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Abstra
tLet T be a 
omplete dis
rete valuation ring and X̂ a smooth proje
tive 
urve over S = Spec(T )with 
losed �bre X . Denote by F the fun
tion �eld of X̂ and by F̂ the 
ompletion of F with respe
tto the dis
rete valuation de�ned by X , the 
losed �bre. In this paper, we 
onstru
t inde
omposableand non
rossed produ
t division algebras over F . This is done by de�ning an index preservinggroup homomorphism s : Br(F̂ )′ → Br(F )′, and using it to lift inde
omposable and non
rossedprodu
t division algebras over F̂ .1. Introdu
tionLet X̂ be a smooth proje
tive 
urve over S = Spec(T ), where T is a 
omplete dis
rete valuationring with uniformizer t. Let F = K(X̂) be the fun
tion �eld, and let F̂ = K̂(X̂) be the 
ompletionwith respe
t to the dis
rete valuation de�ned by the 
losed �bre X . We de�ne an index-preservinghomomorphism

Br(F̂ )′ → Br(F )′that splits the restri
tion map res : Br(F )′ → Br(F̂ )′. Here Br(−) denotes the Brauer group of− andthe �prime� denotes the union of the n-torsion part of Br(F ), where n is prime to the 
hara
teristi
of k, the residue �eld of T . Using the method of Brussel [5℄ and Brussel [4℄, we 
an 
onstru
tinde
omposable and non
rossed produ
t division algebras over F̂ , and lift these 
onstru
tions to Fusing our homomorphism, generalizing the 
onstru
tions in Brussel et al. [6℄, where inde
omposableand non
rossed produ
t division algebras over fun
tion �elds of p-adi
 
urves are 
onstru
ted.Re
all that if K is a �eld, a K-division algebra D is a division ring that is �nite-dimensional and
entral over K. The period or exponent of D is the order of the 
lass [D] in Br(K), and the indexof D is the square root of D's K-dimension. A non
rossed produ
t is a K-division algebra whosestru
ture is not given by a Galois 2-
o
y
le. Non
rossed produ
ts were �rst 
onstru
ted by Amitsur[2℄, settling a longstanding open problem. Sin
e then there have been several other 
onstru
tions,in
luding Saltman [22℄, Ja
ob and Wadsworth [18℄, Brussel [5℄.A K-division algebra is inde
omposable if it 
annot be expressed as the tensor produ
t of twonontrivial K-division algebras. It is easy to see that all division algebras of period not a primepower are de
omposable, so the problem of produ
ing an inde
omposable division algebra is onlyEmail address: f
hen�emory.edu (Feng Chen)Preprint submitted to Arxiv April 24, 2010



2interesting when the period and index are unequal prime powers. Therefore we will only 
onsiderdivision algebras of prime power period and index in this paper. Then it is not hard to see thatall division algebras of equal (prime power) period and index are trivially inde
omposable. Albert
onstru
ted de
omposable division algebras in the 1930's, but inde
omposable division algebras ofunequal (2-power) period and index did not appear until Saltman [23℄and Amitsur et al. [3℄. Sin
ethen there have been several 
onstru
tions, in
luding Tignol [27℄, Ja
ob and Wadsworth [17℄, Ja
ob[16℄, S
ho�eld and Van den Bergh [25℄, Brussel [4℄ and M
Kinnie [21℄.It is the author's pleasure to thank Prof. Brussel, his thesis adviser. The author is greatlyindebted to him for his patien
e and suggestions during the preparation of the paper. The authorwould also like to thank Prof. Suresh and Prof. Parimala for many instru
tive dis
ussions and theirmost valuable 
omments and 
ritiques. Finally the author thanks Prof. Harbater for reading a �rstdraft of the paper and his valuable suggestions and 
omments to improve the writing.2. Pat
hing over FieldsOur 
onstru
tion is based on the method of pat
hing over �elds introdu
ed in Harbater andHartmann [14℄. In this se
tion, we will re
all this method. Throughout this se
tion, T will be a
omplete dis
rete valuation ring with uniformizer t, fra
tion �eld K and residue �eld k. Let X̂ bea smooth proje
tive T -
urve with fun
tion �eld F su
h that the redu
ed irredu
ible 
omponents ofits 
losed �bre X is regular. (Given F , su
h an X̂ always exists by resolution of singularities; 
f.Abhyankar [1℄ or Lipman [20℄). Let f : X̂ → P
1
T be a �nite morphism su
h that the inverse image

S of ∞ ∈ P
1
k 
ontains all the points of X at whi
h distin
t irredu
ible 
omponents meet. (Su
h amorphism exists by Harbater and Hartmann [14, Proposition 6.6℄). We will 
all (X̂, S) a regular

T -model of F .We follow Harbater and Hartmann [14, Se
tion 6℄ to introdu
e the notation. Given an irredu
ible
omponent X0 of X with generi
 point η, 
onsider the lo
al ring of X̂ at η. For a (possibly empty)proper subset U ofX0, we let RU denote the subring of this lo
al ring 
onsisting of rational fun
tionsthat are regular at ea
h point of U . In parti
ular, Rφ is the lo
al ring of X̂ at the generi
 point ofthe 
omponent X0. The t-adi
 
ompletion of RU is denoted by R̂U . If P is a 
losed point of X , wewrite RP for the lo
al ring of X̂ at P , and R̂P for its 
ompletion at its maximal ideal. A height 1prime ideal p that 
ontains t determines a bran
h of X at P , i.e., an irredu
ible 
omponent of thepullba
k of X to Spec(R̂P ). Similarly the 
ontra
tion of p to the lo
al ring of X̂ at P determinesan irredu
ible 
omponent X0 of X , and we say that p lies on X0. Note that a bran
h p uniquelydetermines a 
losed point P and an irredu
ible 
omponent X0. In general, there 
an be severalbran
hes p on X0 at a point P ; but if X0 is smooth at P then there is a unique bran
h p on X0at P . We write R̂p for the 
ompletion of the lo
alization of R̂P at p; thus R̂P is 
ontained in R̂p,whi
h is a 
omplete dis
rete valuation ring.Sin
e X̂ is normal, the lo
al ring RP is integrally 
losed and hen
e unibran
hed; and sin
e Tis a 
omplete dis
rete valuation ring, RP is ex
ellent and hen
e R̂P is a domain (
f. Grothendie
kand Dieudonné [13, S
holie 7.8.3(ii,iii,vii)℄). For nonempty U as above and Q ∈ U , R̂U/t
nR̂U →

