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1. Introduction

The essential dimension of an “algebraic structure” is a numerical invari-
ant that measures its complexity. Informally, the essential dimension of an
algebraic structure over a field F is the smallest number of algebraically inde-
pendent parameters required to define the structure over a field extension of
F (see [1] or [10]).

Let F : Fields/F → Sets be a functor (an “algebraic structure”) from the
category Fields/F of field extensions of F and field homomorphisms over F to
the category of sets. Let K ∈ Fields/F , α ∈ F(K) and K0 a subfield of K
over F . We say that α is defined over K0 (and K0 is called a field of definition

of α) if there exists an element α0 ∈ F(K0) such that the image (α0)K of α0

under the map F(K0) → F(K) coincides with α. The essential dimension

of α, denoted edF(α), is the least transcendence degree tr. degF (K0) over all
fields of definition K0 of α. The essential dimension of the functor F is

ed(F) = sup{edF(α)},

where the supremum is taken over fields K ∈ Fields/F and all α ∈ F(K).
Let p be a prime integer and α ∈ F(K). The essential p-dimension edF

p (α)

of α is the minimum of edF(αK ′) over all finite field extensions K ′/K of degree
prime to p. The essential p-dimension edp(F) of F is the supremum of edF

p (α)
over all fields K ∈ Fields/F and all α ∈ F(K) (see [14, §6]). Clearly, ed(F) ≥
edp(F) for all p.

Let G be an algebraic group over F . The essential dimension ed(G) (resp.
essential p-dimension edp(G)) of G is the essential dimension (resp. essential p-
dimension) of the functor G- torsors taking a field K to the set of isomorphism
classes of all G-torsors (principal homogeneous G-spaces) over K.

If G = PGLn over F , the functor G- torsors is isomorphic to the functor
AlgF (n) taking a field K to the set of isomorphism classes of central simple
K-algebras of degree n. Let p be a prime integer and let pr be the highest
power of p dividing n. Then edp

(
AlgF (n)

)
= edp

(
AlgF (pr)

)
[14, Lemma 8.5.5].

Every central simple E-algebra of degree p is cyclic over a finite field extension
of degree prime to p, hence edp

(
AlgF (p)

)
= 2 [14, Lemma 8.5.7]. It was proven

in [11] that edp

(
AlgF (p2)

)
= p2 + 1 and in general, edp

(
AlgF (pr)

)
≥ 2r for all

r in [14, Th. 8.6].
We prove the following:
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Theorem. Let F be a field and p an integer different from char(F ). Then

edp

(
AlgF (pr)

)
≥ (r − 1)pr + 1.

In other words, we have the following lower bound for the essential dimension
of PGLF (pr):

ed
(
PGLF (pr)

)
≥ edp

(
PGLF (pr)

)
≥ (r − 1)pr + 1.

2. Preliminaries

2.1. Characters. Let F be a field, Fsep a separable closure of F and Γ =
Gal(Fsep/F ) the absolute Galois group of F . For a Γ-module M we write
Hn(F, M) for the cohomology group Hn(Γ, M).

The character group Ch(F ) of F is defined as

Homcont(Γ, Q/Z) = H1(F, Q/Z) ≃ H2(F, Z).

For a character χ ∈ Ch(F ), set F (χ) = (Fsep)
Ker(χ). Then F (χ)/F is a cyclic

field extension of degree ord(χ). If Φ ⊂ Ch(F ) is a finite subgroup, we set

F (Φ) = (Fsep)
∩Ker(χ),

where the intersection is taken over all χ ∈ Φ. The Galois group G =
Gal

(
F (Φ)/F

)
is abelian and Φ is canonically isomorphic to the character group

Ch(G) = Hom(G, Q/Z) of G.
If F ′ ⊂ F is a subfield and χ ∈ Ch(F ′), we write χF for the image of χ

under the natural map Ch(F ′) → Ch(F ) and F (χ) for F (χF ). If Φ ⊂ Ch(F )
is a finite subgroup, then the character χF (Φ) is trivial if and only if χ ∈ Φ.

Lemma 2.1. Let Φ, Φ′ ⊂ Ch(F ) be two finite subgroups. Suppose that for

a field extension K/F , we have ΦK = Φ′
K in Ch(K). Then there is a finite

subextension K ′/F in K/F such that ΦK ′ = Φ′

K ′ in Ch(K ′).

Proof. Choose a set of characters {χ1, . . . , χm} generating Φ and a set of char-
acters {χ′

1, . . . , χ
′
m} generating Φ′ such that (χi)K = (χ′

i)K for all i. Let ηi =
χi − χ′

i. As all ηi vanish over K, the finite field extension K ′ := F (η1, . . . , ηm)
of F can be viewed as a subextension in K/F . As (χi)K ′ = (χ′

i)K ′, we have
ΦK ′ = Φ′

K ′. �

2.2. Brauer group. We write Br(F ) for the Brauer group H2(F, F×
sep) of a

field F . If a ∈ Br(F ) and K/F is a field extension, then we write aK for
the image of a under the natural homomorphism Br(F ) → Br(K). We write
Br(K/F ) for the relative Brauer group Ker

(
Br(F ) → Br(K)

)
. We say that K

is a splitting field of a if aK = 0, i.e., a ∈ Br(K/F ). The index ind(a) of a is
the smallest degree of a splitting field of a.

The cup-product

Ch(F ) ⊗ F× = H2(F, Z) ⊗ H0(F, F×

sep) → H2(F, F×

sep) = Br(F )

takes χ ⊗ a to the class χ ∪ (a) in Br(F ) that is split by F (χ).
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For a finite subgroup Φ ⊂ Ch(F ) write Brdec

(
F (Φ)/F

)
for the subgroup of

decomposable elements in Br
(
F (Φ)/F

)
generated by the elements χ∪(a) for all

χ ∈ Φ and a ∈ F×. The indecomposable relative Brauer group Br ind

(
F (Φ)/F

)

is the factor group Br
(
F (Φ)/F

)
/ Brdec

(
F (Φ)/F

)
.

2.3. Complete fields. Let E be a complete field with respect to a discrete
valuation v and K its residue field.

Let p be a prime integer different from char(K). There is a natural injec-
tive homomorphism Ch(K){p} → Ch(E){p} of the p-primary components of
the character groups that identifies Ch(K){p} with the character group of an
unramified field extension of E. For a character χ ∈ Ch(K){p}, we write χ̂
for the corresponding character in Ch(E){p}.

