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1. Introduction

Let A be a commutative ring with 1. If —1 can be written as a sum of squares
in A then the level s(A) of A is defined as the minimal number of squares
needed. Else one says that s(A) = oc.

If Ais a field then a well known result due to Pfister says that s(A) is a
power of 2 or co. On the other hand, in [DLP] (see also [DL]) it is shown
that any natural number can be realized as the level of some ring A.

If A is a Dedekind ring then, by [B1], s(K) < s(A) < s(K) + 1, where
K is the field of fractions. If s(K) = 1 then also s(A) = 1 because A is
integrally closed. But in [B1] the question remained open, whether s(A) can
have the value s(K) + 1 if s(K) > 1. In this note we answer this question
affirmatively. In fact, we shall show that there are examples where A is a
principal ideal domain.

At the end we also make some remarks on the sublevel of principal ideal
domains. (See [DL] or Section 3 for the definition of the sublevel.)

We shall assume throughout that 2 # 0. We shall use standard notations
in the theory of symmetric bilinear forms as, for example, in [L].

2. Levels.

In this section we shall show that any number of the form 2" + 1 is the level
of some principal ideal domain.

We start with a general result of independent interest.

(2.1) Lemma. Let I be a field and let ¢ be a Pfister form over F'. Let ¢
and d be non-zero elements in F' such that d is not represented by ¢ over F
and c¢ is not represented by the pure subform ¢’ of p over F. Let ¢(x) € F|x]
be a polynomial of even positive degree with leading coefficient c¢. Then d is

not represented by ¢ over the ring F[z][\/—q(x)].
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Proof. Suppose that d is represented by ¢ over F[z][y/—¢(x)]. This means
that there are elements @(z), 7(z) € F[z]*" such that

o (@) + 3(x)/=q(@)) = d

i.e.,
p(u(z)) = q(2)p(v(x)) = d (1)

and
po(u(x), v(x)) = 0 (2)
where ¢ is the symmetric bilinear form with p(w) = (W, W)) for every .
Note that v(z) # 0 since ¢ does not represent d over F. Let 2k > 0 be
the degree of ¢(x) and [ the degree of ¥(x), i.e., the maximum of the degrees

of its components. From equation (1) it then follows that deg(z) =1 + k.

We denote by d the leading coefficient of «(x) and by b that of #(x).

Looking at the coefficients by %+ in equation (1), we get

-

p(@) — cp(b) =0

and the coefficients by xz2** in (2) give

-,

@b(ﬁa b) -

)

-

Let e = p(b). As ¢ does not represent every element in F', ¢ must be
anisotropic over F. Since b # 0 it follows that e # 0. Then also p(d) =
ce # 0. The last equation says that a and b are orthogonal with respect to .
Therefore the form ¢ contains over F' the subform (ce, e) = (e)(1,c). But e is
represented by ¢ and ¢ is multiplicative so (e)¢ = ¢. Hence ¢ also contains
(1,¢) as a subform, i.e., (1) L ¢ = (1,¢) L .... Cancelling (1) we conclude
that c is represented by ', contradicting a hypothesis.

Remark. The lemma also holds for d = 0 if ‘represented by ¢’ is understood
as ‘non-trivially represented by ¢’.

With this lemma it is easy to construct Dedekind rings A with field of
fractions K such that s(A) = s(K) + 1.

(2.2) Proposition. Let n > 1 be an integer and let F' be a field of level
> 2", Assume that there is an element ¢ € F' which is a sum of 2" squares
in F' but not fewer.

Choose a square free polynomial ¢(z) € F[z] of positive degree and with
leading coefficient, ¢ such that ¢(x) is a sum of less than 2" squares in F/[x].



Let A = Flz][\/—q(z)] and K = F(z)(y/—q(x)). Then A is a Dedekind
ring with field of fractions K such that s(K) = 2" and s(A) = s(K) + 1.

Proof. Ais a Dedekind ring because g(x) is square free. It is clear that K is
the field of fractions of A. Since ¢(z) is a sum of m < 2"™! squares in F[z],
we see that —1 is a sum of m squares in K and hence s(K) < 2""!. But
s(K) is a power of 2, so it follows that s(K) < 2".

Lemma (2.1) with ¢ = 2" x (1) and d = —1 implies that —1 is not a sum
of 2" squares in A, hence s(A) > 2". As s(K) < s(A) < s(K)+1 by [B1], it
follows that s(K) = 2" and s(A) =2" 4+ 1 =s(K) + 1.

Remark. If F is the rational function field R(¢y,. .., ton) and ¢ = t3+4- - -+13,
then, by a well known theorem of Cassels, the hypotheses of the theorem are
satisfied.

For q(z) one can take cz? + 1.

By the way, this result gives rise to another algebraic proof of the fact
that the ring Z[zy, ..., zon 1]/ (1 + 23+ - - +23.,,) has level 2"+ 1. (For the
first algebraic proof see [B2].)

In fact, we even get principal ideal domains A with field of fractions K
such that s(A) = s(K) + 1.

(2.3) Theorem. For any integer n > 1 there are principal ideal domains A
with field of fractions K such that s(K) = 2" and s(A) = s(K) + 1.

Proof. By [S, Theorem 5.1], the Dedekind ring A in the preceding proof is
a principal ideal domain if the polynomial ¢(z) has degree 2 and if the affine
conic given by y?> = —¢(x) has no F-rational points. This is the case if, for
example, q(z) = cx? + 1.