R̂Q/t
nR̂Q is inje
tive for all n and hen
e R̂U → R̂Q is also inje
tive. Thus R̂U is also a domain.Note that the same is true if U is empty. The fra
tion �eld s of the domains R̂U , R̂P and R̂p willbe denoted by FU , FP and Fp.If p is a bran
h at P lying on the 
losure of U ⊂ X0, then there are natural in
lusions of R̂Pand R̂U into R̂p, and hen
e of FP and FU into Fp. The in
lusion of R̂P was observed above; for

R̂U , note that the lo
alization of RU and of Rp at the generi
 point of X0 are the same; and this



3lo
alization is naturally 
ontained in the t-adi
ally 
omplete ring R̂p. Thus so is RU and hen
e its
t-adi
 
ompletion R̂U .In the above 
ontext, assume f : X̂ → P

1
T is a �nite morphism su
h that P = f−1(∞) 
ontainsall points at whi
h distin
t irredu
ible 
omponents of the 
losed �bre X ⊂ X̂ meet (Su
h an falways exists by Harbater and Hartmann [14, Proposition 6.6℄). We let U be the 
olle
tion ofirredu
ible 
omponents U of f−1(A1

k), and let B be the 
olle
tion of all bran
hes p at all points of
P. The in
lusions of R̂U and of R̂Q into R̂p, for p = (U,Q), indu
e in
lusions of the 
orrespondingfra
tion �elds FU and FQ into the fra
tion �eld Fp of R̂p. Let I be the index set 
onsisting of all
U,Q, p des
ribed above. Via the above in
lusions, the 
olle
tion of all Fξ, for ξ ∈ I, then forms aninverse system with respe
t to the ordering given by setting U ≻ p and Q ≻ p if p = (U,Q).Under the above hypotheses, suppose that for every �eld extension L of F , we are given a
ategory A(L) of algebrai
 stru
tures over L(i.e. �nite dimensional L-ve
tor spa
es with additionalstru
ture, e.g. asso
iative L-algebras), along with base-
hange fun
tors A(L) → A(L′) when L ⊆ L′.An A-pat
hing problem for (X̂,S) 
onsists of an obje
t Vξ in A(Fξ) for ea
h ξ ∈ I, together withisomorphisms φU,p : VU⊗FU

Fp → Vp and φQ,p : VQ⊗FQ
Fp → Vp in A(Fp). These pat
hing problemsform a 
ategory, denoted by PPA(X̂, S), and there is a base 
hange fun
tor A(F ) → PPA(X̂, S).If an obje
t V ∈ A(F ) indu
es a given pat
hing problem up to isomorphism, we will say that

V is a solution to that pat
hing problem, or that it is obtained by pat
hing the obje
ts Vξ. Wesimilarly speak of obtaining a morphism over F by pat
hing morphisms in PPA(X̂, S). The nextresult is given by Harbater and Hartmann [14, Theorem 7.2℄.Theorem 1. Let T be a 
omplete dis
rete valuation ring. Let X̂ be a smooth 
onne
ted proje
tive
T -
urve with 
losed �bre X. Let U1, U2 ⊆ X, let U0 = U1 ∩ U2, and let Fi := FUi

(i = 0, 1, 2). Let
U = U1 ∪ U2 and form the �bre produ
t of groups Br(F1) ×Br(F0) Br(F2) with respe
t to the maps
Br(Fi) → Br(F0) indu
ed by Fi →֒ F0. Then the base 
hange map β : Br(F

U
) → Br(F1) ×Br(F0)

Br(F2) is a group isomorphism.The above Theorem says that giving a Brauer 
lass over a fun
tion �eld F is equivalent to giving
ompatible division algebras over the pat
hes. The ni
e thing about pat
hing Brauer 
lasses overa fun
tion �eld F is that we have good 
ontrol of the index, whi
h is stated in Harbater et al. [15,Theorem 5.1℄.Theorem 2. Under the above notation, let A be a 
entral simple F -algebra. Then ind(A) =
lcmξ∈P∪U(ind(AFξ

)).To 
on
lude this se
tion, we re
ord a variant of Hensel's Lemma from Harbater et al. [15, Lemma4.5℄ that will be used over and over again in the index 
omputation.Lemma 3. Let R be a ring and I an ideal su
h that R is I-adi
ally 
omplete. Let X be an a�ne
R-s
heme with stru
ture morphism φ : X → SpecR. Let n ≥ 0. If sn : Spec(R/In) → X×R (R/In)is a se
tion of φn : φ×R (R/In) and its image lies in the smooth lo
us of φ, then sn may be extendedto a se
tion of φ.3. Splitting MapLet T be a 
omplete dis
rete valuation ring with uniformizer t and residue �eld k. By a smooth
urve X̂ over T , we will mean a s
heme X̂ whi
h is proje
tive and smooth of relative dimension



