UPPER BOUNDS FOR THE ESSENTIAL DIMENSION OF E;

MARK L. MACDONALD

ABSTRACT. This paper gives a new upper bound for the essential dimension and the
essential 2-dimension of the split simply connected group of type E7 over a field of
characteristic not 2 or 3. In particular, ed(E7) < 29, and ed(FE7;2) < 27.

The essential dimension of an algebraic group G is a numerical invariant which
measures the complexity of its G-torsors. The essential dimensions of the exceptional
algebraic groups remain largely open (see [Rel0] for a recent survey). For example,
even if the base field is the complex numbers we only know that 9 < ed(Eg) < 231
([CS06], [Le04]).

We will say that a G-variety X is generically free if there is an open subset U C X (k)
on which G(k) acts with trivial stabilizers, where k is an algebraic closure of the
base field k. We will define the essential dimension of G to be the minimum value
of dim(X) — dim(G), where X is a generically free G-variety and there exists a G-
equivariant dominant map V --» X (also called a compression), such that V is a
generically free linear representation of G.

We assume throughout this paper that the characteristic of the base field k is not 2.
Let E,, denote the split simply connected group of that type. We have the lower bound
7 < ed(E7) from [CS06] (for characteristic zero, see [RY00]), and over the complex
numbers, we know that three copies of E7’s faithful 56 dimensional representation Vsg
is generically free [Po86, 13|, and so is Vs X P(Vss) X P(Vs6). Therefore ed(E7) <
(56 + 55 4+ 55) — 133 = 33, which is the best known upper bound. In this paper we will
improve this bound, and only assume the base field has characteristic not 2 or 3.

For a prime p, we are also interested in the “localized” notion of essential p-dimension,
which is often easier to compute. For primes p not equal to 2 or 3, we know ed(Er;p) =
0. Also, ed(E7;3) = 3 ([GR09] or [Ga09]). For p = 2 we have 7 < ed(E7;2) < 33
([RY00], [CSO06], [Macl1]). In this paper we improve the upper bound.

We will take the subgroup Eg x puy C E7 as defined in [Ga0l, 3.5]. For every field
extension [/k, inclusion induces a surjection H' (I, Egx ) — H' (I, E7) (see also [Ga09,
12.13]); in other words, we can reduce the structure of Er-torsors. In particular, this
implies

ed(E7) <ed(Eg x pug) and  ed(Fr;2) < ed(Eg X ug;2).

The new upper bounds will be achieved by using these inequalities. As always, we have
ed(F7;2) < ed(E7), but we do not know if this inequality is strict.

Consider E7’s fundamental faithful representation of dimension 56 (also known as
its minuscule representation). As an Fg representation it decomposes as kkDV SV,
where V and V* are Eg’s two fundamental representations of dimension 27 (also known
as its minuscule representations), and k denotes a one-dimensional trivial representa-
tion. Let w € py be defined as in [Ga0l, 3.5], sending an element (aj,asz,v1,v2) to
(iag, iy, ivg, vy ), where i is a square root of —1. Conjugation by w is an outer auto-
morphism of Fjg, it preserves a split maximal torus T' C Eg, and it fixes a subgroup
isomorphic to Fy [Ga0l, 2.4 and 3.5]. So V@ V™ is faithful and irreducible as an Eg x pi4
representation, and also as an Ngg(T) % g representation. Also notice that w? is in
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the centre of Er. ‘We will denote the set of T-weights of V @ V* as A, which consists
of all weights in 7" of length 4/3.

1. ESSENTIAL DIMENSION

Definition 1.1. [PV89, 7] Let k£ be an algebraically closed field, and let G be an
algebraic group acting on an irreducible variety X over k. We say that H C G is a
stabilizer in general position (SGP) if there is a dense open subset U C X such that
Stabg(x) is conjugate to H for every x € U.

Lemma 1.2 (Popov). Let X andY be irreducible G-varieties. Assume Hy is an SGP
for the G actions on X, and Hy is an SGP for the Hy action on Y. Then Hs is an
SGP for the G action on X x Y.

Proof. Assume Stabg(z) = g~ 'Hig and Staby, (y) = h~'Hsh. Then Stabg(z,y) =
StabStabg(m) (y) = Stabg_lng(y) = gthth_l. O

There is a series of subgroups as follows.
{1} € SLy C SL3 C G2 C Spin, C Sping C Fy C Eg C E7.

We will abuse notation slightly and use the above symbols to refer to specific subgroups
of these types, as described in the proofs of Propositions 1.3 and 1.4.

Several of the results in the following two propositions may be found in [Boll, 1.5]
for the complex numbers, and the arguments there are analogous to the ones used here.
For the rest of this section we will assume the characteristic of k is not 2 or 3.

Proposition 1.3. Assume that k = k.

(1) Fy is an SGP of the Eg action on V,

(2) Sping is an SGP of the Fy action on'V (or V*),

(3) Sping is an SGP of the Eg x p4 action on V& V*,

(4) Sping X ug is an SGP of the Eg X g action on P(V @ V™).

