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Abstract

Let T be a complete discrete valuation ring and X a smooth projective curve over S = Spec(T)
with closed fibre X. Denote by F' the function field of X and by F the completion of F' with respect
to the discrete valuation defined by X, the closed fibre. In this paper, we construct indecomposable
and noncrossed product division algebras over F. This is done by defining an index preserving
group homomorphism s : Br(F) — Br(F)', and using it to lift indecomposable and noncrossed
product division algebras over F.

1. Introduction

Let X be a smooth projective curve over S = Spec(T"), where T is a complete discrete valuation
ring with uniformizer ¢. Let F' = K (X) be the function field, and let £ = K (X) be the completion
with respect to the discrete valuation defined by the closed fibre X. We define an index-preserving
homomorphism

Br(F) — Br(F)

that splits the restriction map res : Br(F)’ — Br(F')’. Here Br(—) denotes the Brauer group of — and
the “prime” denotes the union of the n-torsion part of Br(F'), where n is prime to the characteristic
of k, the residue field of T. Using the method of Brussel [5] and Brussel [4], we can construct
indecomposable and noncrossed product division algebras over F, and lift these constructions to F'
using our homomorphism, generalizing the constructions in Brussel et al. [6], where indecomposable
and noncrossed product division algebras over function fields of p-adic curves are constructed.

Recall that if K is a field, a K-division algebra D is a division ring that is finite-dimensional and
central over K. The period or exponent of D is the order of the class [D] in Br(K), and the indez
of D is the square root of D’s K-dimension. A noncrossed product is a K-division algebra whose
structure is not given by a Galois 2-cocycle. Noncrossed products were first constructed by Amitsur
[2], settling a longstanding open problem. Since then there have been several other constructions,
including Saltman [22], Jacob and Wadsworth [18], Brussel [5].

A K-division algebra is indecomposable if it cannot be expressed as the tensor product of two
nontrivial K-division algebras. It is easy to see that all division algebras of period not a prime
power are decomposable, so the problem of producing an indecomposable division algebra is only
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interesting when the period and index are unequal prime powers. Therefore we will only consider
division algebras of prime power period and index in this paper. Then it is not hard to see that
all division algebras of equal (prime power) period and index are trivially indecomposable. Albert
constructed decomposable division algebras in the 1930’s, but indecomposable division algebras of
unequal (2-power) period and index did not appear until Saltman [23]and Amitsur et al. [3]. Since
then there have been several constructions, including Tignol [27], Jacob and Wadsworth [17], Jacob
[16], Schofield and Van den Bergh [25], Brussel [4] and McKinnie [21].

It is the author’s pleasure to thank Prof. Brussel, his thesis adviser. The author is greatly
indebted to him for his patience and suggestions during the preparation of the paper. The author
would also like to thank Prof. Suresh and Prof. Parimala for many instructive discussions and their
most valuable comments and critiques. Finally the author thanks Prof. Harbater for reading a first
draft of the paper and his valuable suggestions and comments to improve the writing.

2. Patching over Fields

Our construction is based on the method of patching over fields introduced in Harbater and
Hartmann [14]. In this section, we will recall this method. Throughout this section, T" will be a
complete discrete valuation ring with uniformizer ¢, fraction field K and residue field k. Let X be
a smooth projective T-curve with function field F' such that the reduced irreducible components of
its closed fibre X is regular. (Given F', such an X always exists by resolution of singularities; cf.
Abhyankar [1] or Lipman [20]). Let f : X — P be a finite morphism such that the inverse image
S of oo € P} contains all the points of X at which distinct irreducible components meet. (Such a
morphism exists by Harbater and Hartmann [14, Proposition 6.6]). We will call (X', S) a regular
T-model of F.

We follow Harbater and Hartmann [14, Section 6] to introduce the notation. Given an irreducible
component Xg of X with generic point 5, consider the local ring of X at n. For a (possibly empty)
proper subset U of X, we let Ryy denote the subring of this local ring consisting of rational functions
that are regular at each point of U. In particular, Ry is the local ring of X at the generic point of
the component Xy. The t-adic completion of Ry is denoted by Ry. If Pis a closed point of X, we
write Rp for the local ring of X at P, and Rp for its completion at its maximal ideal. A height 1
prime ideal p that contains ¢ determines a branch of X at P, i.e., an irreducible component of the
pullback of X to Spec(f%p). Similarly the contraction of p to the local ring of X at P determines
an irreducible component Xy of X, and we say that p lies on Xy. Note that a branch p uniquely
determines a closed point P and an irreducible component X,. In general, there can be several
branches p on Xy at a point P; but if X is smooth at P then there is a unique branch p on X
at P. We write Rp for the completion of the localization of Rp at p; thus Rp is contained in ]A%p,
which is a complete discrete valuation ring.

