
ISOTROPY OF ORTHOGONAL INVOLUTIONS

NIKITA A. KARPENKO

Abstract. An orthogonal involution on a central simple algebra becoming isotropic
over any splitting field of the algebra, becomes isotropic over a finite odd degree extension
of the base field (provided that the characteristic of the base field is not 2).

Our aim is a proof of the following result, generalizing the hyperbolicity statement of
[5]:

Theorem 1. Let F be a field of characteristic not 2, A a central simple F -algebra, σ an
orthogonal involution on A. The following two conditions are equivalent:

(1) σ becomes isotropic over any splitting field of A;
(2) σ becomes isotropic over some finite odd degree extension of the base field.

The proof of Theorem 1 is given in the very end of the paper; a sketch of the proof is
given shortly below.

For F with no finite field extensions of odd degree, Theorem 1 proves [8, Conjecture
5.2].

The general reference on central simple algebras and involutions is [11].
The implication (2) ⇒ (1) is a consequence of the Springer theorem on quadratic forms.

We only prove the implication (1) ⇒ (2). Note that condition (2) is equivalent to the
condition that σ becomes isotropic over some generic splitting field of the algebra, such
as the function field of the Severi-Brauer variety of any central simple algebra Brauer-
equivalent to A.

We prove this theorem over all fields simultaneously using an induction on the index
ind A of A. The case of ind A = 1 is trivial. The case of ind A = 2 is done in [15] (with
“σ is isotropic (over F )” in place of condition (2)). From now on we are assuming that
ind A > 2. Therefore ind A = 2r for some integer r ≥ 2.

Let us list our basic notation: F is a field of characteristic different from 2; r is an
integer ≥ 2; A is a central simple F -algebra of the index 2r; σ is an orthogonal involution
on A; D is a central division F -algebra (of degree 2r) Brauer-equivalent to A; V is a right
D-module with an isomorphism EndD(V ) ≃ A; v is the D-dimension of V (therefore
rdim V = deg A = 2r · v, where rdim V := dimF V/ deg D is the reduced dimension of
V ); we fix an orthogonal involution τ on D; h is a hermitian (with respect to τ) form on
V such that the involution σ is adjoint to h; X = X(2r; (V, h)) is the variety of totally
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isotropic submodules in V of the reduced dimension 2r which is isomorphic (via Morita
equivalence) to the variety X(2r; (A, σ)) of right totally isotropic ideals in A of the same
reduced dimension; Y = X(2r−1; D) is the variety of right ideals in D of reduced dimension
2r−1.

We assume that the hermitian form h (and therefore, the involution σ) becomes isotropic
over the function field of the Severi-Brauer variety X(1; D) of D, and we want to show
that h (and σ) becomes isotropic over a finite odd degree extension of F . By [9], the Witt
index of h (which coincides with the Witt index of σ) over this function field is at least
2r = ind A. In particular, v ≥ 2. If the Witt index is bigger than 2r, we replace V by a
submodule in V of D-codimension 1 (that is, of the reduced dimension 2r(v − 1)) and we
replace h by its restriction on this new V . The Witt index of hF (X(1;D)) drops by at most
2r or stays unchanged. We repeat the procedure until the Witt index becomes equal to
2r (we come down eventually to the Witt index 2r because the Witt index is at most 2r

for V with dimD V = 2).
If dimD V = 2, then h becomes hyperbolic over F

(

X(1; D)
)

. Therefore, by the main
result of [5], h is hyperbolic over F and we are done. By this reason, we assume that
dimD V ≥ 3, that is, v ≥ 3. In particular, the variety X is projective homogeneous (in the
case of v = 2, the variety X has two connected components each of which is homogeneous).

