
ON THE ESSENTIAL DIMENSION OF CYCLIC GROUPS

WANSHUN WONG

Abstract. We find an upper bound for the essential dimension of finite cyclic

groups Z/pn1

1
· · · pnr

r Z over a field F of characteristic different from pi contain-
ing all the primitive pi-th roots of unity, where pi are distinct prime numbers.

1. Introduction

The essential dimension of an algebraic structure is a numerical invariant that
measures the complexity of the structure. Informally, the essential dimension of an
algebraic structure over a field F is the smallest number of algebraically independent
parameters required to define the structure over a field extension of F (see [1] and
[8]).

Let F : Fields/F → Sets be a functor (an algebraic structure) from the category
Fields/F of field extensions of F and field homomorphisms over F to the category
of sets. Let K ∈ Fields/F and a ∈ F(K). The essential dimension of a, denoted
ed(a), is the least transcendence degree tr.degF (K0) over all subfields K0 of K over
F such that a is in the image of the map F(K0) → F(K). The essential dimension
of the functor F is

ed(F) = sup{ed(a)}

where the supremum is taken over all K ∈ Fields/F and all a ∈ F(K).
If G is a finite group, we view G as a constant group scheme over a field F . The

essential dimension of G is defined as

ed(G) = ed(H1(−, G)).

Thus the essential dimension of G measures the complexity of the category G-
torsors. If G is a finite cyclic p-group, and F is a field of characteristic different
from p containing primitive p-th roots of unity, then the essential dimension of
G is computed in [4] and [5]. In this paper we prove in Thm. 3.1 that if G =
Z/pn1

1 · · · pnr
r Z is a finite cyclic group, pi are distinct prime numbers, and F is a

field of characteristic different from pi containing all the primitive pi-th roots of
unity, then

ed(Z/pn1

1 · · · pnr

r Z) ≤ [F (ξpn1

1

) : F ] + · · ·+ [F (ξpnr
r
) : F ]− r + 1

where ξr denotes r-th primitive root of unity for any positive integer r.
Let A be a central division F -algebra of degree qa1

1 · · · qak

k , where qi are distinct
prime numbers, ai are non-negative integers. It is a conjecture (see [3]) that

cdim(SB(A)) = qa1

1 + · · ·+ qak

k − k
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where cdim(SB(A)) is the canonical dimension of the Severi-Brauer variety of A
(see Section 4 for definition). If the conjecture is valid, then we show in Thm. 4.4
that

ed(Z/pn1

1 · · · pnr

r Z) = [F (ξpn1

1

) : F ] + · · ·+ [F (ξpnr
r
) : F ]− r + 1.

Acknowledgements : The author would like to thank his advisor Alexander Merkur-
jev for his help along the way.

2. Affine Group Schemes

References for affine group schemes are [6] and [10].
Let p be a prime number, F be a field such that char(F ) 6= p and ξp ∈ F . Let Γ

be the absolute Galois group of F , i.e. Γ = Gal(Fsep/F ) where Fsep is a separable
closure of F .

For any non-negative integer r, let Gr = Z/prZ be a constant group scheme over
F , Fr = F (ξpr ) be a field extension of F and Γr = Gal(Fr/F ) be the corresponding
Galois group. Then let Tr = RFr/F (Gm) be the corestriction of the multiplicative
group Gm from Fr to F .

For any γ ∈ Γr, γ(ξpr ) = ξ
χr(γ)
pr for some χr(γ) ∈ (Z/prZ)×. Then χr is

a Γ-homomorphism χr : Γr → (Z/prZ)×. It extends linearly to a surjective Γ-
homomorphism fr : (Tr,sep)

∗ = Z[Γr] → Z/prZ = (Gr,sep)
∗,

fr(
∑

aγγ) =
∑

aγχr(γ) (mod pr).

Fix a positive integer n. Let s = min{n, sup{m ∈ N| ξpm ∈ F}}. Define a
surjective Γ-homomorphism g : Z[Γn−s]⊕ Z[Γn] → Z/pnZ by

g(x, y) = ps · fn−s(x) + fn(y)

for every (x, y) ∈ Z[Γn−s]⊕ Z[Γn]. Let V be the factor group scheme

V = (Tn−s × Tn)/Gn

with (Vsep)
∗ = ker(g), so we have an exact sequence of group schemes

1 −→ Gn −→ Tn−s × Tn −→ V −→ 1.