3.1 Constru
tion over an Open A�ne Subset 4
1 over Spec(T ). In parti
ular, X̂ is �at and of �nite presentation over Spec(T ). Let F = K(X̂)be the fun
tion �eld of X̂. Note that sin
e X̂ is smooth, the 
losed �bre X is smooth, integral,
onne
ted and of 
odimension 1, hen
e determines a dis
rete valuation ring on F . Let F̂ = K̂(X̂)be the 
ompletion of F with respe
t to this dis
rete valuation. Throughout the paper, n will denotean integer whi
h is prime to the 
hara
teristi
 of k.We will be using the following notation for 
ohomology groups in the sequel: For an integer r,we let

µr
n =

{

µ⊗r
n for r ≥ 0,

hom(µ⊗−r
n , µn) for r < 0.For a �xed integer n, and for any �eld K, we will let Hq(K, r) = Hq(K,µ⊗r

n ) and Hq(K) =
Hq(K, q − 1) = Hq(K,µ⊗q−1

n ). In parti
ular, H2(K) = nBr(K) will be the n-torsion part of theBrauer group of K; and H1(K) will be the n-torsion part of the 
hara
ter group of K.Adopting the above notation, in this se
tion we will de�ne a map s : H2(F̂ ) → H2(F ) and showthat s has the following properties:
• s is a group homomorphism;
• s splits the restri
tion;
• s preserves index of Brauer 
lasses.On
e su
h a map s is de�ned, we 
ould use it to 
onstru
t inde
omposable division algebras andnon
rossed produ
t division algebras over F , as in se
tion 5.3.1. Constru
tion over an Open A�ne SubsetGiven an element γ̂ ∈ H2(F̂ ), we will de�ne a lift γU to FU of γ̂. Note that sin
e F̂ is a 
ompletedis
retely valued �eld with t a unifomizer, and with k(X) the residue �eld. We have an exa
t WittSequen
e as in Garibaldi et al. [10, II.7.10 and II.7.11℄,

0 → H2(k(X)) → H2(F̂ ) → H1(k(X)) → 0 (1)split (non-
anoni
ally) by the 
up produ
t with (t) ∈ H1(k(X)). Hen
e ea
h element γ̂ ∈ H2(F̂ )
an be written as a sum γ0 + (χ0, t), with γ0 ∈ H2(k(X)) and χ0 ∈ H1(k(X)) (Note that here weare identifying Hr(k(X)) as a subgroup of Hr(F̂ ), for r = 1, 2, as in Garibaldi et al. [10, II.7.10 andII.7.11℄). Here we use the notation (χ0, t) to denote the 
up produ
t χ0 ∪ (t), and we will use thisnotation throughout the paper without further explanation.Let U be an open a�ne subset of X so that neither γ0 nor χ0 rami�es at any 
losed point of U .This implies that γ0 ∈ H2(k[U ]) and χ0 ∈ H1(k[U ]) by purity(
f, Colliot-Thélène [8℄), where k[U ]denotes the ring of regular fun
tions of the a�ne s
heme U .By Cipolla [7℄, there exists a 
anoni
al isomorphism H2(R̂U ) → H2(k[U ]) sin
e R̂U is t-adi
ally
omplete and k[U ] ∼= R̂U/(t); therefore there is a unique lift of γ0 to H2(R̂U ). At the same time,Grothendie
k and Raynaud [12, Théorèm 8.3℄ implies that there is a unique lift of χ0 to H1(R̂U ) aswell. Taking γ̃0 and χ̃0 as the lifts of γ0 and χ0 to R̂U , we will let
γU = γ̃0 + (χ̃0, t) (2)be the lift of γ̂ to H2(FU ).



3.2 Constru
tion over Closed Points 53.2. Constru
tion over Closed PointsFix an open a�ne subset U of X and let P = X\U . In order to apply the pat
hing resultwe re
alled in 2, we need to de�ne a γP for ea
h P ∈ P in su
h a way that when p = (U, P )is the unique bran
h of U at P , the restri
tion to Fp of γP and γU agree with ea
h other, i.e.,
resFp

(γP ) = resFp
(γU ) (Re
all there are �eld embeddings FP →֒ Fp and FU →֒ Fp for p = (U, P ),as in Se
tion 2, hen
e there are restri
tions res : H2(FU ) → H2(Fp) and res : H2(FP ) → H2(Fp).For more details on these restri
tion maps, see Serre [26℄).Note that sin
e X̂ is regular and the 
losed �bre X is smooth, the maximal ideal of the lo
alring RP is generated by two generators, t and π. So is R̂P .We de�ne γP in the following way: There is a �eld embedding FU → Fp, hen
e a 
anoni
alrestri
tion res : H2(FU ) → H2(Fp). Let γp be the image of γU under this restri
tion. Observe that

Fp is a 
omplete dis
retely valued �eld with residue �eld κ(p); furthermore, κ(p) is also a 
ompletedis
retely valued �eld with residue �eld κ(P ). Therefore, applying Garibaldi et al. [10, II.7.10 andII.7.11℄ twi
e, we get the following de
omposition of H2(Fp):
H2(Fp) ∼= H2(κ(P ))⊕H1(κ(P ))⊕H1(κ(P )) ⊕H0(κ(P )). (3)In other words, ea
h element γp ∈ H2(Fp) 
an be written as γp = γ0,0+(χ1,π)+(χ2+(πr), t), where

γ0,0 ∈ H2(κ(P )), χ1,χ2 ∈ H1(κ(P )), r ∈ H0(κ(P )) ∼= Z/nZ and (πr) denote the image in H1(κ(P ))of πr under the Kummer map. Note that by our notation, H0(κ(P )) = H0(κ(P ), µ−1
n ) = Z/nZ.In order to de�ne a lift for γp to FP , we �rst show that all 
hara
ters in H1(κ(p)) 
an be liftedby proving the following lemma.Lemma 4. Let χ ∈ H1(κ(p)) be a 
hara
ter. Then there is a unique χ̃ ∈ H1(FP ) that lifts χ.Proof. Sin
e κ(p) is a 
omplete dis
retely valued �eld with residue �eld κ(P ), we have the 
lassi
alWitt's de
omposition for χ,