Since X is normal, the local ring Rp is integrally closed and hence unibranched; and since T
is a complete discrete valuation ring, Rp is excellent and hence Rp is a domain (cf. Grothendieck
and Dieudonné [13, Scholie 7.8.3(ii,iii,vii)]). For nonempty U as above and Q € U, Ry/t”RU —
RQ/t”RQ is injective for all n and hence Ry — RQ is also injective. Thus Ry is also a domain.
Note that the same is true if U is empty. The fraction field s of the domains Ry, Rp and Rp will
be denoted by Fy, Fpand F.

If p is a branch at P lying on the closure of U C X, then there are natural inclusions of Rp
and Ry into Rp, and hence of Fp and Fy into F,. The inclusion of Rp was observed above; for
Ry, note that the localization of Ry and of R, at the generic point of X, are the same; and this



localization is naturally contained in the t-adically complete ring Rp. Thus so is Ry and hence its
t-adic completion Ry.

In the above context, assume f : X 5 PL. is a finite morphism such that P = f~1(c0) contains
all points at which distinct irreducible components of the closed fibre X C X meet (Such an f
always exists by Harbater and Hartmann [14, Proposition 6.6]). We let i be the collection of
irreducible components U of f~(A}), and let B be the collection of all branches p at all points of
<.

The inclusions of Ry and of ]:BQ into Rp, for p = (U, @), induce inclusions of the corresponding
fraction fields Fi; and Fg into the fraction field F, of R,. Let I be the index set consisting of all
U, Q,p described above. Via the above inclusions, the collection of all F, for £ € I, then forms an
inverse system with respect to the ordering given by setting U > p and @ > p if p = (U, Q).

Under the above hypotheses, suppose that for every field extension L of F', we are given a
category 2(L) of algebraic structures over L(i.e. finite dimensional L-vector spaces with additional
structure, e.g. associative L-algebras), along with base-change functors (L) — (L) when L C L’.
An 2-patching problem for (X,S) consists of an object Ve in A(F) for each & € I, together with
isomorphisms ¢y : Vo ®@p, Fy — Vy and ¢qp : Vo®F, Fy — V, in A(F}). These patching problems
form a category, denoted by PPy (X, S), and there is a base change functor 2A(F) — PPy (X, S).

If an object V € A(F) induces a given patching problem up to isomorphism, we will say that
V' is a solution to that patching problem, or that it is obtained by patching the objects Ve. We
similarly speak of obtaining a morphism over F' by patching morphisms in PPy (X' ,5). The next
result is given by Harbater and Hartmann [14, Theorem 7.2].

Theorem 1. Let T be a complete discrete valuation ring. Let X be a smooth connected projective
T'-curve with closed fibre X. Let Uy,Us C X, let Uy = Uy NUs, and let F; := Fy,(i = 0,1,2). Let
U = Uy UUs and form the fibre product of groups Br(Fi) Xpy(p,) Br(Fs) with respect to the maps
Br(F;) — Br(Fp) induced by F; — Fy. Then the base change map 3 : Br(F,) — Br(F1) Xpy(r,)
Br(Fs) is a group isomorphism.

The above Theorem says that giving a Brauer class over a function field F' is equivalent to giving
compatible division algebras over the patches. The nice thing about patching Brauer classes over
a function field F is that we have good control of the index, which is stated in Harbater et al. [15,
Theorem 5.1].

Theorem 2. Under the above notation, let A be a central simple F-algebra. Then ind(A) =
1cm£€fpuu(ind(AF£ )) .
To conclude this section, we record a variant of Hensel’s Lemma from Harbater et al. [15, Lemma

4.5] that will be used over and over again in the index computation.

Lemma 3. Let R be a ring and I an ideal such that R is I-adically complete. Let X be an affine
R-scheme with structure morphism ¢ : X — SpecR. Letn > 0. If s, : Spec(R/I") — X xp (R/I™)
is a section of ¢, : ¢ X g (R/I™) and its image lies in the smooth locus of ¢, then s, may be extended
to a section of ¢.

3. Splitting Map

Let T' be a complete discrete valuation ring with uniformizer ¢ and residue field k. By a smooth
curve X over T, we will mean a scheme X which is projective and smooth of relative dimension
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1 over Spec(T). In particular, X is flat and of finite presentation over Spec(T). Let F = K(X)
be the function field of X. Note that since X is smooth, the closed fibre X is smooth, integral,
connected and of codimension 1, hence determines a discrete valuation ring on F. Let F' = K(X)
be the completion of F' with respect to this discrete valuation. Throughout the paper, n will denote
an integer which is prime to the characteristic of k.