By [4, §7.9], there is an exact sequence

(1) 0 → Br(K){p}
i
−→ Br(E){p}

∂v−→ Ch(K){p} → 0.

If a ∈ Br(K){p}, then we write â for the element i(a) in Br(E){p}. For
example, if a = χ ∪ (ū) for some χ ∈ Ch(K){p} and a unit u ∈ E, then
â = χ̂ ∪ (u).

The following proposition was proved in [6, Th. 5.15(a)], [16, Prop. 2.4])
and [4, Prop. 8.2].

Proposition 2.2. Let E be a complete field with respect to a discrete valuation

v and K its residue field of characteristic different from p. Then

(1) ind(â) = ind(a) for any a ∈ Br(K){p}.
(2) Let b = â +

(
χ ∪ (x)

)
for an element a ∈ Br(K){p}, χ ∈ Ch(K){p}

and x ∈ E× such that v(x) is not divisible by p. Then

ind(b) = ind(aK(χ)

)
· ord(χ).

(3) Let E ′/E be a finite field extension and v′ the discrete valuation on E ′

extending v with residue field K ′. Then for any b ∈ Br(E){p}, one has

∂v′(bE′) = e · ∂v(b)K ′,

where e is the ramification index of E ′/E.

The choice of a prime element π in E provides with a splitting of the sequence
(1) by sending a character χ to the class χ̂ ∪ (π) in Br(E){p}. Thus, any
b ∈ Br(E){p} we can written in the form:

(2) b = â +
(
χ̂ ∪ (π)

)

for χ = ∂v(b) and a unique a ∈ Br(K){p}.
The homomorphism

sπ : Br(E){p} → Br(K){p},

defined by sπ(b) = a, where a is given by (2), is called a specialization map.
For example, sπ(â) = a for any a ∈ Br(K){p} and sπ

(
χ̂∪(x)

)
= χ∪(ū), where

χ ∈ Ch(K){p}, x ∈ E× and u is the unit in E such that x = uπv(x).
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Moreover, if v is trivial on a subfield F ⊂ E and Φ ⊂ Ch(F ){p} a finite
subgroup, then

(3) sπ

(
Brdec(E(Φ)/E)

)
⊂ Brdec(K(Φ)/K).

We shall need the following technical Lemma. For an abelian group A we
write pA for the subgroup of all elements in A of exponent p.

Lemma 2.3. Let (E, v) be a complete discrete valued field with the residue

field K of characteristic different from p containing a primitive p2-th root of

unity. Let η ∈ Ch(E) be a character of order p2 such that p · η is unramified,

i.e., p · η = ν̂ for some ν ∈ Ch(K) of order p. Let χ ∈p Ch(K) be a character

linearly independent from ν. Let a ∈ Br(K) and set b = â+
(
χ̂∪(x)

)
∈ Br(E),

where x ∈ E× is an element such that v(x) is not divisible by p. Then:

(1) If η is unramified, , i.e., η = µ̂ for some µ ∈ Ch(K) of order p2, then

ind(bE(η)) = p · ind(aK(µ,χ)).
(2) If η is ramified, then there exists a unit u ∈ E× such that K(ν) =

K(ū1/p) and ind(bE(η)) = ind
(
a − (χ ∪ (ū1/p))

)
K(ν)

.

Proof. (1) If η = µ̂ for some µ ∈ Ch(K), then K(µ) is the residue field of E(η)
and we have

bE(η) = âK(µ) +
(
χ̂K(µ) ∪ (x)

)
.

As χ and ν are linearly independent, the character χK(µ) is nontrivial. The
first statement follows from Proposition 2.2(2).

(2) Since p · η is unramified, the ramification index of E(η)/E is equal to p,

hence E(η) = E
(
(uxp)1/p2

)
for some unit u ∈ E. Note that K(ν) = K(ū1/p)

is the residue field of E(η). As u1/px is a p-th power in E(η), the class

bE(η) = âK(ν) −
(
χ̂K(ν) ∪ (u1/p)

)
= âK(ν) −

( ̂χK(ν) ∪ (ū1/p)
)

is unramified. It follows from Proposition 2.2(1) that the elements bE(η) in

Br
(
E(η)

)
and aK(ν) −

(
χK(ν) ∪ (ū1/p)

)
in Br

(
K(ν)

)
have the same indices. �

3. Brauer group and algebraic tori

3.1. Torsors. Let G be an algebraic groups over F and let K/F be a field
extension. The set of isomorphism classes of G-torsors (principal homogeneous
spaces) over K is bijective to H1(K, G) (see [15]).

Example 3.1. Let A be a central simple F -algebra of degree n and G =
Aut(A). Then H1(K, G) is the set of isomorphism classes of central simple
K-algebras of degree n, or equivalently, the set of elements in Br(K) of index
dividing n. If A = Mn(F ) is the split algebra, then G = PGLn,F .

Example 3.2. Let L be an étale F -algebra of dimension n. Consider the
algebraic torus U = RL/F (Gm,L)/ Gm over F . The exact sequence

1 → Gm → RL/F (Gm,L) → U → 1
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and Hilbert Theorem 90 yield an isomorphism θ : H1(F, U)
∼
→ Br(L/F ). Note

that if L is a subalgebra of a central simple F -algebra A of degree n, then U
is a maximal torus in the group Aut(A).

Let α : G → GL(W ) be a finite dimensional representation over F . Suppose
that α is generically free, i.e., there is a non-empty open subset W ′ ⊂ W and
a G-torsor β : W ′ → X for a variety X over F . The torsor β is versal, i.e.,
every G-torsor over a field extension K/F is the pull-back of β with respect
to a K-point of X. The generic fiber of β is called a generic G-torsor. It is a
torsor over the function field F (X) (see [4] and [13]).

Example 3.3. Let S be an algebraic torus over F . We embed S into the
quasi-trivial torus P = RL/F (Gm,L), where L is an étale F -algebra (see [3]).
Then S acts on the vector space L by multiplication, so that the action on
the open subset P is regular. If T is the factor torus P/S, then the S-torsor
P → T is versal.