χ = χ0 + (πr),where χ0 ∈ H1(κ(P )) and r ∈ H0(κ(P )). Note that χ0 
an be lifted without any di�
ulty byGrothendie
k and Raynaud [12, Théorèm 8.3℄; the only trouble 
omes from (πr).Let L,L0/κ(p) be the �eld extension determined by χ, χ0 respe
tively. Then L0 is the maximalunrami�ed subextension of κ(p) inside L and L/L0 is a totally rami�ed extension determined bythe 
hara
ter (πr). Now Fesenko and Vostokov [9, Theorem II.3.5℄ implies that (πr) 
an be liftedto H1(FP ) in a unique fashion as well, sin
e κ(p) is a 
omplete dis
retely valued �eld.Now we are ready to de�ne a lift for γ̂ in H2(FP ). Again Cipolla [7℄ implies that H2(κ(P )) ∼=
H2(R̂P ) and Lemma 4 implies that χ1, χ2 + (πr) 
an be lifted to H1(R̂P ) uniquely. Hen
e ea
h
omponent of H2(Fp) 
an be lifted to R̂P , and thus we will set

γP = γ̃0,0 + (χ̃1, π) + (χ̃2 + (πr), t). (4)where γ̃, χ̃1, χ̃2 are the lifts of γ0,0,χ1, χ2 to R̂P (and hen
e to FP ), respe
tively. Therefore this γPis a unique lift of γp to FP . The assignment of sP (γp) = sP will yield a map sP : H2(Fp) → H2(FP ).It is not hard to see that sP is a group homomorphism, sin
e it is a group homomorphism on ea
hof the 
omponents.



3.3 The Map is Well De�ned 63.3. The Map is Well De�nedIn this se
tion we show that γU and γP that we 
onstru
ted in Se
tion 3.1 and Se
tion3.2 are
ompatible in the sense of pat
hing, that is resFp
(γU ) = resFp

(γP ) for ea
h P ∈ P = X\U when
p = (U, P ) is the unique bran
h of U at P .We 
laim that the 
ompatibility will be proved if we 
an show that sP splits the restri
tionmap resFp

: H2(FP ) → H2(Fp), or equivalently, resFp
◦ sP is the identity map. This is true be
ause

γP = sP (γp) = sP ◦ resFp
(γU ), hen
e we would have that resFp

(γP ) = resFp
(γU ) if resFp

◦ sP is theidentity map. So it su�
es to prove the followingProposition 5. sP as de�ned in 3.2 splits the restri
tion res : H2(FP ) → H2(Fp), that is, res ◦ sPis the identity map.Proof. Take an arbitrary element γp ∈ H2(Fp). As in se
tion 3.2, we write γp = γ0,0 + (χ1,π) +
(χ2 + (πr), t). Therefore it is easily 
he
ked that

res ◦ sP (γp) = res ◦ sP (γ0,0 + (χ1, π) + (χ2 + (πr), t))

= res(γ̃0,0 + (χ̃1, π) + (χ̃2 + (πr), t))

= γ0,0 + (χ1, π) + (χ2 + (πr), t)

= γp.Thus γU , γP will pat
h and yield γ ∈ H2(F ), by Harbater and Hartmann [14, Theorem 7.2℄.But there is one more thing we have to 
he
k before we 
an say we have a map s : H2(F̂ ) → H2(F ):we need to show that γ is independent of the 
hoi
e of the open a�ne subset U of X . In order todo this, we prove the followingLemma 6. Let T be a 
omplete dis
rete valuation ring with residue �eld k; let X̂ be a smoothproje
tive T -
urve with fun
tion �eld F and 
losed �bre X. Let F̂ be the 
ompletion of F withrespe
t to the dis
rete valuation indu
ed by X, and denote by k(X) the 
orresponding residue �eld.Take an element γ̂ = γ0 + (χ0, t) ∈ H2(F̂ ), where γ0 ∈ H2(k(X)) and χ0 ∈ H1(k(X)). Assume that
U1, U2 are two open a�ne subsets of X so that neither γ0, χ0 is rami�ed on any point of U1∪U2. Let
P1,P2 be the 
omplements of U1, U2 respe
tively. We 
onstru
t two Brauer 
lasses γ, γ′ ∈ H2(F )by pat
hing as we did above, while using U1 and U2 as the open a�ne subset in the 
onstru
tion,respe
tively. Then γ, γ′ denote the same Brauer 
lass in H2(F ).Proof. We �rst deal with the 
ase where U1 is 
ontained in U2. In this 
ase we have a �eld embedding
FU2

→֒ FU1
. Let γi be the lift of γ0 to H2(FUi

), we must have γ1 = resFU1
(γ2), sin
e both γ1 and γ2are the image of γ0; in other words, resFU2

(γ) = resFU2
(γ′). By the 
onstru
tion in Se
tion 3.2, itfollows that for every P ∈ P2, resFP

(γ) = resFP
(γ′). Therefore it follows that γ = γ′, by Harbaterand Hartmann [14, Theorem 7.2℄. This proves the Lemma in the 
ase where U1 is 
ontained in U2.In the general 
ase, let U3 be an open a�ne subset of U1 ∩ U2. Clearly γ0 and χ0 are bothunrami�ed at every point of U3. Let γ′′ ∈ H2(F ) be the Brauer 
lass 
onstru
ted by pat
hing asabove, using U3 as the open a�ne subset in the 
onstru
tion. It follows that γ′′ = γ and γ′′ = γ′sin
e U3 is 
ontained in both U1 and U2, by what we just proved for the 
ase where one open a�nesubset is 
ontained in the other. Hen
e γ = γ′ = γ′′ ∈ H2(F ), whi
h proves the Lemma in thegeneral 
ase.