We will be using the following notation for cohomology groups in the sequel: For an integer r,
we let

i, ulr for » > 0,

Hn hom(pu®~", u,) for r <O0.

For a fixed integer n, and for any field K, we will let HY(K,r) = HY(K, ") and HI(K) =
HY(K,q— 1) = HI(K, p®9~1). In particular, H*(K) = ,,Br(K) will be the n-torsion part of the
Brauer group of K; and H!(K) will be the n-torsion part of the character group of K.

Adopting the above notation, in this section we will define a map s : HQ(F') — H2(F) and show
that s has the following properties:

e s is a group homomorphism;
e s splits the restriction;
e s preserves index of Brauer classes.

Once such a map s is defined, we could use it to construct indecomposable division algebras and
noncrossed product division algebras over F', as in section 5.

3.1. Construction over an Open Affine Subset

Given an element 4 € H? (F), we will define a lift vy to Fiy of 4. Note that since Fis a complete
discretely valued field with ¢ a unifomizer, and with k(X)) the residue field. We have an exact Witt
Sequence as in Garibaldi et al. [10, II.7.10 and IL.7.11],

0 — H2(k(X)) — H2(F) —» H' (k(X)) = 0 (1)

split (non-canonically) by the cup product with (£) € H!(k(X)). Hence each element 4 € H2(F)
can be written as a sum o + (xo,t), with 79 € H2(k(X)) and xo € H'(k(X)) (Note that here we
are identifying H" (k(X)) as a subgroup of H"(F), for r = 1,2, as in Garibaldi et al. [10, I1.7.10 and
I1.7.11]). Here we use the notation (xo,t) to denote the cup product xo U (), and we will use this
notation throughout the paper without further explanation.

Let U be an open affine subset of X so that neither vy nor g ramifies at any closed point of U.
This implies that vo € H2(k[U]) and xo € H'(k[U]) by purity(cf, Colliot-Théléne [8]), where k[U]
denotes the ring of regular functions of the affine scheme U.

By Cipolla [7], there exists a canonical isomorphism H2(Ry) — H?(k[U]) since Ry is t-adically
complete and k[U] = Ry /(t); therefore there is a unique lift of 7o to H?(Ry). At the same time,
Grothendieck and Raynaud [12, Théorém 8.3] implies that there is a unique lift of xo to H* (]:BU) as
well. Taking 5o and Yo as the lifts of yo and o to Ry, we will let

Y =0 + (Xo,t) (2)
be the lift of 4 to H2(Fy).
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3.2. Construction over Closed Points

Fix an open affine subset U of X and let 8 = X\U. In order to apply the patching result
we recalled in 2, we need to define a yp for each P € 9 in such a way that when p = (U, P)
is the unique branch of U at P, the restriction to F, of yp and vy agree with each other, i.e.,
resy, (Yp) = resr, (Yu) (Recall there are field embeddings Fp — Fy, and Fy — F, for p = (U, P),
as in Section 2, hence there are restrictions res : H*(Fyy) — H?(F,) and res : H*(Fp) — H2(Fp).
For more details on these restriction maps, see Serre [26]).

Note that since X is regular and the closed fibre X is smooth, the maximal ideal of the local
ring Rp is generated by two generators, ¢ and m. So is Rp.

We define yp in the following way: There is a field embedding Fyy — F}, hence a canonical
restriction res : H2(Fy) — H2(F}). Let 7, be the image of vy under this restriction. Observe that
F, is a complete discretely valued field with residue field x(p); furthermore, x(p) is also a complete
discretely valued field with residue field x(P). Therefore, applying Garibaldi et al. [10, I1.7.10 and
I1.7.11] twice, we get the following decomposition of H?(F,):

H?(F,) = H?(s(P)) & H' (s(P)) & H' (5(P)) & H° (k(P)). (3)

In other words, each element v, € H2(F},) can be written as v, = 70,0+ (x1,7)+ (X2 + (77), t), where
Y0.0 € H2(k(P)), x1,x2 € H (k(P)),r € H'(k(P)) = Z/nZ and (7") denote the image in H!(x(P))
of 7" under the Kummer map. Note that by our notation, H?(xk(P)) = HO(k(P), u,, ') = Z/n’Z.

In order to define a lift for v, to Fp, we first show that all characters in H!(x(p)) can be lifted
by proving the following lemma.

Lemma 4. Let x € H*(k(p)) be a character. Then there is a unique Y € H*(Fp) that lifts x.