The variety X has an F
(

X(1; D)
)

-point and ind DF (Y) = 2r−1. Consequently, by the
induction hypothesis, the variety XF (Y) has an odd degree closed point. We prove Theorem
1 by showing that the variety X has an odd degree closed point. Here is a sketch of the
proof:

Sketch of Proof of Theorem 1. First we show that the Chow motive with coefficients in
F2 of the variety X contains a summand isomorphic to a shift of the upper indecomposable
summand MY of the motive of Y (Corollary 7). (Here we use the 2-incompressibility of
Y which is due to [12].) Moreover, the corresponding projector on X can be symmetrized
(Proposition 8). This makes it possible to compute the degree of the 0-cycle class on X×X,
given by the value of a Steenrod operation on this projector. Namely (see Corollary 9),
this degree is identified with the rank of MY and therefore is 2 modulo 4 by a result
of [6]. Finally, a computation of Steenrod operations on split orthogonal grassmannians
(Proposition 10) allows to show that the above 0-cycle class is divisible by 2. This shows
that the variety X × X (and therefore also X itself) has a 0-cycle of odd degree (and
therefore, of degree 1). �

We need an enhanced version of [5, Proposition 4.6]. This is a statement about the
Grothendieck Chow motives (see [4, Chapter XII]) with coefficients in a prime field Fp

(which we shall apply to p = 2). We write Ch for Chow groups with coefficients in Fp

and we write M(X) for the motive of a complete smooth F -variety X.. The base field F
may have arbitrary characteristic in this statement:

Proposition 2. Let Y be a geometrically split, geometrically irreducible F -variety satis-
fying the nilpotence principle and X be a smooth complete F -variety. Assume that there
exists a field extension E/F such that
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(1) for some field extension E(Y )/E(Y ), the image of the change of field homomor-
phism Ch(XE(Y )) → Ch(XE(Y )) coincides with the image of the change of field

homomorphism Ch(XF (Y )) → Ch(XE(Y ));

(2) the E-variety YE is p-incompressible;
(3) a shift of the upper indecomposable summand of M(Y )E is a summand of M(X)E.

Then the same shift of the upper indecomposable summand of M(Y ) is a summand of
M(X).

Proof. The only difference with the original version is in the condition (1): the field
extension E(X)/F (X) is assumed to be purely transcendental in the original version.
However, only the new condition (1), a consequence of the pure transcendentality, is used
in the original proof. �

Everywhere below, the prime p is 2. We are going to apply Proposition 2 (with p = 2)
to Y = Y , X = X, and E = F (X). We do not know if the field extension E(Y)/F (Y) is
purely transcendental because we do not know whether the variety XF (Y) has a rational
point (we only know that this variety has an odd degree closed point).

Next we are going to check that conditions (1)–(3) are satisfied for these Y, X, E. First
of all, we need a motivic decomposition of XF (X). This is the decomposition of [2] arising
from the fact that X(F (X)) 6= ∅. More generally, the “same” decomposition holds for
F (X) replaced by any field K/F with X(K) 6= ∅. Over such K, the hermitian form h
decomposes in the orthogonal sum of the hyperbolic DK-plane and a hermitian form h′

on a right DK-module V ′ with rdim V ′ = 2r(v − 2).
It requires some work to derive the decomposition from the general theorem of [2].

We use a ready answer from [7], where the projective homogeneous varieties under the
classical semisimple affine algebraic groups has been treated:

Lemma 3 ([7, Corollary 15.4]). M(XK) =
⊕

i,j

M
(

X(i, i + j; DK) × X(j; (V ′, h′))
)(

i(i − 1)/2 + j(i + j) + i(rdim V ′ − j)
)

,

where X(i, i + j; DK) is the variety of flags given by a right ideal in the K-algebra DK of
the reduced dimension i contained in a right ideal of the reduced dimension i + j (this is
a non-empty variety if and only if 0 ≤ i ≤ i + j ≤ deg D).

In particular, a shift of the motive of the variety YF (X) is a motivic summand of XF (X):
namely, the summand of Lemma 3 given by i = 2r−1 and j = 0 (with K = F (X)). This
summand has as the shifting number the integer

(4) n := 2r−2(2r−1 − 1) + 22r−1(v − 2).

We note that dim X = 2r−1(2r − 1) + 22r(v − 2), dimY = 22r−2, and therefore

n = (dim X − dimY)/2.

By [12] (see [6] for a generalization), the variety YF (X) is 2-incompressible if (and only
if) the division algebra D remains division over the field F (X). This is indeed the case:

Lemma 5. ind DF (X) = ind D.
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Proof. Of course, the statement can be checked using the index reduction formulas of [13]
(in the inner case, that is, in the case when the discriminant of h is trivial) and of [14]
(in the outer case). However, we prefer to do it in a different way which is more internal
with respect to the methods of this paper.