3.4 s Splits the Restri
tion Map 73.4. s Splits the Restri
tion MapRe
all the notation: let T be a 
omplete dis
rete valuation ring with residue �eld k and uni-formizer t. Let X̂ be a smooth proje
tive T -
urve with fun
tion �eld F and 
losed �bre X . Let F̂be the 
ompletion of F with respe
t to the dis
rete valuation indu
ed by X . Let s : H2(F̂ ) → H2(F )be the map de�ned by pat
hing as in se
tion 3.1 and se
tion 3.2. We will show that s splits therestri
tion map res : H2(F ) → H2(F̂ ). Hen
e index of Brauer 
lasses 
annot go up under the map
s, be
ause restri
tion 
an never raise index. In parti
ular, we prove the following Proposition.Proposition 7. The map s is a se
tion to the restri
tion map res

F̂
: H2(F ) → H2(F̂ ).Proof. It su�
es to show that res ◦ s is the identity map on H2(F̂ ). Sin
e H2(F̂ ) ∼= H2(k(X)) ⊕

H1(k(X)), it su�
es to show that res
F̂
◦ s is the identity map on both 
omponents; that is, given

γ̂ = γ0 + (χ0, t) where γ0 ∈ H2(k(X)) and χ0 ∈ H1(k(X)), the Proposition will follow if we 
anshow that res
F̂
◦ s(γ0) = γ0 and res

F̂
◦ s((χ0, t)) = (χ0, t).Take an open a�ne subset U of X so that γ0, χ0 are both unrami�ed on every point of U ; that is,we have γ0 ∈ H2(k[U ]) and χ0 ∈ H1(k[U ]). Note that we have the following 
ommutative diagram(For a �eld E, H2

nr(E) denotes the unrami�ed part of H2
nr(E), or equivalently, H2

nr(E) = ∩vH
2(Ev),where v runs through all dis
rete valuations on E, and Ev denotes the 
ompletion of E at v. SeeColliot-Thélène [8℄ for more details on the unrami�ed 
ohomology.):

H2(k(X))
f

∼ // H2nr(F̂ )

s

��
H2(R̂U )

?�

g

OO

_�

h

��

H2(F )

resFUyyss
s
s
s
s
s
s
s
s

H2(FU )The 
ommutativity of the above diagram follows simply from the 
onstru
tion of over opena�ne subset we outline in Se
tion 3.1. Therefore res
F̂
on s(γ0) is the same as f ◦ g ◦ h−1 ◦ resFU

,and thus res
F̂
◦ s(γ0) = f ◦ g ◦ h−1 ◦ resFU

◦ s(γ0) = γ0. (Note in fa
t h has no inverse; however we
an �nd an inverse image under h for resFU
◦ s(γ0), so we write h−1 only merely as a shorthandnotation here.)To show that res

F̂
◦s((χ0, t)) = (χ0, t), it su�
es to show that ram(res

F̂
◦s((χ0, t))) = χ0, where

ram : H2(F̂ ) → H1(k(X)) denotes the rami�
ation map on H2(F̂ ) with respe
t to the valuationdetermined by the 
losed �breX . Sin
e χ0 ∈ H1(k[U ]), we have ram(res
F̂
◦s((χ0, t))) = ram((χ̃0, t))where χ̃0 denotes the lift of χ0 to H1(R̂U ), as we did in Se
tion 3.1 (Sin
e H1(R̂U ) ∼= H1(k[U ]), χ̃0 
anbe viewed as as element of H1(k[U ]), and hen
e element of H1(k(X)) via the inje
tion H1(k[U ]) →֒

H1(k(X)), and �nally element of H1(F̂ ) via the inje
tion H1(k(X)) →֒ H1(F̂ )). Therefore the imagein H1(F̂ ) of χ̃0 under the 
omposition of these maps is in fa
t χ0, sin
e all these maps are inje
tive.Then it is easy to see that ram((χ̃0, t)) = χ̃0 = χ0 ∈ H1(k[X ]), as desired.The following 
orollary is immediate:Corollary 8. Index of Brauer 
lasses 
annot go down under the map s.Proof. Take γ̂ ∈ H2(F̂ ) and let γ = s(γ̂). By Proposition 7 we must have that γ̂ = res
F̂
(γ),therefore ind(γ̂)|ind(γ). This proves that s 
an never lower index of Brauer 
lasses.



84. s Preserves Index of Brauer ClassesIn this se
tion, we will show that the splitting map s that we de�ned in se
tion 3 has one moreproperty that is 
ru
ial to the 
onstru
tion of inde
omposable and non
rossed produ
t divisionalgebras over p-adi
 