Proof. Since k(p) is a complete discretely valued field with residue field x(P), we have the classical
Witt’s decomposition for x,

X =Xo+ (ﬂ.?“),

where xo € H'(k(P)) and r € H°(x(P)). Note that xo can be lifted without any difficulty by
Grothendieck and Raynaud [12, Théorém 8.3]; the only trouble comes from (7).

Let L, Ly/k(p) be the field extension determined by x, xo respectively. Then Ly is the maximal
unramified subextension of x(p) inside L and L/Lg is a totally ramified extension determined by
the character (7"). Now Fesenko and Vostokov [9, Theorem II.3.5] implies that (7") can be lifted
to H!(Fp) in a unique fashion as well, since #(p) is a complete discretely valued field. O

Now we are ready to define a lift for 4 in H*(Fp). Again Cipolla [7] implies that H?(x(P)) =
H2(Rp) and Lemma 4 implies that X1, X2 + (7") can be lifted to H!(Rp) uniquely. Hence each
component of H?(F}) can be lifted to Rp, and thus we will set

P = 50,0 + (X1, m) + (X2 + (7), 1). (4)

where 7, X1, X2 are the lifts of 790 x1, x2 to Rp (and hence to Fp), respectively. Therefore this vp
is a unique lift of v, to Fp. The assignment of sp(v,) = sp will yield a map sp : H2(F,) — H2(Fp).
It is not hard to see that sp is a group homomorphism, since it is a group homomorphism on each
of the components.
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3.8. The Map is Well Defined

In this section we show that ~y and vp that we constructed in Section 3.1 and Section3.2 are
compatible in the sense of patching, that is resg, (yr) = resr, (yp) for each P € f = X\U when
p = (U, P) is the unique branch of U at P.

We claim that the compatibility will be proved if we can show that sp splits the restriction
map resp, : H*(Fp) — H?(F}), or equivalently, resp, o sp is the identity map. This is true because
vp = sp(7p) = sporesr, (yr), hence we would have that resr, (yp) = resr, (yv) if resp, o sp is the
identity map. So it suffices to prove the following

Proposition 5. sp as defined in 3.2 splits the restriction res : H*(Fp) — H?(F,), that is, reso sp
is the identity map.

Proof. Take an arbitrary element v, € H?(F},). As in section 3.2, we write v, = Y00 + (X1,7) +
(x2 + ("), t). Therefore it is easily checked that

resosp(vy) = resosp(yoo0+ (x1,7m) + (x2 + (7"),1))
= res(Yo,0 + (X1, m) + (X2 + (77), 1))
= 90,0+ (x1,7) + (x2 +(7"),1)
= Y.

O

Thus vy, vp will patch and yield v € H?(F), by Harbater and Hartmann [14, Theorem 7.2].
But there is one more thing we have to check before we can say we have a map s : H2(F') — H2(F):
we need to show that v is independent of the choice of the open affine subset U of X. In order to
do this, we prove the following

Lemma 6. Let T be a complete discrete valuation ring with residue field k; let X be a smooth
projective T-curve with function field F and closed fibre X. Let F be the completion of F with
respect to the discrete valuation induced by X, and denote by k(X) the corresponding residue field.
Take an element 4 = o + (xo,t) € H2(F), where o € H2(k(X)) and xo € H' (k(X)). Assume that
Uy, Us are two open affine subsets of X so that neither ~yy, xo is ramified on any point of Uy UUs. Let
P, Bo be the complements of Uy, Uy respectively. We construct two Brauer classes v, € H?(F)
by patching as we did above, while using Uy and Us as the open affine subset in the construction,
respectively. Then v,~' denote the same Brauer class in H?(F).

Proof. We first deal with the case where U; is contained in Us. In this case we have a field embedding
Fy, < Fy,. Let ~; be the lift of vy to H?(Fy;,), we must have v; = respy, (72), since both v; and 9
are the image of 7o; in other words, resg,, (7) = resp,, (/). By the construction in Section 3.2, it
follows that for every P € Po, resp, (v) = resp, (7). Therefore it follows that v = ', by Harbater
and Hartmann [14, Theorem 7.2]. This proves the Lemma in the case where U; is contained in Us.