3.2. The tori PΦ, SΦ, TΦ, UΦ and V Φ. Let F be a field, Φ a subgroup
of p Ch(F ) of rank r and L = F (Φ). Let G = Gal(L/F ). Choose a basis
χ1, χ2, . . . , χr for Φ. We can view each χi as a character of G, i.e., as a
homomorphism χi : G → Q/Z. Let σ1, σ2, . . . , σr be the dual basis for G, i.e.,

χi(σj) =

{
(1/p) + Z, if i = j;
0, otherwise.

Let R be the group ring Z[G]. Consider the surjective homomorphism of
G-modules k : Rr → R taking the i-th basis element ei of Rr to σi − 1. The
image of k is the augmentation ideal I = Ker(ε) in R, where ε : R → Z is
defined by ε(ρ) = 1 for all ρ ∈ G.

Write Ni = 1 + σi + σ2
i + · · ·+ σp−1

i ∈ R.
Set N := Ker(k). Consider the following elements in N :

eij := (σi − 1)ej − (σj − 1)ei and fi = Niei, i, j = 1, . . . r.

Lemma 3.4. The G-module N is generated by eij and fi.

Proof. Let R = Z[t1, . . . , tr] be the polynomial ring. Acyclicity of the Koszul
complex for the homomorphism k̄ : (R)r → R, taking the i-th basis element
ēi to ti − 1 (see [9, Th. 43]) implies that Ker(k̄) is generated by ēij := (ti −
1)ēj − (tj − 1)ēi.

The kernel J of the surjective homomorphism R → R, taking ti to σi, is
generated by tpi − 1.

Let x :=
∑

xiei ∈ Ker(k). Lift every xi to a polynomial x̄i ∈ R and consider
x̄ :=

∑
x̄iēi ∈ (R)r. We have k̄(x̄) ∈ J , hence

k̄(x̄) =
∑

(ti − 1)x̄i =
∑

(tpi − 1)hi =
∑

(ti − 1)N ihi

for some polynomials hi ∈ R, where N i = 1 + ti + t2i + · · · + tp−1
i ∈ R. Hence

the element
∑

(x̄i −hiN i)ēi belongs to the kernel of k̄ and therefore is a linear
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combination of ēij . It follows that x̄ is a linear combination of ēij and N iēi,
hence x is a linear combination of eij and fi. �

Let εi : Rr → Z be the i-th projection followed by the augmentation map
ε. It follows from Lemma 3.4 that εi(N) = pZ for every i. Moreover, the
G-homomorphism

l : N → Zr, m 7→ (ε1(m)/p, . . . , εr(m)/p)

is surjective. Set M = Ker(l) and Q = Rr/M .

Lemma 3.5. The G-module M is generated by eij.

Proof. Let M ′ be the submodule of N generated by eij . Clearly, M ′ ⊂ M .
Note also that (σj − 1)fi = Nieij ∈ M ′, hence Ifi ⊂ M ′.

Suppose that m ∈ M . By Lemma 3.4, modifying m by an element in M ′

we can assume that m =
∑r

i=1 xifi for some xi ∈ R. As l(m) = 0, we have
ε(xi) = 0, i.e., xi ∈ I for all i, hence m ∈

∑
Ifi ⊂ M ′. �

Let PΦ, SΦ, TΦ, UΦ and V Φ be the algebraic tori over F with the character
G-modules Rr, Q, M , I and N , respectively. The diagram of homomorphisms
of G-modules with exact columns and rows

(4) M
_�

��

M
_�

��

N

l
��
��

�� // Rr

��
��

k
// // I

Zr �� // Q // // I

yields the following diagram of homomorphisms of the tori

(5) UΦ �� // SΦ
_�

��

// // Gr
m
_�

��

UΦ �� // PΦ

��
��

// // V Φ

��
��

TΦ TΦ

Let K/F be a field extension. Set KL := K ⊗F L. The exact sequence of
G-modules

(6) 0 → I → R → Z → 0

gives an exact sequence of the tori

1 → Gm → RL/F (Gm,L) → U → 1

and then an exact sequence

0 → H1(K, UΦ) → H2(K, Gm) → H2(KL, Gm).



ESSENTIAL DIMENSION OF SIMPLE ALGEBRAS 7

Hence

(7) H1(K, UΦ) ≃ Br(KL/K).

Lemma 3.6. The homomorphism (K×)r → H1(K, UΦ) ≃ Br(KL/K) induced

by the first row of the diagram (5) takes (x1, . . . , xr) to
∑r

i=1

(
(χi)K ∪ (xi)

)
.

Proof. Consider the composition

(8) h : HomG(Zr, Z) → Ext1
G(I, Z) → Ext2

G(Z, Z) = H2(G, Z) = Ch(G),

where the first homomorphism is induced by the bottom row of the diagram
(4) and the second one - by the exact sequence (6).

We claim that for any k, the image of the k-th projection pk : Zr → Z
under the composition (8) coincides with χk. Consider the G-homomorphism
Rr → Q, taking ek to 1/p and ei to 0 for all i 6= k. By Lemma 3.5, this
homomorphism vanishes on M and hence it factors through a map Q → Q.
Thus, we have a commutative diagram

(9)

0 −−−→ Zr −−−→ Q −−−→ I −−−→ 0

pk

y
y fk

y
0 −−−→ Z −−−→ Q −−−→ Q/Z −−−→ 0

for the map fk defined by fk(σk −1) = 1/p+Z and fk(σi−1) = 0 for all i 6= k.
Let α be the image of the class of the top row of (9) under the map

p∗k : Ext1
G(I, Zr) → Ext1

G(I, Z). Then h(pk) is the image of α under the
second map in the composition (8). Hence h(pk) is also the image of the class
β of the sequence (6) under the connecting map H1(G, I) = Ext1

G(Z, I) →
Ext2

G(Z, Z) = H2(G, Z) induced by the exact sequence representing the class
α.

The diagram (9) yields a commutative diagram

H1(G, I)
∂

−−−→ H2(G, Zr)

f∗

k

y p∗
k

y
H1(G, Q/Z) H2(G, Z)

As we have shown, p∗k(∂(β)) = h(pk). Therefore, it suffices to prove that
f ∗

k (β) = χk. The cocycle β satisfies β(σi) = σi −1. It follows that f ∗
k (β)(σk) =

fk(σk − 1) = 1/p + Z and f ∗
k (β)(σi) = 0 for all i 6= k. This proves the claim.