urves, that is, s preserves index of Brauer 
lasses. In other words, ind(γ̂) =
ind(γ) = ind(s(γ̂)). We make the following elementary observation, whi
h is true for Brauer 
lassesover an arbitrary �eld.Proposition 9. Let k be an arbitrary �eld. Let γ ∈ H2(k) be a Brauer 
lass with the followingde
omposition: γ = γ0 + (χ, t), where γ0 ∈ H2(k), χ ∈ H1(k) and t is an arbitrary element of k.Then ind(γ)|ind(γ0,l) ·exp(χ), where γ0,l denotes the base extension of γ0 to l/k, where l is the �eldextension determined by χ.Proof. Let E/l be a minimal extension that splits γ0,l. Then [E : l] = ind(γ0,l). Also there is some
E′/k with [E′ : k] = exp(χ) whi
h splits χ and hen
e (χ, t); therefore EE′ will split γ, furthermoreit is not hard to see that [EE′ : k]|ind(γ0,l) · exp(χ) and hen
e ind(γ)|ind(γ0,l) · exp(χ).We will apply Harbater et al. [15, Theorem 5.1℄, whi
h states that ind(γ) = lcm(ind(γU ), ind(γP ))for ea
h P ∈ P. Sin
e we already showed that s 
an never lower index of Brauer 
lasses as in se
-tion 3.4, we will be done if we 
ould show that ind(γ)|ind(γ̂); therefore it su�
es to show that
ind(γU )|ind(γ̂) and ind(γP )|ind(γ̂) for ea
h P ∈ P, respe
tively. We will deal with them in order.We start by re
alling the notion of Azumaya algebras and their generalized Severi-Brauer va-rieties. The notion of a 
entral simple algebra over a �eld 
an be generalized to the notion ofan Azumaya algebra over a domain R (
f. Saltman [24, Chapter 2℄, or Grothendie
k [11, Part I,Se
tion 1℄). The degree of an Azumaya algebra A over R is the degree of A ⊗R F as a 
entralsimple algebra over the fra
tion �eld F over R. The Brauer group of a domain R is de�ned as theset of equivalen
e 
lasses of Azumaya algebras with the analogous operations, where one repla
esthe ve
tor spa
es Vi with proje
tive modules in the de�nition of Brauer equivalen
es. If A is anAzumaya algebra of degree n over a domain R, and 1 ≤ i < n, there is a fun
torially asso
iatedsmooth proje
tive R-s
heme SBi(A), 
alled the i-th generalized Severi-Brauer variety of A (
f. Vanden Bergh [28, p. 334℄). For ea
h R-algebra S, the S-points of SBi(A) are in bije
tion with theright ideals of AS = A ⊗R S that are dire
t summands of the S-module AS having dimension(i.e. S-rank) ni. If R is a �eld F , so that A is a 
entral simple F -algebra, and if E/F is a �eldextension, then SBi(A)(E) 6= φ if and only if ind(AE) divides i (
f. Knus et al. [19, Proposi-tion 1.17℄). Here AE

∼= Matm(DE) for some E-division algebra DE and some m ≥ 1, and theright ideals of E-dimension ni are in natural bije
tion with the subspa
es of Dm
E of DE-dimension

i/ind(AE) (
f. Knus et al. [19, Proposition 1.12, De�nition 1.9℄). Thus the F -linear algebrai
 group
GL1(A) = GLm(DF ) a
ts transitively on the points of the F -s
heme SBi(A). We re
ord Knus et al.[19, Proposition 1.17℄ here sin
e we will be using it over and over again in the sequel.Proposition 10. Let A be a 
entral simple algebra over a �eld F . The Severi-Brauer variety
SBr(A) has a rational point over an extension K/F if and only if the index ind(AK) divides r. Inparti
ular, SB(A) has a rational point over K if and only if K splits A.4.1. Index Computation Over A�ne Open SetWe 
ompute ind(γU ) in this se
tion; in parti
ular, we show that ind(γU )|ind(γ̂). Thanks toLemma 6, it su�
es to show that there exists an open a�ne subset V ⊂ X so that ind(γV )|ind(γ̂)sin
e we 
ould repla
e U by V if ne
essary in the 
onstru
tion we outlined in se
tion 3.1 and this



4.2 Index Computation Over Closed Points 9would not 
hange γ ∈ H2(K(X̂) by Lemma 6. Therefore we will prove the following proposition,whi
h shows that there exists su
h an open a�ne subset V .Proposition 11. Let T be a 
omplete dis
rete valuation ring. Let X̂ be a smooth proje
tive T -
urvewith 
losed �bre X. Let F be the fun
tion �eld of X̂ and F̂ the 
ompletion of F with respe
t to thedis
rete valuation determined by X. Then for every γ̂ ∈ H2(F̂ ), there exists an a�ne open subset
V ⊂ X su
h that ind(γV )|ind(γ̂), where γV is the lift of γ̂ to FV as de�ned in se
tion 3.1.Proof. Re
all that γ̂ = γ0 + (χ0,t) ∈ H2(F̂ ) where γ0 ∈ H2(k(X)) and χ0 ∈ H1(k(X)). Therefore
ind(γ̂) = ind(γ0,l) · exp(χ0), where l/k(X) is the �eld extension determined by χ0, by Ja
ob andWadsworth [17, Theorem 5.15℄, sin
e F̂ is a 
omplete dis
retely valued �eld.Let U be an open a�ne subset ofX su
h that neither γ0 nor χ0 rami�es on any point of U . Re
allthat γU = γ̃0 + (χ̃0, t) where γ̃0 ∈ H2(R̂U ) and χ̃0 ∈ H1(R̂U ). Note that exp(χ̃0) = exp(χ0) sin
e
H1(R̂U ) ∼= H1(k(X)). By Proposition 9, we have ind(γU )|ind(γ̃0,S) · exp(χ̃0), where S/R̂U denotesthe Galois 
y
li
 extension determined by χ̃0. Note when V ⊆ U , we have Hr(k[U ]) ⊆ Hr(k[V ])by purity, and hen
e Hr(R̂U ) ⊆ Hr(R̂V ); so we have γ̃0 ∈ H2(R̂V ) and χ̃0 ∈ H1(R̂V ). Therefore itsu�
es to �nd some a�ne open subset V ⊂ U su
h that ind(γ̃0,S′)|ind(γ0,l), where S′/R̂V denotesthe Galois 
y
li
 extension determined by χ̃0.Let i = ind(γ0,l) be the index of the restri
tion of γ0 to l. Then Proposition 10 implies that
SBi(γ0)(l) 6= φ; in other words, there is an l-rational point in the i-th generalized Severi-Brauervariety of γ0. Hen
e the Spec(k(X))-morphism π : SBi(γ0)×k(X)l → Spec(l) has a se
tion Spec(l) →