In the general case, let Us be an open affine subset of U; N Us;. Clearly 79 and xo are both
unramified at every point of Us. Let 4" € H?(F) be the Brauer class constructed by patching as
above, using Us as the open affine subset in the construction. It follows that v = v and " = +/
since Us is contained in both U; and Us, by what we just proved for the case where one open affine
subset is contained in the other. Hence v = 4/ = 4” € H2(F), which proves the Lemma in the
general case. O
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3.4. s Splits the Restriction Map

Recall the notation: let T" be a complete discrete valuation ring with residue field k£ and uni-
formizer t. Let X be a smooth projective T-curve with function field F and closed fibre X. Let F
be the completion of F with respect to the discrete valuation induced by X. Let s : H2(F) — H2(F)
be the map defined by patching as in section 3.1 and section 3.2. We will show that s splits the
restriction map res : H2(F) — H2(F). Hence index of Brauer classes cannot go up under the map
s, because restriction can never raise index. In particular, we prove the following Proposition.

Proposition 7. The map s is a section to the restriction map resg : H2(F) — H2(F)

Proof. Tt suffices to show that res o s is the identity map on H2(F). Since H2(F) = H2(k(X)) ®
H'(k(X)), it suffices to show that resy o s is the identity map on both components; that is, given
4 = 70 + (xo0,t) where 7o € H2(k(X)) and xo € H'(k(X)), the Proposition will follow if we can
show that resz o s(v9) = Yo and resz o s((xo0,t)) = (xo0,1).

Take an open affine subset U of X so that 7y, xo are both unramified on every point of U; that is,
we have vy € H?(k[U]) and xo € H!(k[U]). Note that we have the following commutative diagram
(For a field E, H2 (E) denotes the unramified part of H2 (E), or equivalently, H2 (E) = N,H2(E,),

where v runs through all discrete valuations on F, and FE, denotes the completion of F at v. See
Colliot-Théléne [8] for more details on the unramified cohomology.):

H2 k(X)) —— H2, (F)

I

H2(Ry) H?(F)
h A
H?(Fy)

The commutativity of the above diagram follows simply from the construction of over open
affine subset we outline in Section 3.1. Therefore res; on s(vg) is the same as fogo h=1oresp,,
and thus res; o s(y9) = fogoh ! oresp, o0 s(y0) = 0. (Note in fact h has no inverse; however we
can find an inverse image under h for resg, o s(7y), so we write h~! only merely as a shorthand
notation here.)

To show that reszos((xo,t)) = (xo,1), it suffices to show that ram(reszo0s((xo,t))) = xo, Where
ram : H2(F) — H'(k(X)) denotes the ramification map on H2(F) with respect to the valuation
determined by the closed fibre X. Since xo € H*(k[U]), we have ram(res z0s((xo,t))) = ram((Xo, t))
where Yo denotes the lift of xo to H (Ry), as we did in Section 3.1 (Since H (Ry) 22 H! (k[U]), Xo can
be viewed as as element of H!(k[U]), and hence element of H!(k(X)) via the injection H!(k[U]) —
H'(k(X)), and finally element of H! (F) via the injection H!(k(X)) < H'(F)). Therefore the image
in Hl(ﬁ) of xo under the composition of these maps is in fact g, since all these maps are injective.
Then it is easy to see that ram((Xo,t)) = Xo = xo € H'(k[X]), as desired. O

The following corollary is immediate:
Corollary 8. Index of Brauer classes cannot go down under the map s.

Proof. Take 4 € H2(F) and let v = s(3). By Proposition 7 we must have that 4 = res; (),
therefore ind(4)|ind(y). This proves that s can never lower index of Brauer classes. O



4. s Preserves Index of Brauer Classes

In this section, we will show that the splitting map s that we defined in section 3 has one more
property that is crucial to the construction of indecomposable and noncrossed product division
algebras over p-adic curves, that is, s preserves index of Brauer classes. In other words, ind(%) =
ind(y) = ind(s(¥)). We make the following elementary observation, which is true for Brauer classes
over an arbitrary field.

Proposition 9. Let k be an arbitrary field. Let v € H?(k) be a Brauer class with the following
decomposition: v = o + (x,t), where vo € H2(k), x € H'(k) and t is an arbitrary element of k.
Then ind(y)|ind(y0,1) - exp(x), where v, denotes the base extension of o to l/k, where l is the field
extension determined by x.

Proof. Let E/l be a minimal extension that splits 7o ;. Then [E : ] = ind(vo,;). Also there is some
E'/k with [E : k] = exp(x) which splits x and hence (x,t); therefore EE’ will split 7, furthermore
it is not hard to see that [EE’ : k]|ind(70,) - exp(x) and hence ind(y)|ind(yo,:) - exp(x)- O

We will apply Harbater et al. [15, Theorem 5.1], which states that ind(y) = lem(ind(yy ), ind(yp))
for each P € 3. Since we already showed that s can never lower index of Brauer classes as in sec-
tion 3.4, we will be done if we could show that ind(v)|ind(¥); therefore it suffices to show that
ind(yy)|ind(¥) and ind(yp)|ind(%) for each P € B, respectively. We will deal with them in order.