Assume that ind DF (X) < ind D. Then Y(F (X)) 6= ∅. Since in the same time the
variety XF (Y) has an odd degree closed point, it follows (by the main property of the
upper motives established in [6, Corollary 2.15]) that the upper indecomposable motivic
summand of Y is a motivic summand of X. This implies (because the variety Y is 2-
incompressible) that the complete motivic decomposition of the variety XF (Y) contains
the Tate summand F2(dimY) = F2(2

2r−2). On the other hand, all the summands of the
motivic decomposition of Lemma 3 (applied to the field K = F (Y)) are shifts of the
motives of anisotropic varieties besides the following three: F2 (given by i = j = 0),
F2(dim X) = F2

(

2r−1(2r − 1) + 22r(v − 2)
)

(given by i = 2r and j = 0), and M(YF (Y))(n)
(given by i = 2r−1 and j = 0) with n defined in (4). Here a variety is called anisotropic,
if all its closed points are of even degree. The motive of an anisotropic variety does
not contain Tate summands by [6, Lemma 2.21]. Taking into account the Krull-Schmidt
principle of [3] (see also [10, §2]), we get a contradiction because 0 < 22r−2 < n (the
assumption v ≥ 3 is used here). �

Lemma 6. Let L/K be a finite odd degree field extension of a field K containing F . Let
L̄ be an algebraically closed field containing L. Then

Im
(

resL̄/L : CH(XL) → CH(XL̄)
)

= Im
(

resL̄/K : CH(XK) → CH(XL̄)
)

.

Proof. We write IL and IK for these images and we evidently have IK ⊂ IL.
Inside of L̄, the variety XK has a finite 2-primary splitting field K ′/K.
If disc hK = 1, then [L : K] · IL ⊂ IK . Since moreover [K ′ : K] · CH(XL̄) ⊂ IK and

[K ′ : K] is coprime with [L : K], it follows that IL ⊂ IK .
If disc hK 6= 1 then also disc hL 6= 1 and the group G := Aut(L̄/K), acting on CH(XL̄),

acts trivially on IL. Therefore we still have [L : K]·IL ⊂ IK . Besides, [K ′ : K]·CH(XL̄)G ⊂
IK , and it follows that IL ⊂ IK . �

We write MY for the upper indecomposable motivic summand of Y .

Corollary 7. MY(n) is a motivic summand of X.

Proof. As planned, we apply Proposition 2 to p = 2, Y = Y , X = X, and E = F (X).
There exists a finite odd degree extension L/F (Y ) such that X(L) 6= ∅. The field extension
L(X)/L is purely transcendental. Since E(Y ) ⊂ L(X), condition (1) is satisfied by Lemma
6.

Condition (2) is satisfied by Lemma 5. Finally, condition (3) is satisfied by Lemma
3. �

We need the following enhancement of Corollary 7:

Proposition 8. There exists a symmetric projector πX on X such that the motive (X, πX)
is isomorphic to MY(n).

Proof. Let us start by checking that the motive MY can be given by a symmetric projector
πY on Y . The proof we give is valid for any projective homogeneous 2-incompressible
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variety in place of the variety Y . Let π be a projector on Y such that (Y , π) ≃ MY .
Since our Chow groups are with finite coefficients, there exists an integer l ≥ 1 such
that πY := (πt ◦ π)◦l is a (symmetric) projector, where πt is the transposition of π.
Since the variety Y is 2-incompressible, mult πt = 1. It follows that mult πY = 1 and
therefore the motive (Y , πY) is non-zero. In the same time, it is a direct summand of the
indecomposable motive (Y , π) (the morphisms to and from (Y , π) having the identical
composition are given, for instance, by π ◦ πY and simply πY). Therefore MY ≃ (Y , πY)
for the symmetric projector πY .