For every K ∈ Fields/F , passing to cohomology and applying Hilbert’s Theorem
90 give

V (K) −→ H1(K,Gn) −→ H1(K,Tn−s × Tn) = 1.

Consider the composition

(1) V (K) // // H1(K,Gn) // H1(K,Gn−s),

where the latter homomorphism is induced by the exact sequence

1 −→ Gs −→ Gn −→ Gn−s −→ 1.

Let F(K) be the image of V (K) in H1(K,Gn−s), which is the same as the image of
H1(K,Gn). Then we get a subfunctor F of H1(−, Gn−s). The main result of this
section is the following

Proposition 2.1. There exists a closed subscheme Y ⊆ V of dimension [Fn : F ]−1
such that for every infinite K ∈ Fields/F , the image of Y (K) in H1(K,Gn−s) is

equal to F(K).
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Proof. If n = s, the result follows immediately from H1(K,Gn−s) = 1 and [Fn :
F ] = 1.

If n > s, first we want to show that (1) is part of a commutative diagram.
Consider the following commutative diagram of Γ-modules

(2) Z/psZ Z/pnZ
π

oo Z/pn−sZ
ps

oo

Z[Γn]

π◦fn

OO

Z[Γn−s]⊕ Z[Γn]

g

OO

̟
oo Z[Γn−s]

i
oo

fn−s

OO

ker(π ◦ fn)

OO

ker(g)

OO

̟
oo ker(fn−s)

i
oo

OO

where π is the canonical projection, i is the canonical inclusion i(x) = (x, 0), ̟
is the canonical projection ̟(x, y) = y for every x ∈ Z[Γn−s], y ∈ Z[Γn]. Note
the all the rows and columns in (2) are short exact sequences. Let U = Tn/Gs

with (Usep)
∗ = ker(π ◦ fn), and S = Tn−s/Gn−s with (Ssep)

∗ = ker(fn−s). The
commutative diagram of group schemes dual to (2) is

Gs
//

��

Gn
//

��

Gn−s

��

Tn
//

��

Tn−s × Tn
//

��

Tn−s

��

U // V // S

which gives the following commutative diagram

(3) Tn−s(K)× Tn(K) //

��

Tn−s(K)

��

V (K) //

����

S(K)

����

H1(K,Gn) // H1(K,Gn−s)

for every K ∈ Fields/F .
In order to construct Y , we consider

(4) Z[Γn−s]⊕ Z Z[Γn−s]
j

oo

ker(g)

ϕ

OO

ker(fn−s)
� ?

OO

? _
i

oo

where j is the inclusion j(x) = (x, 0), ϕ is defined by ϕ(x, y) = (x, ǫ(y)/ps) for
every (x, y) ∈ ker(g) ⊆ Z[Γn−s] ⊕ Z[Γn], where ǫ is the augmentation map of a
group ring.

Lemma 2.2. ϕ : ker(g) → Z[Γn−s]⊕ Z is well-defined and surjective.
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Proof. Let (x, y) be any element in ker(g).

(1) For p 6= 2, and for p = 2 and s ≥ 2, Γn is a cyclic group. Let σ be

the generator of Γn such that σ(ξpn) = ξp
s+1

pn . Then we can write y =∑
amσm, and fn(y) =

∑
am(ps + 1)m (mod pn). Since (x, y) ∈ ker(g),

ps · fn−s(x) +
∑

am(ps + 1)m = 0 (mod pn). Therefore ps divides
∑

am.
(2) For p = 2 and s = 1, write y =

∑
aγγ. Since (x, y) ∈ ker(g), 2fn−1(x) +∑

aγχn(γ) = 0 (mod 2). Note that χn(γ) ∈ (Z/2nZ)× for every γ, in
particular χn(γ) is odd. Hence

∑
aγ is even.

Therefore ϕ is well-defined.
Claim: If ǫ/ps : ker(fn) → Z is surjective, then ϕ is surjective.