SBi(γ0) ×k(X) l over Spec(k(X)), the generi
 point of the 
losed �bre U of Spec(R̂U ). Choose aZariski dense open subset V ⊆ U su
h that this se
tion over Spec(k(X)) extends to a se
tion over
V , and su
h that the image of this latter se
tion lies in an open subset of SBi(γ0) ×k(X) l that isa�ne over R̂U . Then by Lemma 3, the se
tion over V lifts to a se
tion over Spec(R̂V ), thus weobtain an L-rational point of SBi(γ̃0)×R̂V

S′, where L/FV is the Galois 
y
li
 extension determinedby χ̃0; or equivalently, L is the fra
tion �eld of S′. This implies that ind(γ̃0,S′)|i = ind(γ0,l) byProposition 10 again.4.2. Index Computation Over Closed PointsIt remains to show ind(γP )|ind(γ̂). This is what we are going to do in this se
tion. Note that
γP is de�ned as sP ◦ resFp

(γU ), where resFp

an only lower index of γU . Sin
e we have alreadyshown that ind(γU )|ind(γ̂), we have that ind(γ) will be 
ompletely determined by ind(γU ) if we
ould show that ind(γp) does not go up under the map sP . Therefore we just need to show that sP
annot in
rease index of Brauer 
lasses, or, ind(γP ) = ind(sP (γp))|ind(γp) .We 
ompute ind(γp) �rst. Sin
e Fp is a 
omplete dis
retely valued �eld, we have ind(γp) =

ind((γ0,0 + (χ1, π))M ) · exp(χ2 + (πr)), where M/κ(p) is the Galois 
y
li
 extension determinedby χ2 + (πr) ∈ H1(κ(p)) by Ja
ob and Wadsworth [17, Theorem 5.15℄. It is not hard to 
ompute
ind((γ0,0 + (χ1, π))M ): Sin
e M is a �nite extension of κ(p), whi
h is a 
omplete dis
retely valued�eld, we have that M is a 
omplete dis
retely valued �eld as well. Let e be the rami�
ation indexof M/κ(p) and M̄ the residue �eld of M . Then by Serre [26, Exer
ise XII.3.2℄, (γ0,0 + (χ1,π))M =
(γ0,0)M̄+(e·χ1, π

′), where π′ is some uniformizer ofM . Let L/κ(p) be the �eld extension determinedby e · χ1 and L̄ the residue �eld of L. Then ind((γ0,0 + (χ1,π))M ) = ind((γ0,0)M̄ + (e · χ1, π
′)) =

ind((γ0,0)M̄L̄) · exp(e · χ1).Now that we have an index formula for Brauer 
lasses over Fp, we are ready to show the following



10Proposition 12. Let T be a 
omplete dis
rete valuation ring. Let X̂ be a smooth proje
tive T -
urvewith 
losed �bre X. Suppose that U is an open a�ne subset of X and P ∈ X\U is a 
losed point.Let p = (U, P ) be the unique bran
h of U at P and let γP and γp be de�ned as above. Then we have
ind(γP )|ind(γp).Proof. By Proposition 9 we have that ind(γP )|ind((γ̃0,0+(χ̃1, π))M̃ )·exp(χ̃2+(πr)), where M̃/FP isthe Galois 
y
li
 extension determined by χ̃2+(πr). We 
laim that exp(χ̃2+(πr)) = exp(χ2)+(πr):we have that exp(χ̃2+(πr)) = lcm(exp(χ̃2), exp((π

r))) and exp(χ2+(πr)) = lcm(exp(χ2), exp((π
r))).Sin
e exp(χ̃2) = exp(χ2), we have proved that exp(χ̃2 + (πr)) = exp(χ2 + (πr)). Therefore thisproposition will follow if we 
an show that ind((γ̃0,0 + (χ̃1, π))M̃ )|ind((γ0,0)M̄ + (e · χ1, π

′)).Next we 
ompute
(γ̃0,0 + (χ̃1, π))M̃ = (γ̃0,0)M̃ + (χ̃1, π)M̃

= (γ̃0,0)M̃ + ((χ̃1)M̃ , π)

= (γ̃0,0)M̃ + ((χ̃1)M̃ , (π′)e)

= (γ̃0,0)M̃ + (e · (χ̃1)M̃ , π′)By Proposition 9 again we immediately see that ind((γ̃0,0 + (χ̃1, π))M̃ )|ind((γ̃0,0)M̃L̃) · exp(e ·

(χ̃1)M̃ ), where L̃/FP denotes the Galois 
y
li
 extension determined by e · χ̃1. Clearly exp(e ·
(χ̃1)M̃ )| exp(e · (χ1)), so we will be done if we 
an show that ind((γ̃0,0)M̃L̃)|ind((γ0,0)M̄L̄), whi
h wewill do in the following Lemma 13.Lemma 13. In line with the notation in 12, we have that ind((γ̃0,0)M̃L̃)|ind((γ0,0)M̄L̄).Proof. Let M̃ ′/FP be the Galois 
y
li
 extension determined by χ2. Clearly it su�
es to provethat ind((γ̃0,0)M̃ ′L̃)|ind((γ0,0)M̄L̄) sin
e ind((γ̃0,0)M̃L̃)|ind((γ̃)M̃ ′L̃). Let i = ind((γ0,0)M̄L̄). ByProposition 10, we have that SBi(γ0,0)(M̄L̄) 6= φ, or equivalently, the morphism SBi(γ0,0)×κ(P )M̄L̄has a se
tion Spec(M̄L̄) → SBi(γ0,0) ×κ(P ) M̄L̄. By Lemma 3, this se
tion lifts to a se
tion over
Spec(R̂P ); thus we obtain a M̃ ′L̃-rational point of SBi(γ̃0,0)×R̂P