Consider the commutative diagram

(K×)r = HomG(Zr, Z) ⊗ K× // Ext1
G(I, Z) ⊗ K×

��

// Ext2
G(Z, Z) ⊗ K×

��

(K×)r = HomG(Zr, KL×) // Ext1
G(I, KL×) // Ext2

G(Z, KL×),

where the vertical homomorphisms are given by the cup-products. By the
claim, the image of the tuple (x1, . . . , xr) under the diagonal composition is
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equal to
∑r

i=1

(
(χi)K ∪ (xi)

)
. On the other hand, the bottom composition

coincides with (K×)r → H1(K, UΦ) ≃ Br(KL/K). �

Corollary 3.7. The map H1(K, UΦ) → H1(K, SΦ) induces an isomorphism

H1(K, SΦ) ≃ Br ind(KL/K).

It follows from Corollary 3.7 the triviality of the group H1(K, PΦ) that we
have a commutative diagram

(10)

V (K) −−−→ H1(K, UΦ) Br(KL/K)y
y

y
T (K) −−−→ H1(K, SΦ) Br ind(KL/K)

with surjective homomorphisms.

3.3. The element a. Let a′ be the image of the generic point of V over
K = F (V ) in Br

(
L(V )/F (V )

)
in the diagram (10). Choose also an element

a ∈ Br
(
L(T )/F (T )

)
corresponding to the generic point of T over F (T ). The

field F (T ) is a subfield of F (V ) and the classes aF (V ) and a′ are equal in

Br ind

(
L(V )/F (V )

)
. It follows that paF (V ) = pa′ in BrF (V ).

The exact sequence of G-modules

0 → L× ⊕ N → L(V )× → Div(VL) → 0

induces an exact sequence

H1
(
G, Div(VL)

)
→ H2(G, L×) ⊕ H2(G, N) → H2

(
G, L(V )×

)
.

As Div(VL) is a permutation G-module, the first term in the sequence is trivial.
Therefore, we get an injective homomorphism

ϕ : H2(G, N) → BrF (V )/ Br(F ).

Then (4) and (6) yield

H2(G, N) ≃ H1(G, I) ≃ Ĥ0(G, Z) = Z/prZ,

thus, H2(G, N) has a canonical generator ξ of order pr.

Lemma 3.8. (cf., [11, Lemma 2.4]) We have ϕ(ξ) = −a′ + Br(F ).

Proof. Consider the following diagram
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HomG(Z, Z)

��

HomG(I, I)

��

// Ext1
G(Z, I)

��

HomG(N, N)

��

// Ext1
G(I, N)

l
��

// Ext2
G(Z, N)

��

HomG

(
N, L(V )×

)
// Ext1

G

(
I, L(V )×

)
// Ext2

G

(
Z, L(V )×

)

By [2, Ch. XIV], the images of 1Z and −1I agree in Ext1
G(Z, I) and the images

of 1N and −1I agree in Ext1
G(I, N). It follows from [2, Ch. V, Prop. 4.1] that

the upper square is anticommutative. The image of 1Z is equal to ϕ(ξ) and
the image of 1N is equal to a′ + Br(F ) in the right bottom corner. �

Corollary 3.9. If r ≥ 2, then the class pr−1a in BrF (T ) does not belong to

the image of Br(F ) → Br F (T ).

Proof. The image of pr−1a in BrF (V ) coincides with pr−1a′. Modulo the image
of the map Br(F ) → Br F (V ), the class pr−1a′ is equal to −ϕ(pr−1ξ) and
therefore, is nonzero as ϕ is injective. �

4. Essential dimension of algebraic tori

Let S be an algebraic torus over F with the splitting group G. We assume
that G is a p-group of order pr. Let X be the G-module of characters of S. A
p-presentation of X is a G-homomorphism f : P → X with P a permutation
G-module and finite cokernel of order prime to p. A p-presentation with the
smallest rank(P ) is called minimal.

Essential p-dimension of algebraic tori was determined in [8, Th. 1.4]:

Theorem 4.1. Let S be an algebraic torus over F with the splitting p-group G,

X the G-module of characters of S and f : P → X a minimal p-presentation

of X. Then edp(S) = rank
(
Ker(f)

)
.

Corollary 4.2. Suppose that X admits a surjective minimal p-presentation

f : P → X. Then ed(S) = edp(S) = rank
(
Ker(f)

)
.

Proof. As explained in Example 3.3, a surjective G-homomorphism f yields a
generically free representation of S of dimension rank(P ). By [13, §3],

edp(S) ≤ ed(S) ≤ rank(P ) − dim(S) = rank
(
Ker(f)

)
. �
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In this section we derive from 4.1 an explicit formula for the essential p-
dimension of algebraic tori.

Define the group X := X/(pX + IX), where I is the augmentation ideal in
R = Z[G]. For any subgroup H ⊂ G, consider the composition XH →֒ X →
X. For every k, let Vk denote the image of the homomorphism

∐

H⊂G

XH → X,

where the coproduct is taken over all subgroups H with [G : H ] ≤ pk. We
have the sequence of subgroups

(11) 0 = V−1 ⊂ V0 ⊂ · · · ⊂ Vr = X.

Theorem 4.3. We have the following explicit formula for the essential p-
dimension of S:

edp(S) =

r∑

k=0

(rankVk − rank Vk−1)p
k − dim(S).

Proof. Setbk = rank(Vk). By Theorem 4.1, it suffices to prove that the smallest
rank of the G-module P is a p-presentation of X is equal to

∑r
k=0(bk−bk−1)p

k.
Let f : P → X be a p-presentation of X and A a G-invariant basis of P .

The set A is the disjoint union of the G-orbits Aj, so that P is the direct sum
of the permutation G-modules Z[Aj ].

The composition f̄ : P → X → X is surjective. As G acts trivially on X,
the rank of the group f̄(Z[Aj ]) is at most 1 for all j and f̄(Z[Aj ]) ⊂ Vk if
|Aj | ≤ pk. It follows that the group X/Vk is generated by the images under

the composition P
f̄
−→ X → X/Vk of all Z[Aj ] with |Aj| > pk. Denote by ck

the number of such orbits Aj , so we have

ck ≥ rank(X/Vk) = br − bk.