To prove the claim let (x,m) be any element in Z[Γn−s] ⊕ Z. Recall that fn :
Z[Γn] → Z/pnZ is surjective. There exists y ∈ Z[Γn] such that fn(y) = −ps ·
fn−1(x), which implies (x, y) ∈ ker(g). Let m′ = ǫ(y)/ps. Note that for every
y′ ∈ ker(fn), (0, y

′) ∈ ker(g). If ǫ/ps : ker(fn) → Z is surjective, let y′ ∈ ker(fn)
such that ǫ(y′)/ps = 1. Then (x, y+(m−m′)y′) ∈ ker(g) and ϕ(x, y+(m−m′)y′) =
(x,m), proving the claim. It remains to show that ǫ/ps : ker(fn) → Z is surjective.

(1) For p 6= 2, and for p = 2 and s ≥ 2, simply note that σ − ps − 1 ∈ ker(fn).
(2) For p = 2 and s = 1, consider Im(χn) ⊆ (Z/2nZ)×. Note that (Z/2nZ)× is

a direct product of two cyclic subgroups generated by 5 and −1 respectively.
We claim that −5r ∈ Im(χn) for some integer r. Suppose not, then all

elements of Im(χn) are powers of 5, which implies Γn fixes ξ4 = ξ2
n−2

2n and
contradicts the fact that ξ4 /∈ F . Let γ ∈ Γn such that χn(γ) = −5r.
Since γ + 5r and 2n ∈ ker(fn), (1 + 5r)/2 and 2n−1 ∈ Im(ǫ/2). As 5r =
1 (mod 4), (1 + 5r)/2 is odd. Hence (1 + 5r)/2 and 2n−1 are coprime and
Im(ǫ/2) = Z. �

It is clear that the diagram (4) is commutative, so we have the dual commutative
digram of group schemes

(5) Tn−s ×Gm� _

��

// Tn−s

��

V

π
����

// S

V ′

where V ′ = V/(Tn−s ×Gm).
Let E = F (V ′) be the function field of V ′. From the exact sequence of cohomol-

ogy

V (E) −→ V ′(E) −→ H1(E, Tn−s ×Gm) = 1,

the generic point of V ′, Spec (E) → V ′ factors through V . Therefore there exists
a rational map α : V ′ → V such that the composition with the projection π is the

identity map on the largest open set U which α is defined. Let Y = Im(α). Clearly
dimY = dimV ′ = dimV − dim(Tn−s × Gm) = [Fn : F ] − 1. It remains to check
that the images of Y (K) and V (K) in H1(K,Gn−s) are equal.

Lemma 2.3. For every v ∈ V (K), there exists u ∈ Y (K) such that the images of

v and u in H1(K,Gn−s) are equal.
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Proof. Since Tn−s×Tn is a quasi-split torus, it is an open subset of an affine space.
Therefore Tn−s(K)×Tn(K), viewed as the set ofK-rational points, is a dense subset
of Tn−s × Tn because K is infinite. Then the image of Tn−s(K)× Tn(K) in V (K)
is dense, and V ′(K) is dense in V ′. As U is open in V ′, U(K) = U ∩ V ′(K) 6= ∅.
We can find some v′ in the image of Tn−s(K)× Tn(K) such that π(v · v′) ∈ U(K).
By (3) v and v · v′ have the same image in H1(K,Gn). Therefore by replacing v by
v · v′ we may assume π(v) ∈ U(K).

Let u = α◦π(v) ∈ Y (K). As π(u) = π(v), by (5) u and v differ by an element in
Tn−s(K)×Gm(K). Then by commutativity of (5) the images of u and v in S(K)
differ by the image of an element in Tn−s(K). Hence by (3) u and v have the same
image in H1(K,Gn−s). �

This completes the proof of the proposition. �

Corollary 2.4. ed(F) ≤ ed(Z/pnZ)− 1.

Proof. First we show that ed(F) ≤ ed(Y ). Let K ∈ Fields/F and a ∈ F(K). If K
is a finite field, then tr.degF (K) = 0 and ed(a) = 0 ≤ ed(Y ). If K is infinite, by
Prop. 2.1 Y (K) −→ F(K) is a surjection. Then ed(a) ≤ ed(Y ) by the proof of [1]
Lemma 1.9.