We start by recalling the notion of Azumaya algebras and their generalized Severi-Brauer va-
rieties. The notion of a central simple algebra over a field can be generalized to the notion of
an Azumaya algebra over a domain R (cf. Saltman [24, Chapter 2|, or Grothendieck [11, Part I,
Section 1]). The degree of an Azumaya algebra A over R is the degree of A ®p F' as a central
simple algebra over the fraction field F' over R. The Brauer group of a domain R is defined as the
set of equivalence classes of Azumaya algebras with the analogous operations, where one replaces
the vector spaces V; with projective modules in the definition of Brauer equivalences. If A is an
Azumaya algebra of degree n over a domain R, and 1 < ¢ < n, there is a functorially associated
smooth projective R-scheme SB;(A), called the i-th generalized Severi-Brauer variety of A (cf. Van
den Bergh [28, p. 334]). For each R-algebra S, the S-points of SB;(A) are in bijection with the
right ideals of As = A ®r S that are direct summands of the S-module Ag having dimension
(i.e. S-rank) ni. If R is a field F, so that A is a central simple F-algebra, and if E/F is a field
extension, then SB;(A)(E) # ¢ if and only if ind(Ag) divides ¢ (cf. Knus et al. [19, Proposi-
tion 1.17]). Here Ap = Mat,,(Dg) for some E-division algebra Dg and some m > 1, and the
right ideals of E-dimension ni are in natural bijection with the subspaces of D} of Dg-dimension
i/ind(Ag) (cf. Knus et al. [19, Proposition 1.12, Definition 1.9]). Thus the F-linear algebraic group
GL;(A) = GL,,,(DrF) acts transitively on the points of the F-scheme SB;(A4). We record Knus et al.
[19, Proposition 1.17] here since we will be using it over and over again in the sequel.

Proposition 10. Let A be a central simple algebra over a field F. The Severi-Brauer variety
SB,(A) has a rational point over an extension K/F if and only if the index ind(Ak) divides r. In
particular, SB(A) has a rational point over K if and only if K splits A.

4.1. Index Computation Over Affine Open Set

We compute ind(yy) in this section; in particular, we show that ind(yy)|ind(4). Thanks to
Lemma 6, it suffices to show that there exists an open affine subset V' C X so that ind(yy)|ind (%)
since we could replace U by V if necessary in the construction we outlined in section 3.1 and this
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would not change v € H?(K (X' ) by Lemma 6. Therefore we will prove the following proposition,
which shows that there exists such an open affine subset V.

Proposition 11. Let T be a complete discrete valuation ring. Let X be a smooth projective T'-curve
with closed fibre X . Let F be the function field of X and F the completion of F with respect to the
discrete valuation determined by X. Then for every 4 € HQ(F), there exists an affine open subset
V C X such that ind(vyy )|ind(¥), where v is the lift of 4 to Fy as defined in section 3.1.

Proof. Recall that 4 = v + (xo.t) € H2(F) where ~ € H2(k(X)) and xo € H'(k(X)). Therefore
ind(¥) = ind(y0,1) - exp(x0), where [/k(X) is the field extension determined by xo, by Jacob and
Wadsworth [17, Theorem 5.15], since Fisa complete discretely valued field.

Let U be an open affine subset of X such that neither vg nor xo ramifies on any point of U. Recall
that vo = 30 + (Xo,t) where 49 € H2(Ry) and Yo € H'(Ry). Note that exp(xo) = exp(xo) since
H'(Ry) = H' (k(X)). By Proposition 9, we have ind(y)|ind(50,5) - exp(Xo), where S/Ry denotes
the Galois cyclic extension determined by yo. Note when V' C U, we have H"(k[U]) C H"(k[V])
by purity, and hence H"(Ry) € H"(Ry); so we have 79 € H2(Ry) and Yo € H'(Ry). Therefore it
suffices to find some affine open subset V' C U such that ind (o s)|ind(70,), where S’/Ry denotes
the Galois cyclic extension determined by Y.