Set c′k = br − ck, so that bk ≥ c′k for all k and br = c′r.
Since the number of orbits Aj with |Aj| = pk is equal to ck−1 − ck, we have

rank(P ) =
r∑

k=0

(ck−1 − ck)p
k =

r∑

k=0

(c′k − c′k−1)p
k =

c′rp
r +

r−1∑

k=0

c′k(p
k − pk+1) ≥ brp

r +
r−1∑

k=0

bk(p
k − pk+1) =

r∑

k=0

(bk − bk−1)p
k.

It remains to construct a p-presentation with P of rank
∑r

k=0(bk − bk−1)p
k.

For every k ≥ 0 choose a subset Xk in X of the pre-image of Vk under the
canonical map X → X with the property that for any x ∈ Xk there is a
subgroup Hx ⊂ G with x ∈ XHx and [G : Hx] = pk such that the composition

Xk → Vk → Vk/Vk−1
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yields a bijection between Xk and a basis of Vk/Vk−1. In particular, |Xk| =
bk − bk−1. Consider the G-homomorphism

f : P :=
r∐

k=0

∐

x∈Xk

Z[G/Hx] → X,

taking 1 in Z[G/Hx] to x in X.
By construction, the composition of f with the canonical map X → X is

surjective. As G is a p-group, the ideal pR(p) +I of R(p) is the Jacobson radical
of the ring R(p) := R ⊗ Z(p). By Nakayama Lemma, f(p) is surjective. Hence
the cokernel of f is finite of order prime to p. The rank of the permutation
G-module P is equal to

r∑

k=0

∑

b∈Bk

pk =

r∑

k=0

|Bk|p
k =

r∑

k=0

(bk − bk−1)p
k. �

4.1. Examples. Let F be a field, Φ a subgroup of p Ch(F ) of rank r, L = F (Φ)
and G = Gal(L/F ). Consider the torus UΦ with the character group the
augmentation ideal I defined in 3.2.

The middle row of (4) yields an exact sequence

N → (R)r → I → 0.

It follows from Lemma 3.4 that N ⊂ pRr + Ir, hence the first homomorphism
in the sequence is trivial. The middle group is isomorphic to (Z/pZ)r, hence
rank(I) = r.

For any subgroup H ⊂ G, the Tate cohomology group Ĥ0(H, I) ≃ Ĥ−1(H, Z)
is trivial. It follows that the group IH is generated by NHx for all x ∈ I, where
NH =

∑
h∈H h ∈ R. Since I is of period p with the trivial G-action, the classes

of the elements NHx in I are trivial if H is a nontrivial subgroup of G. It
follows that the maps IH → I are trivial for all H 6= 1. In the notation of
(11), V0 = · · · = Vr−1 = 0 and Vr = I. By Theorem 4.3,

edp(U
Φ) = rpr − dim(UΦ) = rpr − pr + 1 = (r − 1)pr + 1

and the rank of the permutation module in a minimal p-presentation of I is
equal to rpr. Therefore, k : Rr → I is a minimal p-presentation of I that
appears to be surjective. Therefore, by Corollary 4.2,

(12) ed(UΦ) = edp(U
Φ) = (r − 1)pr + 1.

Let SΦ be the torus with the character group Q defined in 3.2. As in (4),
the homomorphism k factors through a surjective map Rr → Q that is then
necessarily a minimal p-presentation of Q. According to Theorem 4.3 and
Corollary 4.2,

(13) ed(SΦ) = edp(S
Φ) = rpr − dim(SΦ) = (r − 1)pr − r + 1.
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5. Degeneration

In this section we study the behavior of the essential p-dimension under
degeneration, i.e. we compare the essential p-dimension of an object over
a complete discrete valued field and its specialization over the residue field
(Proposition 5.2). The iterated degeneration (Corollary 5.4) connects a class
in the Brauer group degree pr over some (large) field and the elements of the
indecomposable relative Brauer group that are torsors for a certain torus.

5.1. A simple degeneration. Let F be a field, p a prime integer different
from char(F ) and Φ ⊂ pCh(F ) a finite subgroup. For an integer k ≥ 0 and a
field extension K/F , let

BΦ
k (K) = {a ∈ Br(K){p} such that ind aK(Φ) ≤ pk}.

Two elements a and a′ in BΦ
k (K) are equivalent if a − a′ ∈ Brdec

(
K(Φ)/K

)
.

Write FΦ
k (K) for the set of equivalence classes in BΦ

k (K). Abusing notation
we shall write a for the equivalence class of an element a ∈ BΦ

k (K) in FΦ
k (K).

We view BΦ
k and FΦ

k as functors from Fields/F to Sets .

Example 5.1. (1) If Φ is the zero subgroup, then FΦ
k = BΦ

k ≃ Alg(pr) ≃
PGL(pr)- torsors .

(2) The set BΦ
0 (K) is naturally bijective to Br

(
K(Φ)/K

)
and FΦ

0 (K) ≃

Br ind

(
K(Φ)/K

)
. By Corollary 3.7, the latter group is naturally isomorphic to

H1(K, SΦ), where SΦ is the torus defined in 3.2, thus, FΦ
0 ≃ SΦ- torsors .

Let Φ′ ⊂ Φ be a subgroup of index p and η ∈ Φ \Φ′, hence Φ = 〈Φ′, η〉. Let
E/F be a field extension such that ηE /∈ Φ′

E in Ch(E). Choose an element
a ∈ BΦ

k (E), i.e., a ∈ Br(E){p} and ind(aE(Φ)) ≤ pk.
Let E ′ be a field extension of F that is complete with respect to a discrete

valuation v′ over F with residue field E and set

(14) a′ = â +
(
η̂E ∪ (x)

)
∈ Br(E ′),

for some x ∈ E ′× such that v′(x) is not divisible by p. By Proposition 2.2(2),
ind(aE′(Φ′)) = p · ind(aE(Φ)) ≤ pk+1, hence a′ ∈ BΦ′

k+1(E
′).