By [1] Prop. 1.17 and [5] Cor. 5.2, we have

ed(F) ≤ ed(Y ) = dim(Y ) = [Fn : F ]− 1 = ed(Z/pnZ)− 1. �

3. Main Theorem

Theorem 3.1. Let p1, . . . , pr be distinct prime numbers, n1, . . . , nr be positive

integers. Let F be a field such that char(F ) 6= pi and ξpi
∈ F for every i. Then

ed(Z/pn1

1 · · · pnr

r Z) ≤ ed(Z/pn1

1 Z) + · · ·+ ed(Z/pnr

r Z)− r + 1

= [F (ξpn1

1

) : F ] + · · ·+ [F (ξpnr
r
) : F ]− r + 1.

Proof. Let si = min{ni, sup{m ∈ N| ξpm
i
∈ F}} for every i. For each prime number

pi, let Fi be the corresponding F defined above. Let CN = Z/pn1

1 · · · pnr
r Z be a con-

stant group scheme over F , CS = Z/ps11 · · · psrr Z and CN−S = Z/pn1−s1
1 · · · pnr−sr

r Z.
The exact sequence of group schemes

1 −→ CS −→ CN −→ CN−S −→ 1

induces an exact sequence

(6) · · · −→ H1(K,CS) −→ H1(K,CN ) −→ H1(K,CN−S) −→ · · ·

for every K ∈ Fields/F . Note that

H1(K,CN ) = H1(K,Z/pn1

1 Z)× · · · ×H1(K,Z/pnr
r Z),

and similarly

H1(K,CN−S) = H1(K,Z/pn1−s1
1 Z) × · · · ×H1(K,Z/pnr−sr

r Z).

Then the exact sequence (6) implies that we have a fibration of functors ([1] Def.
1.12)

H1(−, CS) // H1(−, CN ) // // F1 × · · · × Fr.
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By Cor. 2.4, [1] Lemma 1.11 and Prop. 1.13, and [5] Cor. 5.2,

ed(CN ) ≤ ed(CS) + ed(F1 × · · · × Fr)

≤ 1 + ed(F1) + · · ·+ ed(Fr)

≤ 1 + (ed(Z/pn1

1 Z) − 1) + · · ·+ (ed(Z/pnr
r Z)− 1)

= ed(Z/pn1

1 Z) + · · ·+ ed(Z/pnr

r Z)− r + 1

= [F (ξpn1

1

) : F ] + · · ·+ [F (ξpnr
r
) : F ]− r + 1,

where ed(CS) = 1 as ξps1
1

···psr
r

∈ F . �

Example 3.2. If si = ni for 2 ≤ i ≤ r, then ξpnr
r

∈ F for 2 ≤ i ≤ r. Thm. 3.1
implies

ed(Z/pn1

1 · · · pnr
r Z) ≤ [F (ξpn1

1

) : F ] + · · ·+ [F (ξpnr
r
) : F ]− r + 1

= [F (ξpn1

1

) : F ]

= ed(Z/pn1

1 Z).

On the other hand,

H1(−,Z/pn1

1 · · · pnr

r Z) = H1(−,Z/pn1

1 Z)× · · · ×H1(−,Z/pnr

r Z).

By [1] Remark 1.16 max{ed(Z/pni

i )} ≤ ed(Z/pn1

1 · · · pnr
r Z) where the maximum is

taken over 1 ≤ i ≤ r. Therefore

ed(Z/pn1

1 · · · pnr

r Z) = ed(Z/pn1

1 Z).

Remark 3.3. Let m = pn1

1 · · · pnr
r , and G = Z/mZ. If V is a faithful linear

representation of G over F then ed(G) ≤ dim(V ) ([1] Prop. 4.15). We want to
compare the least dimension of a faithful representation of G over F with the upper
bound of ed(G) given by Thm. 3.1.

Let ni > si for 1 ≤ i ≤ a, and ni = si for a < i ≤ r for some integer
1 ≤ a ≤ r. By Maschke’s Theorem ([7] Ch. XVIII Thm. 1.2), F [G] is semisim-
ple. Since F [G] is a commutative ring, F [G] ∼= F [t]/〈tm − 1〉 is isomorphic to a
product of fields E1 × . . .× Ek. For every divisor d of m, there exists a surjection

F [t]/〈tm − 1〉 // // F (ξd) , t 7−→ ξd. Therefore F (ξd) ∼= Ei for some i. On the

other hand, for every Ej clearly there exists a surjection F [t]/〈tm − 1〉 // // Ej .