Let ¢ = ind(70,) be the index of the restriction of 7 to I. Then Proposition 10 implies that
SBi(70)(I) # ¢; in other words, there is an l-rational point in the i-th generalized Severi-Brauer
variety of 70. Hence the Spec(k(X))-morphism 7 : SB; (7o)X (x)! — Spec(l) has a section Spec(l) —
SBi(v0) Xk(x) ! over Spec(k(X)), the generic point of the closed fibre U of Spec(Ry). Choose a
Zariski dense open subset V' C U such that this section over Spec(k(X)) extends to a section over
V, and such that the image of this latter section lies in an open subset of SB;(y0) x(x) ! that is
affine over Ry. Then by Lemma 3, the section over V lifts to a section over Spec(f%v), thus we
obtain an L-rational point of SB;(%g) x By S’, where L/ Fy is the Galois cyclic extension determined
by Xo; or equivalently, L is the fraction field of S’. This implies that ind(%o,s)|¢ = ind(yo,) by
Proposition 10 again. O

4.2. Index Computation Over Closed Points

It remains to show ind(yp)|ind(¥). This is what we are going to do in this section. Note that
vp is defined as sp o resg, (yv), where resg, can only lower index of yy. Since we have already
shown that ind(yy)|ind(%), we have that ind(y) will be completely determined by ind(vy) if we
could show that ind(y,) does not go up under the map sp. Therefore we just need to show that sp
cannot increase index of Brauer classes, or, ind(yp) = ind(sp(7yp))|ind(vy) -

We compute ind(7,) first. Since F} is a complete discretely valued field, we have ind(y,) =
ind((y0,0 + (x1,7))am) - exp(xz + (7)), where M/k(p) is the Galois cyclic extension determined
by x2 + (") € H'(k(p)) by Jacob and Wadsworth [17, Theorem 5.15]. It is not hard to compute
ind((y0,0 + (x1,7))ar): Since M is a finite extension of x(p), which is a complete discretely valued
field, we have that M is a complete discretely valued field as well. Let e be the ramification index
of M/k(p) and M the residue field of M. Then by Serre [26, Exercise XI1.3.2], (y0.0 + (x1,7))m =
(70,0) sz +(e-x1,7"), where 7’ is some uniformizer of M. Let L/k(p) be the field extension determined
by e-x1 and L the residue field of L. Then ind((70,0 + (x1,7))ar) = ind((y0,0) 57 + (€ - X1, 7)) =
ind((v0,0)57z) - exp(e - x1)-

Now that we have an index formula for Brauer classes over F},, we are ready to show the following
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Proposition 12. Let T be a complete discrete valuation ring. Let X be a smooth projective T'-curve
with closed fibre X. Suppose that U is an open affine subset of X and P € X\U is a closed point.
Let p = (U, P) be the unique branch of U at P and let yp and -y, be defined as above. Then we have

ind(vp) |ind(% )-

Proof. By Proposition 9 we have that ind(vyp)|ind((50.0+ (X1, 7)) ;7)-exp(X2 +(7")), where M/ Fp is
the Galois cyclic extension determined by X2+ (7"). We claim that exp(x2+(7")) = exp(x2)+(7"):
we have that exp(Y2+(7")) = lem(exp(x2), exp((7"))) and exp(x2+(7")) = lem(exp(x2), exp((7"))).
Since exp(x2) = exp(x2), we have proved that exp(y2 + (7")) = exp(x2 + (7")). Therefore this
proposition will follow if we can show that ind((J0,0 + (X1, 7)) 57)lind((70,0) 57 + (€ - x1,7))-

Next we compute

(Fo0+ (X)) ir = (Fo,0) 57 + (X1, 7) g7
= (o.0)5 + ((X0)xrm
= (30,0) 51 + ((X1) 37: (7))
= (Jo,0)5 + (e (X1) 57 7)

By Proposition 9 again we immediately see that ind((50,0 + (X1, 7)) 7)|ind((50,0) 577) - exp(e -
(X1) 1), where L/Fp denotes the Galois cyclic extension determined by e - ¥;. Clearly exp(e -
(X1) 37)exp(e- (x1)), so we will be done if we can show that ind((50,0) 577 )ind((70,0)57z), which we
will do in the following Lemma 13. O

Lemma 13. In line with the notation in 12, we have that ind((Yo,0) yrz)1ind((v0,0) 57Z)-

Proof. Let M'/Fp be the Galois cyclic extension determined by x». Clearly it suffices to prove
that ind((50,0) vz )lind((70,0)57z) since ind((5o0,0)j77)lind((¥) yrz)- Let @ = ind((70,0)57z)- By
Proposition 10, we have that SB;(v0,0)(M L) # ¢, or equivalently, the morphism SB;(70,0) X (p)y M L
has a section Spec(M L) — SB;(70,0) Xx(p) ML. By Lemma 3, this section lifts to a section over
Spec(Rp); thus we obtain a M’ L-rational point, of SB;(7¢.0) X f, S(note that 70,0 € H2(Rp)), where
S is the integral closure of Rp in M'L; or equivalently, a M’ L-rational point of SB; (F0,0) XFp M'L.
Therefore ind((%0,0) ;7.7 )|¢ again by Proposition 10, which proves this lemma. O

The following Corollary is immediate:
Corollary 14. The homomorphism s : H2(F) — H2(F) preserves index of Brauer classes.