Proposition 5.2. Suppose that for any finite field extension N/E of degree

prime to p and any character ρ ∈ Ch(N) of order p2 such that p ·ρ ∈ ΦN \Φ′
N ,

we have ind aN(Φ′,ρ) > pk−1. Then

ed
FΦ

′

k+1
p (a′) ≥ ed

FΦ
k

p (a) + 1.

Proof. Let M/E ′ be a finite field extension of degree prime to p, M0 ⊂ M
a subfield over F and a′

0 ∈ BΦ′

k+1(M0) such that (a′
0)M = a′

M in FΦ
k and

tr. degF (M0) = ed
FΦ

′

k+1
p (a′). We have

(15) a′

M − (a′

0)M ∈ Brdec

(
M(Φ′)/M

)
.
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It follows from (14) that

(16) a′

M = âN +
(
η̂N ∪ (x)

)

and ∂v′(a
′) = q · ηE, where q = v′(x) is relatively prime to p. We extend

the discrete valuation v′ on E ′ to a (unique) discrete valuation v on M . The
ramification index e′ and inertia degree are both prime to p. Thus, the residue
field N of v is a finite extension of E of degree prime to p. By Proposition
2.2(3),

(17) ∂v(a
′

M) = e′ · ∂v′(a
′) = e′q · ηE .

Let v0 be the restriction of v to M0 and N0 its residue field. It follows from
(15) that

(18) ∂v(a
′

M) − ∂v((a
′

0)M) ∈ Φ′

N .

Recall that ηE /∈ Φ′
E . As [N : E] is not divisible by p, it follows that

(19) ηN /∈ Φ′

N .

By (17), (18) and (19), ∂v

(
(a′

0)M

)
6= 0, i.e., (a′

0)M is ramified and therefore v0

is nontrivial, i.e., v0 is a discrete valuation on M0.
Let η0 := ∂v0

(a′
0) ∈ Ch(N0){p}. By Proposition 2.2(3),

(20) ∂v((a
′

0)M) = e · (η0)N ,

where e is the ramification index of M/M0, hence (η0)N 6= 0. It follows from
(17),(18) and (20) that

(21) e′q · ηN − e · (η0)N ∈ Φ′

N .

As e′q is relatively prime to p,

(22) ηN ∈ 〈Φ′

N , (η0)N〉 in Ch(N).

Let pt (t ≥ 1) be the order of (η0)N . It follows from (19) and (21) that
vp(e) = t − 1 and

(23) pt−1 · (η0)N ∈ ΦN \ Φ′

N .

Choose a prime element π0 in M0 and write

(24) (a′

0)cM0
= â0 +

(
η̂0 ∪ (π0)

)

in Br(M̂0), where a0 ∈ Br(N0){p}.
Applying the specialization homomorphism sπ : Br(M){p} → Br(N){p}

(for a prime element π in M) to (15), (16) and (24), using (3) and (22), we get

(25) aN − (a0)N ∈ Brdec

(
N(Φ′, η0)/N

)
.

It follows from (25) that

(26) aN(Φ′,η0) = (a0)N(Φ′,η0)

in Br
(
N(Φ′, η0)

)
.

By (24),

(a′

0)cM0(Φ′) = (̂a0)N0(Φ′) +
(
(̂η0)N0(Φ′) ∪ (π0)

)
.
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As no nontrivial multiple of (η0)N belongs to Φ′
N by (23), the order of the

character (η0)N0(Φ′) is at least pt. It follow from Proposition 2.2(2) that

(27) ind(a0)N0(Φ′,η0) = ind(a′

0)cM0(Φ′)/ ord(η0)N0(Φ′) ≤ pk+1/pt = pk−t+1.

By (26) and (27),

(28) ind(aN(Φ′,η0)) ≤ pk−t+1.

Suppose that t ≥ 2 and consider the character ρ = pt−2 · (η0)N of order p2 in
Ch(N). We have p · ρ = pt−1(η0)N ∈ ΦN \ Φ′

N by (23). Moreover, the degree
of the field extension N(Φ′, η0)/N(Φ′, ρ) is equal to pt−2. Hence by (28),

ind(aN(Φ′,ρ)) ≤ ind(aN(Φ′,η0)) · p
t−2 ≤ pk−t+1 · pt−2 = pk−1.

This contradicts the assumption. Therefore, t = 1, i.e., ord(η0)N = p. Then
(e, p) = 1 and it follows from (21) that (η0)N ∈ 〈Φ′

N , ηN〉. Moreover,

(29) 〈Φ′, η0〉N = 〈Φ′, η〉N = ΦN .

By Lemma 2.1, there is a finite subextension N1/N0 of N/N0 such that
〈Φ′, η0〉N1

= ΦN1
. Replacing N0 by N1 and a0 by (a0)N1

, we may assume that
〈Φ′, η0〉N0

= ΦN0
. In particular, η0 is of order p in Ch(N0).

Since by (27),

ind(a0)N0(Φ) = ind(a0)N0(Φ′,η0) ≤ pk,

we have a0 ∈ BΦ
k (N0).

It follows from (25) that

aN − (a0)N ∈ Brdec

(
N(Φ)/N

)
.

Hence the classes of aN and (a0)N are equal in FΦ
k (N). The class of aN in

FΦ
k (N) is then defined over N0, therefore,

ed
FΦ

′

k+1
p (a′) = tr. degF (M0) ≥ tr. degF (N0) + 1 ≥ ed

FΦ
k

p (a) + 1. �

5.2. Multiple degeneration. In this subsection we assume that the base
field F contains a primitive p2-th root of unity.

Let Φ be a subgroup in p Ch(F ) of rank r. Choose a basis χ1, χ2, . . . , χr of
Φ. Let E/F be a field extension such that rank(ΦE) = r and let a ∈ Br(E){p}
be an element that is split by E(Φ).

Let E0 = E, E1, . . . , Er be field extensions of F such that for any k =
1, 2, . . . , r, the field Ek is complete with respect to a discrete valuation vk over
F and Ek−1 is its residue field. For any k = 1, 2, . . . , r, choose elements xk ∈ E×

k

such that vk(xk) is not divisible by p and define the elements ak ∈ Br(Ek){p}

inductively by a0 = a and ak = âk−1 +
(
(̂χk)Ek−1

∪ (xk)
)
.