Let ξ be the image of t under this surjection. Then Ej = F [ξ] = F (ξ), and ξm = 1.
Hence Ej

∼= F (ξd) for some divisor d of m. Therefore F [G] is isomorphic to a
product of F (ξd), d|m. Note that there can be more than one copy of a particular
F (ξd) in the product.

For every divisor d ofm, the kernel of the natural representationG → GL(F (ξd)),
1 7−→ ξd, is the subgroup 〈d〉. Then the kernel of the natural representation
G −→ GL(

∐
F (ξdj

)) is
⋂
〈dj〉 = 〈lcm{dj}〉, where dj divides m for every j. By

choosing dj to be pn1

1 , . . . , p
na−1

a−1 , pna
a · · · pnr

r , we can see that the natural represen-
tation of G in the F -space V = F (ξpn1

1

)⊕ · · · ⊕F (ξpna
a
) is a faithful representation

of the least dimension, as F (ξpna
a
) = F (ξpna

a ···pnr
r
). We have

dimV = [F (ξpn1

1

) : F ] + · · ·+ [F (ξpna
a
) : F ]

≥ [F (ξpn1

1

) : F ] + · · ·+ [F (ξpnr
r
) : F ]− r + 1

where equality holds if and only if a = 1 (see Example 3.2). In particular, if a ≥ 2,
then ed(G) < dim(V ). This is different from the case for p-groups, where the
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essential dimension of a p-group G′ is equal to the least dimension of a faithful
representation of G′ over F (see [5] Thm. 4.1).

4. A conjecture for ed(Z/pn1

1 · · · pnr
r Z)

4.1. Canonical dimension. Let F be a field and C be a class of field extensions
of F . A field E ∈ C is called generic if for any K ∈ C there exists an F -place of E
with values in K. The canonical dimension of the class C is

cdim(C) = min{tr.degFE}

where the minimum is taken over all generic fields E ∈ C.

Example 4.1. If X is a separated scheme of finite type over F , let CX be the class
of field extensions K of F such that X(K) 6= ∅. The canonical dimension of X is
defined as cdim(X) = cdim(CX). It can be shown that cdim(X) ≤ dim(X) (see [3]
and [8]).

Example 4.2. If θ is an element of Br(F ) the Brauer group of F , let Cθ be the
class of splitting fields of θ. The canonical dimension of θ is defined as cdim(θ) =
cdim(Cθ).

Similarly, if D is a finite subgroup of Br(F ), let CD be the class of common
splitting fields of all elements in D. The canonical dimension of D is defined as
cdim(D) = cdim(CD).

Let θ ∈ Br(F ) be represented by a central simple F -algebra A. Let SB(A) be
the Severi-Brauer variety of A. K ∈ Fields/F splits A if and only if SB(A)(K) 6= ∅
([6] Prop. 1.17). Therefore cdim(θ) = cdim(SB(A)).

Conjecture 4.3. Let A be a central division F -algebra of degree qa1

1 · · · qak

k , where
qi are distinct prime numbers, ai are non-negative integers. Write A as a tensor
product Ai ⊗ · · · ⊗ Ak where Ai is a central division F -algebra of degree qai

i . Let
X = SB(A) be the Severi-Brauer variety of A, and let Y = SB(A1)×· · ·×SB(Ak).
K ∈ Fields/F splits A if and only if it splits Ai for every i, therefore X(K) 6= ∅ if
and only if Y (K) 6= ∅. Hence

(7) cdim(SB(A)) = cdim(Y ) ≤ dim(Y ) = qa1

1 + · · ·+ qak

k − k.

It is conjectured in [3] that the inequality in (7) is actually an equality.

4.2. Algebras and Representations. Let G be a finite group, C be a central
subgroup of G and set H = G/C. Then we have an exact sequence

(8) 1 −→ C −→ G −→ H −→ 1.

Let E → Spec(L) be a generic H-torsor, L ∈ Fields/F (see [1] section 6, [5] section
4). Let C∗ denote the character group Hom(C,Gm) of C. Define a homomorphism
βE : C∗ → Br(L) by taking χ : C → Gm to the image of the class of E under the
composition

H1(L,H)
∂

−→ H2(L,C)
χ∗

−→ H2(L,Gm) = Br(L),

where ∂ is the connecting homomorphism for the exact sequence (8).
Let χ : C → Gm be a character, Rep(χ)(G) be the category of all finite dimen-

sional representations ρ of G such that ρ(c) is multiplication of χ(c) for any c ∈ C.
It is proved in [5] Thm. 4.4 that

ind(βE(χ)) = gcd dim(V )
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over all representations V ∈ Rep(χ)(G).