Proof. This is simply Corollary 8 plus Proposition 12. O

5. Indecomposable and noncrossed product Division Algebras over Curves over com-
plete Discrete Valuation Rings

Let T be a complete discrete valuation ring. Let X be a smooth projective T-curve with
closed fibre X. Let F be the function field of X and F' the completion of F' with respect to the
discrete valuation determined by X. We construct indecomposable division algebras and noncrossed
product division algebras over F' of prime power index for all primes ¢ where ¢ is different from
the characteristic of the residue field of T'. Note that the existence of such algebras are already
known when residue field of T is a finite filed, cf. Brussel et al. [6]. Our construction here is almost
identical to Brussel et al. [6, Section 4], we list it here for the reader’s convenience.
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5.1. Indecomposable Division Algebras over F

First we recall the construction of indecomposable division algebras over F, this is done in
Brussel et al. [6, Proposition 4.2].

Proposition 15. Let T be a complete discrete valuation ring and let X be a smooth projective
curve over Spec(T) with closed fibre X. Let F be the function field of X and F the completion of F
with respect to the discrete valuation induced by X. Let e, i be integers satisfying |l < e < 2e—1. For
any prime q # char(k), there exists a Brauer class 4 € HQ(F) satisfying ind(%) = ¢*,exp(§) = ¢°
and whose underlying division algebra is indecomposable.

Then we lift 4 to F' by using the splitting map s we defined in section 3, and show that the lift
is in fact indecomposable.

Theorem 16. In the notation of Theorem 15. Then there exists an indecomposable division algebra
D over F such that ind(D) = ¢* and exp(D) = ¢° .

Proof. By Proposition 15, there exists 4 € Br(F) with ind(§) = ¢* and exp(5) = ¢¢ and whose
underlying division algebra is indecomposable. By Corollary 14, v = s(¥) has index ¢* too. Since
s splits the restriction map, we have exp(y) = ¢¢. We show the division algebra underlying ~ is
indecomposable.

We proceed by contradiction. Assume v = [ + (B2 represents a nontrivial decomposition,
then 4 = res;(81) + resp(B2). Since the index can only go down under restriction, we have that
ind(¥) = ind(resz(B1)) - ind(resz(52)), which represents a nontrivial decomposition of the division
algebra underlying 4, a contradiction. O

5.2. Noncrossed Products over F

Again we will construct noncrossed product division algebras over F and use the splitting map
s to lift it to F' and show that the lift represents a noncrossed product division algebra over F'.

The construction over F' is in line with Brussel [5] where noncrossed products over Q(t) and
Q((t)) are constructed. In order to mimic the construction in Brussel [5], we need only note that
both Chebotarev density theorem and the Gruwald-Wang theorem hold for global fields which are
characteristic p function fields. Then the arguments in Brussel [5] apply directly to yield noncrossed
products over K (X ) of index and exponent given below:

The following is Brussel et al. [6, Theorem 4.7].

Theorem 17. Let T be a complete discrete valuation ring with residue field k and let X be a smooth
projective curve over Spec(T'). Let F' be the function field of X and let F be the completion of F
with respect to the discrete valuation induced by the closed fibre. For any positive integer a, let €,
be a primitive a-th root of unity. Set r and s to be mazimum integers such that e C E(X)* and
Hgs C k(X)(egr+1). Let n,m be integers such that n > 1,n > m and n,m € r U[s,00). Let a,l
be integers such thatl > n+m+1 and 0 < a <1 —n. (See Brussel [5, Page 384-385] for more
information regarding these constraints.) Let q # char(k) be a prime number. Then there exists
noncrossed product division algebras over F with index ¢t and exponent ¢'.

Corollary 18. Let R, k, X, X, F,F,q,a,l be as in Theorem 17. Then there exists noncrossed prod-
uct division algebras over F of index ¢!+ and exponent ¢'.
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Proof. Let 4 be the Brauer class representing a noncrossed product over F of index ¢t and
exponent ¢'. Let D be the division algebra underlying the Brauer class s(%). By Corollary 14, we
know that ind(D) = ind(¥).

Assume that D is a crossed product with maximal Galois subfield M/F. Then M F splits 4, is
of degree ind(%) and is Galois. This contradicts the fact that 4 is a noncrossed product. O
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