Let Φk be the subgroup of Φ generated by χk+1, . . . , χr. Thus, Φ0 = Φ,
Φr = 0 and rank(Φk) = r − k. Note that the character (χk)Ek−1(Φk) is not
trivial. It follows from Proposition 2.2(2) that

ind(ak)Ek(Φk) = p · ind(ak−1)Ek−1(Φk−1)
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for any k = 1, . . . , r. As ind aE(Φ) = 1, we have ind(ak)Ek(Φk) = pk for all

k = 0, 1, . . . , r. In particular, ak ∈ BΦk

k (Ek).
The followings lemma assures that under a certain restriction on the element

a, the conditions of Proposition 5.2 are satisfied for the fields Ek, the groups
of characters Φk and the elements ak.

Lemma 5.3. Suppose that pr−1a /∈ Im
(
Br(F ) → Br(E)

)
. Then for every

k = 0, 1, . . . , r − 1, and any finite field extension N/Ek of degree prime to p
and any character ρ ∈ Ch(N) of order p2 such that p · ρ ∈

(
Φk)N \ (Φk+1

)
N
,

we have

(30) ind(ak)N(Φk+1,ρ) > pk−1.

Proof. Induction on r. The case r = 1 is obvious. Suppose that the inequality
(30) does not hold for some k = 1, . . . , r − 1, a finite field extension N/Ek

and a character ρ ∈ Ch(N). Suppose first that k < r − 1. Consider the fields
F ′ = F (Φk+1), E ′ = E(Φk+1), E ′

i = Ei(Φk+1), N ′ = N(Φk+1), the sequence
of characters (χi)F ′ and the sequence of elements a′

i := (ai)E′

i
∈ Br(Ei) for

i = 0, 1, . . . , k + 1. As (a′
k)N ′(ρ) = (ak)N(Φk+1,ρ), the inequality (30) does not

hold for the term a′
k of the new sequence, the field extension N ′/E′

k and the
character ρN ′ .

Note that pkaE′ /∈ Im
(
Br(F ′) → Br(E ′)

)
, because otherwise, taking the

norm map for the extension F ′/F of degree pr−k−1, we would get pr−1a ∈
Im

(
Br(F ) → Br(E)

)
. By induction, the inequality (30) holds for all the terms

of the new sequence, in particular for a′
k, a contradiction.

Thus we can assume that k = r − 1. We construct a new sequence of fields
Ẽ0, Ẽ1, . . . , Ẽr such that each Ẽi is a finite extension of Ei of degree prime to
p as follows. We set Ẽr−1 = N and let Ẽr be an unramified extension of Er

with the residue field Ẽr−1. The fields Ẽj with j < r − 1 are constructed by

descending induction on j. If we have constructed Ẽj as a finite extension of

Ej of degree prime to p, then we extend the valuation vj to Ẽj and let Ẽj−1 to

be its residue field. Replacing Ei by Ẽi and ai by (ai)Ẽi
, we may assume that

N = Er−1.

Case 1: The character ρ is unramified with respect to vr−1, i.e., ρ = µ̂ for a
character µ ∈ Ch(Er−2) of order p2. By Lemma 2.3(1),
(31)

ind(ar−2)Er−2(χr−1,µ) = ind(ar−1)Er−1(ρ)/p = ind(ar−1)Er−1(Φr ,ρ)/p ≤ pr−3.

Consider the fields F ′ = F (χr−1), E ′ = E(χr−1), E ′
i = Ei(χr−1), N ′ =

N(χr−1), the sequence of characters χ1, . . . , χr−2, χr and the elements a′
i ∈

Br(E ′
i) for i = 0, 1, . . . , r − 1 defined by a′

i = (ai)E′

i
for i ≤ r − 2 and

a′
r−1 = âr−2 +

(
χ̂r ∪ (xr−1)

)
over E ′

r−1. As (a′
r−2)N ′(µ) = (ar−2)N(χr−1,ρ), the

inequality (31) shows that (30) does not hold for the term a′
r−2 of the new

sequence, the field extension N ′/E′
r−2 and the character µN ′.

Note that pr−2aE′ /∈ Im
(
Br(F ′) → Br(E ′)

)
, as otherwise, taking the norm

map for the extension F ′/F of degree p, we get pr−1a ∈ Im
(
Br(F ) → Br(E)

)
.
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By induction, the inequality (30) holds for all the terms of the new sequence,
in particular for a′

r−2, a contradiction.

Case 2: The character ρ is ramified. Note that p · ρ is a nonzero multiple of
(χr)Er−1

. As the inequality (30) fails for ar−1, we have

ind(ar−1)Er−1(ρ) ≤ pr−2.

By Lemma 2.3(2), there exists a unit u ∈ Er−1 such that Er−2(χr) =
Er−2(ū

1/p) and

ind
(
ar−2 − (χr−1 ∪ (ū1/p))

)
Er−2(χr)

= ind(ar−1)Er−1(ρ) ≤ pr−2.

By descending induction on j = 0, 1, . . . , r − 2 we show that there exist a unit
uj in Ej+1 and a subgroup Θj ⊂ Φ of rank r−j−1 such that 〈χ1, . . . , χj, χr−1〉∩

Θj = 0, Ej(χr) = Ej(ū
1/p
j ) and

(32) ind
(
aj − (χr−1 ∪ (ū

1/p
j ))

)
Ej(Θj)

≤ pj.

If j = r − 2, we set uj = u and Θj = {χr}.

(j ⇒ j − 1): The field Ej(ū
1/p
j ) = Ej(χr) is unramified over Ej , hence

vj(ūj) is divisible by p. Modifying uj by a p2-th power, we may assume that
ūj = uj−1x

mp
j for a unit uj−1 ∈ Ej and an integer m. Then

(
aj − (χr−1 ∪ (ū

1/p
j ))

)
Ej(Θj)

= b̂ +
(
η̂ ∪ (xj)

)
Ej(Θj)

,

where η = χj − mχr−1 and b =
(
aj−1 − (χr−1 ∪ (ū

1/p
j−1))

)
Ej−1(Θj)

. As η is not

contained in Θj, the character ηEj−1(Θj) is not trivial. Set Θj−1 = 〈Θj, η〉. It
follows from Proposition 2.2(2) that

ind(bEj−1(Θj−1)) = ind
(
aj − (χr−1 ∪ (ū

1/p
j ))

)
Ej(Θj)

/p ≤ pj−1.