4.3. Gerbes. Let X be a gerbe over F (see [8] section 3, [9] p. 144). Define a
functor X : Fields/F → Sets by mapping K to the set of isomorphism classes of
objects in the category X (K). The essential dimension of X is defined as ed(X ) =
ed(X ). Let CX be the class of field extensions K of F such that X (K) 6= ∅. Then
the canonical dimension of X is defined as cdim(X ) = cdim(CX ).

4.4. A conjecture for ed(Z/pn1

1 · · · pnr
r Z).

Theorem 4.4. Let p1, . . . , pr be distinct prime numbers, n1, . . . , nr be positive

integers. Let F be a field such that char(F ) 6= pi and ξpi
∈ F for every i. If

Conjecture 4.3 is valid, then

ed(Z/pn1

1 · · · pnr

r Z) = ed(Z/pn1

1 Z) + · · ·+ ed(Z/pnr

r Z)− r + 1

= [F (ξpn1

1

) : F ] + · · ·+ [F (ξpnr
r
) : F ]− r + 1.

Proof. By Thm. 3.1 we only need to prove

ed(Z/pn1

1 · · · pnr

r Z) ≥ [F (ξpn1

1

) : F ] + · · ·+ [F (ξpnr
r
) : F ]− r + 1

when Conjecture 4.3 is valid.
Let m = pn1

1 · · · pnr
r , G = Z/mZ, C = Z/p1 · · · prZ be a subgroup of G, and set

H = G/C. Let E → Spec(L) be a generic H-torsor, L ∈ Fields/F . Recall that we
have a homomorphism βE : C∗ → Br(L).

Consider the gerbe E/G banded by C. Since ξpi
∈ F for every i and L ∈

Fields/F , C ∼= µp1···pr
andH2(L,C) ∼= Brp1···pr

(L). Then the element inH2(L,C)
corresponding to E/G can be represented by a central division L-algebra A with
[A] ∈ Brp1···pr

(L). Note that Im(βE) is generated by the class of A. It follows that

cdimL(E/G) = cdimL(Im(βE)).

By [5] Thm. 4.2 and [2] Thm. 7.1, we have

(9) ed(G) ≥ edL(G) ≥ edL(E/G) = cdimL(E/G) + 1 = cdimL(Im(βE)) + 1.

Let χ : C → Gm be the character such that βE(χ) = [A], and

a = ind(βE(χ)) = gcd dim(V )

over all V ∈ Rep(χ)(G). For every V ∈ Rep(χ)(G), by the calculation in Remark
3.3 V =

∐
F (ξdj

), dj divides m for every j. For every c ∈ C, c acts on V by

multiplication of χ(c). Therefore ξ
p
n1−1

1
···pnr−1

r

dj
is a primitive p1 · · · pr-root of unity.

Combining with the fact that dj divides m, we have dj = m for every j, which
implies

a = [F (ξm) : F ] =
∏

[F (ξpni
i
) : F ],

where the second equality follows from the fact that ξpi
∈ F , [F (ξpni

i
) : F ] is a

power of pi for every i.
If Conjecture 4.3 is valid,

cdimL(Im(βE)) = cdimL(β
E(χ)) = cdim(SB(A))

= [F (ξpn1

1

) : F ] + · · ·+ [F (ξpnr
r
) : F ]− r.
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By combining the above inequality with (9), we have

ed(G) ≥ cdimL(Im(βE)) + 1 ≥ [F (ξpn1

1

) : F ] + · · ·+ [F (ξpnr
r
) : F ]− r + 1. �

Example 4.5. Let ξ2, ξ3 ∈ F but ξ4, ξ9 /∈ F . Consider ed(Z/36Z) = ed(Z/2232Z).
In this case ind(βE(χ)) = 6, and Conjecture 4.3 is proven when A is of degree 6 by
[3] Thm. 1.3. Therefore ed(Z/36Z) = 4 (see [2] Remark 14.2).
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