S(note that γ0,0 ∈ H2(R̂P )), where
S is the integral 
losure of R̂P in M̃ ′L̃; or equivalently, a M̃ ′L̃-rational point of SBi(γ̃0,0)×FP

M̃ ′L̃.Therefore ind((γ̃0,0)M̃ ′L̃)|i again by Proposition 10, whi
h proves this lemma.The following Corollary is immediate:Corollary 14. The homomorphism s : H2(F̂ ) → H2(F ) preserves index of Brauer 
lasses.Proof. This is simply Corollary 8 plus Proposition 12.5. Inde
omposable and non
rossed produ
t Division Algebras over Curves over 
om-plete Dis
rete Valuation RingsLet T be a 
omplete dis
rete valuation ring. Let X̂ be a smooth proje
tive T -
urve with
losed �bre X . Let F be the fun
tion �eld of X̂ and F̂ the 
ompletion of F with respe
t to thedis
rete valuation determined byX . We 
onstru
t inde
omposable division algebras and non
rossedprodu
t division algebras over F of prime power index for all primes q where q is di�erent fromthe 
hara
teristi
 of the residue �eld of T . Note that the existen
e of su
h algebras are alreadyknown when residue �eld of T is a �nite �led, 
f. Brussel et al. [6℄. Our 
onstru
tion here is almostidenti
al to Brussel et al. [6, Se
tion 4℄, we list it here for the reader's 
onvenien
e.



5.1 Inde
omposable Division Algebras over F 115.1. Inde
omposable Division Algebras over FFirst we re
all the 
onstru
tion of inde
omposable division algebras over F̂ , this is done inBrussel et al. [6, Proposition 4.2℄.Proposition 15. Let T be a 
omplete dis
rete valuation ring and let X̂ be a smooth proje
tive
urve over Spec(T ) with 
losed �bre X. Let F be the fun
tion �eld of X̂ and F̂ the 
ompletion of Fwith respe
t to the dis
rete valuation indu
ed by X. Let e, i be integers satisfying l ≤ e ≤ 2e−1. Forany prime q 6= char(k), there exists a Brauer 
lass γ̂ ∈ H2(F̂ ) satisfying ind(γ̂) = qi, exp(γ̂) = qeand whose underlying division algebra is inde
omposable.Then we lift γ̂ to F by using the splitting map s we de�ned in se
tion 3, and show that the liftis in fa
t inde
omposable.Theorem 16. In the notation of Theorem 15. Then there exists an inde
omposable division algebra
D over F su
h that ind(D) = qi and exp(D) = qe .Proof. By Proposition 15, there exists γ̂ ∈ Br(F̂ ) with ind(γ̂) = qi and exp(γ̂) = qe and whoseunderlying division algebra is inde
omposable. By Corollary 14, γ = s(γ̂) has index qi too. Sin
e
s splits the restri
tion map, we have exp(γ) = qe. We show the division algebra underlying γ isinde
omposable.We pro
eed by 
ontradi
tion. Assume γ = β1 + β2 represents a nontrivial de
omposition,then γ̂ = res

F̂
(β1) + res

F̂
(β2). Sin
e the index 
an only go down under restri
tion, we have that

ind(γ̂) = ind(res
F̂
(β1)) · ind(resF̂ (β2)), whi
h represents a nontrivial de
omposition of the divisionalgebra underlying γ̂, a 
ontradi
tion.5.2. Non
rossed Produ
ts over FAgain we will 
onstru
t non
rossed produ
t division algebras over F̂ and use the splitting map

s to lift it to F and show that the lift represents a non
rossed produ
t division algebra over F .The 
onstru
tion over F̂ is in line with Brussel [5℄ where non
rossed produ
ts over Q(t) and
Q((t)) are 
onstru
ted. In order to mimi
 the 
onstru
tion in Brussel [5℄, we need only note thatboth Chebotarev density theorem and the Gruwald-Wang theorem hold for global �elds whi
h are
hara
teristi
 p fun
tion �elds. Then the arguments in Brussel [5℄ apply dire
tly to yield non
rossedprodu
ts over K̂(X̂) of index and exponent given below:The following is Brussel et al. [6, Theorem 4.7℄.Theorem 17. Let T be a 
omplete dis
rete valuation ring with residue �eld k and let X̂ be a smoothproje
tive 
urve over Spec(T ). Let F be the fun
tion �eld of X̂ and let F̂ be the 
ompletion of Fwith respe
t to the dis
rete valuation indu
ed by the 
losed �bre. For any positive integer a, let ǫabe a primitive a-th root of unity. Set r and s to be maximum integers su
h that µqr ⊂ k(X)× and
µqs ⊂ k(X)(ǫqr+1). Let n,m be integers su
h that n ≥ 1, n ≥ m and n,m ∈ r ∪ [s,∞). Let a, lbe integers su
h that l ≥ n +m + 1 and 0 ≤ a ≤ 1 − n. (See Brussel [5, Page 384-385℄ for moreinformation regarding these 
onstraints.) Let q 6= char(k) be a prime number. Then there existsnon
rossed produ
t division algebras over F̂ with index ql+1 and exponent ql.Corollary 18. Let R, k, X̂,X, F, F̂ , q, a, l be as in Theorem 17. Then there exists non
rossed prod-u
t division algebras over F of index ql+a and exponent ql.



5.2 Non
rossed Produ
ts over F 12Proof. Let γ̂ be the Brauer 
lass representing a non
rossed produ
t over F̂ of index ql+a andexponent ql. Let D be the division algebra underlying the Brauer 
lass s(γ̂). By Corollary 14, weknow that ind(D) = ind(γ̂).Assume that D is a 
rossed produ
t with maximal Galois sub�eld M/F . Then MF̂ splits γ̂, isof degree ind(γ̂) and is Galois. This 
ontradi
ts the fa
t that γ̂ is a non
rossed produ
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