Applying the inequality (32) in the case j = 0, we get

aE(Θ0) =
(
χr−1 ∪ (w1/p)

)
E(Θ0)

for an element w ∈ E× such that E(w1/p) = E(χr). The degree of the ex-
tension E(Θ0)/E is equal to pr−1 and E(w1/p) ⊂ E(Θ0). Taking the norm
for the extension E(Θ0)/E, we get that pr−1a is a multiple of χr−1 ∪ (w).
As the character χr is defined over F , we may assume that w ∈ F×, hence
pr−1a ∈ Im

(
Br(F ) → Br(E)

)
, a contradiction. Thus, we have shown that the

inequality (30) holds. �

By Example 5.1(2), we can view a as an SΦ-torsor over E.

Corollary 5.4. Suppose that pr−1a /∈ Im
(
Br(F ) → Br(E)

)
. Then

edAlg(pr)
p (ar) ≥ edSΦ

- torsors
p (a) + r.
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Proof. By iterated application of Proposition 5.2 and Example 5.1,

edAlg(pr)
p (ar) = edF

Φr
r

p (ar) ≥ ed
F

Φr−1
r−1

p (ar−1) + 1 ≥ . . .

≥ edF
Φ1
1

p (a1) + (r − 1) ≥ edF
Φ0
0

p (a0) + r = edSΦ- torsors
p (a) + r.

�

6. Proof of the main theorem

Theorem 6.1. Let F be a field and p an integer different from char(F ). Then

edp

(
AlgF (pr)

)
≥ (r − 1)pr + 1.

Proof. As edp

(
AlgF (pr)

)
≥ edp

(
AlgF ′(pr)

)
for any field extension F ′/F by [10,

Prop. 1.5], we can replace F by any field extension. In particular, we may
assume that F contains a primitive p2-th root of unity and there is a subgroup
Φ of p Ch(F ) of rank r. Let TΦ be the algebraic torus constructed in Section 3
for the field extension L = F (Φ) of F . Set E = F (TΦ) and let a ∈ Br(EL/E)
be the element defined in 3.3. Let ar ∈ Br(Er) be the element of index pr

constructed in 5.2. By Corollary 3.9, the class pr−1a in Br(E) does not belong
to the image of Br(F ) → Br(E). It follows from Corollary 5.4 that

(33) edAlg(pr)
p (ar) ≥ edSΦ- torsors

p (a) + r.

The SΦ-torsor a is the generic fiber of the versal SΦ-torsor PΦ → SΦ (see
Example 3.3), hence a is a generic torsor. By [14, §6] or [10, Th. 2.9]

(34) edSΦ- torsors
p (a) = edp(S

Φ).

The essential p-dimension of SΦ was calculated in (13):

(35) edp(S
Φ) = (r − 1)pr − r + 1.

Finally, it follows from (33), (34) and (35) that

edp

(
AlgF (pr)

)
≥ edAlg(pr)

p (ar) ≥ edSΦ- torsors
p (a) + r = (r − 1)pr + 1. �

7. Remarks

Let K/F be a field extension and G an elementary abelian group of order
pr. Consider the subset AlgK(G) of AlgK(pr) consisting of all classes admitting
a splitting Galois K-algebra with the Galois group G. Equivalently, AlgK(G)
consists of all classes represented by crossed product algebras with the group
G (see [5, §4.4]).

Write PairK(G) for the set of pairs (a, E), where a ∈ AlgK(G) and E is a
Galois G-algebra splitting a.

Finally, fix a Galois field extension L/F with Gal(L/F ) ≃ G and consider
the subset AlgK(L/F ) of AlgK(G) consisting of all classes split by KL. Thus,
Alg(L/F ) is a subfunctor of Alg(G) and there is the obvious surjective mor-
phism of functors PairK(G) → AlgK(G).
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Theorem 7.1. Let F be a field, p an integer different from char(F ), G an

elementary abelian group of order pr, r ≥ 2, and L/F a Galois field extension

with Gal(L/F ) ≃ G. Let F be one of the three functors Alg(L/F ), Alg(G)
and PairK(G). Then

ed(F) = edp(F) = (r − 1)pr + 1.

Proof. The functor Alg(L/F ) is isomorphic to UΦ- torsors by (7). It follows
from (12) that

ed
(
Alg(L/F )

)
= edp

(
Alg(L/F )

)
= (r − 1)pr + 1.

Let ar be the element in Br(Er) in the proof of Theorem 6.1. It satisfies

edAlg(pr)
p (ar) ≥ (r − 1)pr + 1. By construction, ar ∈ AlgEr

(G). As Alg(G) is a
subfunctor of Alg(pr), we have

edp

(
Alg(G)

)
≥ edAlg(G)

p (ar) ≥ edAlg(pr)
p (ar) ≥ (r − 1)pr + 1.

The upper bound ed
(
Alg(G)

)
≤ (r − 1)pr + 1 was proven in [7, Cor. 3 10].

The split étale F -algebra E := Map(G, F ) has the natural structure of a Ga-
lois G-algebra over F . The group G acts on the split torus U := RE/F (Gm,E)/ Gm.
Let A be the split F -algebra EndF (E). The semidirect product H := U ⋊ G
acts naturally on A by F -algebra automorphisms. Moreover, by the Skolem-
Noether Theorem, H is precisely the automorphism group of the pair (A, E).
It follows that the functor PairK(G) is isomorphic to H- torsors .

The character group of U is G-isomorphic to the ideal I in R = Z[G]. By [12,
§3], the G-homomorphism k : Rr → I constructed in 3.2 yields a representation
W of the group H of dimension rpr. As r ≥ 2, by Lemma 3.4, G acts faithfully
on the kernel N of k. By [12, Lemma 3.3], the action of H on W is generically
free, hence

ed
(
Pair(G)

)
= ed(H) ≤ dim(W ) − dim(H) = (r − 1)pr + 1.

Since Pair(G) surjects onto Alg(G), we have

ed
(
Pair(G)

)
≥ edp

(
PairK(G)

)
≥ edp

(
Alg(G)

)
= (r − 1)pr + 1. �
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