Now let α : (Y , πY)(n) → M(X) and β : M(X) → (Y , πY)(n) be morphisms with
β ◦α = πY = id(Y ,πY) (existing because (Y , πY)(n) is a motivic summand of X). Note that
αt is a morphism

M(X) → (Y , πt
Y)(dim X − dimY − n) = (Y , πY)(n)

because πt
Y = πY and 2n = dim X − dimY . There exists an integer l ≥ 1 such that

(αt ◦ α)◦l is a projector. If mult(αt ◦ α) 6= 0, then (αt ◦ α)◦l = πY . Therefore (α ◦ αt)◦l is
a (symmetric) projector on X and α : (Y , πY)(n) →

(

X, (α ◦ αt)◦l
)

is an isomorphism of
motives, so that we are done in this case.

Similarly, if mult(β ◦ βt) 6= 0, then βt : (Y , πY)(n) →
(

X, (βt ◦ β)◦l
)

for some (other) l
is an isomorphism, and we are done in this case also.

In the remaining case we have mult(αt ◦α) = 0 = mult(β ◦βt). Let pt ∈ Ch0(YF (Y)) be
the class of a rational point. The compositions α◦([YF (Y)]×pt)◦β and βt◦([YF (Y)]×pt)◦αt

are orthogonal projectors on XF (Y), and each of two corresponding motives is isomorphic to
F2(n). It follows that the complete motivic decomposition of XF (Y) contains two exemplars
of F2(n). However, as shown in the end of the proof of Lemma 5, the complete motivic
decomposition of XF (Y) contains only one exemplar of F2(n) (because the motive of YF (Y)

contains only one exemplar of F2). �

From now on we are assuming that all closed points on the variety X have even degrees.
Then all closed points on the product X × X also have even degrees. Therefore the
homomorphism deg/2 : Ch0(X × X) → F2 is defined (as in [5, §5]).

Corollary 9. Let πX be as in Proposition 8. Then π2
X

is a 0-cycle class on X × X for
which we have (deg/2)(π2

X
) = 1 ∈ F2.

Proof. For any symmetric projector π on X, we have (deg/2)(π2) = rk(X, π)/2 (mod 2),
where rk is the rank of the motive (the number of the Tate summands in the complete
decomposition over a splitting field). Indeed, taking a complete motivic decomposition
of X̄ (here and below X̄ is X over a splitting field of X) which is a refinement of the
decomposition M(X) ≃ (X, π) ⊕ (X, ∆X − π), we get a homogeneous basis B of Ch(X̄)
such that π̄ =

∑

b∈Bπ

b× b∗, where Bπ is a subset of B and {b∗}b∈B is the dual basis. Note

that rk(X, π) = #Bπ. For every b ∈ B, let us fix an integral representative b ∈ CH(X̄) of
b and an integral representative b∗ ∈ CH(X̄) of b∗. Then the sum

∑

b∈Bπ

b × b∗, as well
as the sum

∑

b∈Bπ

b∗ × b, is an integral representative of π̄, and for the integral degree
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homomorphism deg : CH0(X̄) → Z we have:

deg

(

(

∑

b∈Bπ

b × b
∗

)(

∑

b∈Bπ

b
∗ × b

)

)

≡ #Bπ (mod 4).

Now the rank of the motive (X, πX) coincides with the rank of the motive (Y , πY) ≃ MY

which is shown to be 2 modulo 4 in [6, Theorem 4.1]. �

The following Proposition is a general statement on the action of the cohomological
Steenrod operation Sq• (see [4, Chapter XI]) on the Chow groups modulo 2 of a split
orthogonal grassmannian G (which we shall apply to G = X̄):

Proposition 10. Let d be an integer ≥ 1, m an integer satisfying 0 ≤ m ≤ d − 1, G
the variety of the totally isotropic (m+1)-dimensional subspaces of a hyperbolic (2d+2)-
dimensional quadratic form q (over a field of characteristic 6= 2). Then for any integer
i > (d − m)(m + 1) we have Sqi Chi(G) = 0.

Proof. Let Q be the projective quadric of q, Φ the variety of flags consisting of a line
contained in a totally isotropic m-dimensional subspace of q, and prG : Φ → G, prQ :

Φ → Q the projections. We write h ∈ CH1(Q) for the (integral) hyperplane section class
and we write li ∈ CHi(Q), where i = 0, . . . , d, for the (integral) class of an i-dimensional
linear subspace in Q (for i = d we choose one of the two classes, call it ld, and write l′d for
the other). As in [16, §2], we define the integral classes

Wi ∈ CHi(G) for i = 1, . . . , d − m by Wi := (prG)∗ pr ∗
Q(hm+i)

and we define the integral classes

Zi ∈ CHi(G) for i = d−m, . . . , 2d−m by Zi = (prG)∗ pr ∗
Q(l2d−m−i).

