Let 7 € Ch(X) be
the 1-primordial cycle of X ([EKMOS, p.323]). It is the “minimal” ([EKMOS,
Definition 73.5]) rational cycle containing h° x [;, 1. Write

™= ho X lil—l + lil—l X ho =+ v.

Then v € Ch(X) does not contain h°x1;, 1 nor I;, 1 xh° by [EKM08, Lemma 73.15].
Also the rational cycle 7, hence v, does not contain k' xI;, nor I, x h' (these points
lie outside of the “shell triangles”, i.e. are forbidden by [EKM0S, Lemma 73.12]).

Using Proposition B3, we see that the cycle Sq; (v) does not contain any of the
CYCleS hO X lilfz, hl X lilfl, liI,Q X hO’ l11,1 X hl.

Next we compute Squ(w), which is rational by the considerations of the previous
section. We have, by Proposition B3, Lemma and Proposition B2,

Squ(ho X lil—l) = ho X Squ(lil—l) —f-Cl(Tx) X lil—l = il . (ho X lil—2) +01(Tx) X li1—1~

By [EKM0S], we know that the modulo two total Chern class of the tangent
bundle T is (1 + h)4™X*+2 hence ¢;(Tx) = (dim X + 2)h'. This gives

S (m) =iy - (B° X Ly o 4 liy o x h°) + (dim @) - (A" x Ly, _1 + L, 1 x hY) + S (v).

Now by [EKMO0S, Corollary 73.21] and the property of Squ('u) mentioned above,
we see that dim ¢ and i; must have the same parity. U
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