3. Sublevels

Related to the level s(A) of a ring A, there is another invariant, called the
sublevel o(A) of A (see [DL]). It is the smallest natural number r such that
there is a unimodular vector (a1, ...,a,41) € A" with af +--- 4+ a2, = 0.
(Recall that a vector (ag,...,a,) € A" is said to be unimodular if there are
Cly. ooy Cp € Awith ajeg + -+ + ape, = 1))

For any ring A we have o(A) < s(A) because af + - - - + a? = —1 implies
a4 4a+12=0.

If Ais a field or a local ring then it is easily seen that o(A) = s(A).
With some work, it can be shown that this also holds for semi-local rings A.
But in general this does not hold. For example the principal ideal domain
A =Qlz,y|, 1 +z*+2y* = 0, satisfies 0(A) = s(K) = 2 but s(A) = 3, where



K is the field of fractions of A (see [CLRR]|, [DL]). We shall later generalize
this example.

A natural question to ask is how large the difference s(A) — o(A) can be.
The following proposition gives a partial answer.

(3.1) Proposition. In general s(A) < o(A) +4. If 2 is invertible in A then
even s(A) < o(A) + 1.
Furthermore, for any ring A we have:
If 0(A) =1 then s(A) = 1.
If 0(A) = 2 then s(A) < 3.
If 0(A) = 3 then s(A) = 3.
Proof. In any ring A the equations

xf+-~-+$€§+1=0 and Ty 4+ + 1Yy =1

imply the equation )
r+

> (L4 gz — 2:)* = —4

i=1
where ¢ = y7 + -+ -+ y2,,. If 2 is invertible in A we can divide this equation
by 2% to see that then s(A) <7+ 1. In general we can rewrite the equation
as S (14 @)as — 2u)* + 12 412 + 12 = —1 and get s(A) <r + 4.

If r = 1 then (21y, — 29y1)? = —1 and if r = 2 then (2oy3 — x3y2)* +

(w31 — 71Y3)? + (1y2 — w2y1)? = —1. If r = 3 we use Euler’s four square
formula to write (22 + 23 + 25 + 23)(y? + y32 + y2 + v3) = (T1y1 + Tayo +
T3ys + T4ys)? + w3 + w2 + w? with elements wo, w3, wy € A. Tt follows that
wi + w3 +wi = —1.
Remark. By a private communication, Detlev Hoffmann also has a proof
of the general inequality s(A) < o(A) + 4. Furthermore, David Leep has
announced a stronger general inequality. In [DL] there is a different proof of
the inequality s(A) < 0(A) + 1 in the case that 2 is invertible in A.

We know no ring A with s(A) > o(A) + 1. By the next proposition this
is at least impossible for a Dedekind ring A.

(3.2) Proposition. If A is a Dedekind ring then there is an integer n > 0
such that 2" < o(A) < s(A) <2" 4+ 1.

Proof. Let A be a Dedekind ring and let K be is field of fractions. Writing
s(K) = 2™ we then get the statement from the inequalities s(K) = o(K) <
o(A) <s(A) < s(K)+1.



The next proposition says that there are examples of s(A) = o(A) + 1,
where A is even a principal ideal domain.

(3.3) Proposition. For any integer n > 1 there is a principal ideal domain
A such that 0(A) = 2" and s(A) = 2" + 1.

Proof. Choose a field F' of level > 2" with an element ¢ that is a sum of
2" squares but not fewer. Write ¢ as the sum ¢ + --- + ¢3. of squares in
F. Let q(z) = cx® + 2ciz + 1. Then, q(z) = (1o + 1) + Za? + - - + 222
is sum of 2" < 2"*! squares in Flx]. Let A = F[z][\/—q(7)] and K =
F(z)(y/—q(x)). By Proposition (2.2), then A is a Dedekind ring with field
of fractions K such that s(K) = 2" and s(A) = s(K) + 1. But o(A) < 2"

because —q(yc)2 + (i + 1)+ c2a? + - - + 2.2? = 0 and a vector over A
having ¢;x 41 and cox among its components is unimodular. As in the proof
of Theorem (2.3) we see that A is a principal ideal domain.

One can show that the algebraic number ring Z[\/—6] is a Dedekind ring
A with field of fractions K such that o(A) = s(A) = s(K) + 1. Another
example, but more difficult to verify, is the ring A = R(¢)[z][v/—q(z)], where
q(z) = (1 + 3t + 2tz + 2% + 1.

For a principal ideal domain A this cannot happen. Indeed, in [DL] it
is shown that if A is a principal ideal domain with field of fractions K such
that 2 is invertible in A then o(A) = s(K). Their proof of this, however,
does not use that 2 is invertible. Hence we have the following.

(3.3) Proposition. Let A be a principal ideal domain with field of fractions
K. Then o(A) = s(K).

In fact, the argument can be used to prove the following more general
proposition.

(3.5) Proposition. Let A be a principal ideal domain with field of fractions
K. Let (M, () be a non singular symmetric bilinear form over A. If the
extension of (M, §) to K is isotropic then M contains a unimodular element
u such that f(u,u) = 0.

Proof. As A is a principal ideal domain, M is free. We therefore may assume
that M = A™ for some natural number m. The hypothesis then says that
there is a non-zero vector u € K™ with (e, e) = 0. Clearing denominators,

we may assume that u € A™. We write v = (uy,...,u,). Dividing by the
greatest common factor of uq,...,u,,, we then may assume that u, ..., u,,
are relatively prime. But then (us,...,u,,) is unimodular.
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