The elements W1, . . . , Wd−m, Zd−m, . . . , Z2d−m generate the ring CH(G) by [16, Propo-
sition 2.9]. We call them the generators of CH(G). We refer to W1, . . . , Wd−m as W -
generators, and we refer to Zd−m, . . . , Z2d−m as Z-generators.

Note that Zd−m = (prG)∗ pr∗
Q(ld). We also set Z ′

d−m = (prG)∗ pr ∗
Q(l′d). Since ld+l′d = hd,

we have Zd−m + Z ′
d−m = Wd−m.

Note that any element of O2d+2(F ) \ SO2d+2(F ) gives an automorphism of G such that
the corresponding automorphism of the ring CH(G) acts trivially on all the generators
but Zd−m which is interchanged with Z ′

d−m.

For any i ≥ 0, let ci ∈ CHi(G) be the ith Chern class of the quotient bundle on G.
According to [16, Proposition 2.1], ci = Wi for any i for which Wi is defined, and ci = 2Zi

for i 6= d − m.
A computation similar to [4, (86.15)] (see also [1, (44) and (45) in Theorem 3.2]) shows

that for any i = d−m, . . . , 2d−m, the generators of CH(G) satisfy the following relation

Z2
i − Zici + Zi+1ci−1 − Zi+2ci−2 + . . . .

(This is not and we do not need a complete list of relations.)
We denote the images of the generators of CH(G) under the epimorphism CH(G) →

Ch(G) to the modulo 2 Chow group using the small letters w and z (with the same indices),
and call them the generators of Ch(G). We say that an element of Ch(G) is of level l, if it
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can be written as a sum of products of generators such that the number of the z-factors
in each product is at most l (so, any level l element is also of level l + 1). A z-generator
in a power k is counted k times here, that is, we are looking at the total degree assigning
to each z-generator the weight 1 (and to each w-generator the weight 0). For instance,
the monomial z2

d is of level 2 (but because of the relation z2
d = zdcd − zd+1cd−1 + . . . , the

element z2
d is also of level 1).

By [16, Proposition 2.8], the value of the total cohomological Steenrod operation Sq• :
Ch(G) → Ch(G) on any single z-generator is of level 1. Similar computation shows that
the value of Sq• on any w-generator is of level 0. Since Sq• is a ring homomorphism, it
follows that for any l ≥ 0, the image under Sq• of a level l element is also of level l.

The above relations on the generators show that any element of Ch(G) is a polynomial
of the generators such that the exponent of any z-generator in any monomial of the
polynomial is at most 1. Since the dimension of such (biggest-dimensional level m + 1)
monomial zd−m . . . zd is equal to

dim G −
(

(d − m) + · · ·+ d
)

= dim G −
(

(d − m)(m + 1) + m(m + 1)/2
)

=

(d − m)(m + 1),

any homogeneous element α ∈ Ch(G) of dimension i > (d − m)(m + 1) is of level m.
Therefore Sqi(α) ∈ Ch0(G) if also of level m.

We finish by showing that any level m element in Ch0(G) is 0. For this we turn back
to the integral Chow group CH(G) and show that any odd degree element β ∈ CH0(G)
is not of level m. The integral version of the notion of level used here is defined in the
same way as the above modulo 2 version (using the generators of CH(G) instead of the
generators of Ch(G)).

Since the description of the ring CH(G) does not depend on the base field F , we may
assume that G = G′

F , where G′ is the grassmannian of a generic quadratic form defined
over a subfield F ′ ⊂ F . We say that an element of CH(G) is rational, if it is in the image
of the change of field homomorphism resF/F ′ : CH(G′) → CH(G).

For any i ≥ 0, the element ci is rational. Therefore, for any l ≥ 0, the 2l-multiple of
any level l element in CH0(G) is rational. Indeed, this statement is a consequence of the
formulas Wi = ci for any i such that Wi is defined, and the formulas Zi + σZi = ci for
any i such that Zi is defined, where σ is the ring automorphism of CH(G) given by an
element of O2d+2(F ) \ SO2d+2(F ) (note that σ is the identity on CH0(G)). The degree of
any closed point on G′ is divisible by 2m+1. Therefore the element 2mβ is not rational,
and it follows that β is not of level m. �

Remark 11. The statement of Proposition 10 also holds in the case of m = d, that is, in
the case of a split maximal orthogonal grassmannian. The proof is even simpler and also
the given proof of Proposition 10 can be easily modified to cover this case. Using this,
one can cover the case of v = 2, excluded in the very beginning, and obtain this way a
new proof for the hyperbolicity result of [5].

Corollary 12. For any integer i ≥ n (where n is as in (4)) we have Sqi Chi(X̄) = 0.
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Proof. We apply Proposition 10 to G = X̄. We have d = 2r−1v−1 and m = 2r −1 ≤ d−1
(because v ≥ 3). Therefore (d − m)(m + 1) = 22r−1(v − 2) and

n := 2r−2(2r−1 − 1) + 22r−1(v − 2) > (d − m)(m + 1)

(because r ≥ 2). �

Example 13. Corollary 12 fails for r = 1. For instance, if v = 6 (and therefore d = 5),
we have: n = 8, z4z5 ∈ Ch9(X̄) = Ch8(X̄), and Sq8(z4z5) 6= 0. Therefore, an additional
argument is needed to prove the quaternion case by the method of this paper.

Proof of Theorem 1. We are going to show that (deg/2)(π2
X
) = 0. This will contradict to

Corollary 9 thus proving Theorem 1.
Since π2

X
= SqdimX πX, we have (deg/2)(π2

X
) = (deg/2)(Sq• πX). Let α : M(Y)(n) →

M(X) and β : M(X) → M(Y)(n) be morphisms with α ◦ β = πX and let

prXYX

XX
: X × Y × X → X × X

be the projection. Since α ◦ β = (prXYX

XX
)∗
(

([X] × α) · (β × [X])
)

, we have

Sq• πX = (prXYX

XX
)∗

(

(

[X] × Sq•(α)
)

·
(

Sq•(β) × [X]
)

·
(

[X] × c•(−TY) × [X]
)

)

,

where TY is the tangent bundle of Y and c• is the total Chern class modulo 2. Let a and
b be integral representatives of Sq•(α) and Sq•(β). It suffices to show that the degree of
the integral cycle class

c := (prXYX

XX
)∗

(

(

[X] × a
)

·
(

b × [X]
)

·
(

[X] × c•(−TY) × [X]
)

)

is divisible by 4 (now c• stands for the integral total Chern class).
We have

(prXYX

YX
)∗

(

(

[X] × a
)

·
(

b × [X]
)

·
(

[X] × c•(−TY) × [X]
)

)

=

a ·
(

(prXY
Y )∗(b) × [X]

)

·
(

c•(−TY) × [X]
)

and

(prYX

Y )∗

(

a ·
(

(prXY
Y )∗(b) × [X]

)

·
(

c•(−TY) × [X]
)

)

=

(prYX

Y )∗(a) · (prXY
Y )∗(b) · c•(−TY).

Therefore

deg(c) = deg
(

(prYX

Y )∗(a) · (prXY
Y )∗(b) · c•(−TY)

)

and it suffices to show that the cycle classes (prYX

Y )∗(ā) and (prXY
Y )∗(b̄) are divisible by 2.

The (modulo 2) cycle class ᾱ is a sum of a′ × a with some a′ ∈ Ch(Ȳ) and some
homogeneous a ∈ Ch(X̄) of dimension ≥ n. By Corollary 12, deg Sq•(a) = 0 ∈ F2 for
such a. Therefore (prYX

Y )∗
(

Sq•(ᾱ)
)

= 0 and the integral cycle class (prYX

Y )∗(ā), which

represents the modulo 2 cycle class (prYX

Y )∗
(

Sq•(ᾱ)
)

, is divisible by 2. Similarly, the

cycle class β̄ is a sum of b × b′ with some b′ ∈ Ch(Ȳ) and some homogeneous b ∈ Ch(X̄)
of dimension ≥ n, and it follows that the cycle class (prXY

Y )∗(b̄) is also divisible by 2. �
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