Proof. Recall the Eg x pg action on the 54 dimensional faithful representation V & V*
described above. As in [Ga0l, 3.5], each of V and V* come equipped with isomorphic
Jordan algebra structures, which include a cubic form called the norm. Fg preserves
both of those cubic forms, but as Eg representations V' and V* are not isomorphic.
The subgroup of Eg which fixes the identity element e in V' (equivalently, in V*), is
the automorphism group of the Jordan algebra structure, and is of type Fy (see also
[SV00, 5.9.4 and Section 7]). The subgroup of F; which fixes a chosen triple (ej, e2, €3)
of pairwise orthogonal primitive idempotents in V', is isomorphic to Sping [Ja68, p.378].

(1) Two elements with non-zero norms in V' are in the same Eg-orbit iff their norms
are equal ([Ja68, Chap. IX.6, exer. 6], or [SV00, Proof of Thm. 7.3.2]).

(2) The subgroup Fy C Eg is the group of automorphisms of the Jordan algebra
structure on V' (which is the same as that on V*). By Jacobson [Ja68, p.381], any
element can be “diagonalized”, in other words, the Fy-orbit of any element non-trivially
intersects the subspace spanned by e1,es, and ez. If y is in that subspace and its e;
coefficients are all distinct (an open condition), then Stabp, (w) = Sping.

(3) We have e € V, and choose y € V* as above, such that the norm of y is not a
fourth root of unity. Then (e, y) can be considered to be in general position; by Lemma
1.2, we see that Sping is the SGP of Eg on V @& V*. For any g € Eg, and @« = 1,2, 3, the
assumption on the norm of y, together with the fact that Fg is norm preserving, tells
us that gw'(e,y) # (e,y). The result follows.
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(4) For e and y as above, consider the element [e,y] € P(V @ V*). Notice that
Stabg, ([e,y]) C Ng,(Stabg,(e,y)) = Sping xSs. Here the symmetric group S3 per-
mutes the diagonal coefficients of e; in the Jordan algebra V' (and V*). Since the e;
coefficients of y are distinct, we see Stabp, ([e,y]) = Sping. Also Stabg,([e]) = Fi1 X us
[Ga01, 3.4] (see also [Ga09, 9.12]), so Stabg,([e,y]) = Sping x u3. Finally, if g € Eg such
that gw fixes [e,y], then y would have to be a scalar multiple of e, which is not the
case. Therefore Stabgg ., ([e,y]) = Sping X g, where pg is the product of the centres
of Eg and FE7. ]

Sping has three inequivalent 8 dimensional irreducible representations. We will choose
one and call it the vector representation, and denote it by . Then the other two,
OT,07, will be called the half-spin representations. Also, O will denote the 8 dimen-
sional spin representation of Spin.

Proposition 1.4. Assume k = k.
(1) Spin; is an SGP of the Sping action on ¥,
(2) Gy is an SGP of the Spin; action on O,
(3) SL3 is an SGP of the Gy action on Q,
(4) SLg is an SGP of the SL3 action on O,
(5) SLy acts generically freely on Q.

Proof. (1) The stabilizer of a point with non-zero norm in the vector representation is
a subgroup of Sping isomorphic to Spin;. This is the copy of Spin; C Sping that we
will use below.

(2) As Spin; representations, @ and O~ are isomorphic to Q. The claim follows from
[Ig70, Prop. 4]; here G5 is the automorphism group of an octonion algebra structure
on O.

(3) As G; representations, ¥ and O are isomorphic. In the 7-dimensional space of
elements orthogonal to the identity (also called pure octonions), Go acts transitively on
norm one elements, and the stabilizer of such an element z; is SL3 (see also [KMRT,
§36 Exer. 6]).

(4) SL3 acts transitively on norm one elements orthogonal to both the identity and
x1. The stabilizer of such an element x2 is SLa (see also [KMRT, §36 Exer. 7]).

(5) SLy acts transitively on norm one elements orthogonal to all of 1,z1,x9, and
x1T9. The stabilizer of such an element z3 is trivial, because an automorphism of the
octonions is determined by its action on the “basic triple” (x1,x2,x3), and therefore
SLs acts generically freely on Q. U

Remark 1.5. As noted in [Ig70, Prop. 1], if H is an SGP of Sping acting on the
half-spin representation @F, then H is isomorphic (but not conjugate) to Spin; by
a triality automorphism. And the Sping representation X restricted to H is the spin
representation (rather than the vector Spin,-representation).

Theorem 1.6. ed(E;) < 29.

Proof. From the introduction, we know that ed(E7) < ed(Eg X pg). Consider the
rational map
VeV W =VoV xP(VaeV).

It is dominant and Fg % pg-equivariant. To show the upper bound on essential dimen-
sion, we just need to show that W is generically free, and for this we may assume that
k=k.

By Lemma 1.2 and Proposition 1.3, we see that an SGP of the Fg x p4 action on
W is equal to an SGP of the Sping action on V' @& V*. As a Sping representation this
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decomposes as the sum of six trivial representations, together with two copies each of
¥,07", and O~. Therefore, by combining Lemma 1.2 with Proposition 1.4, we see the
SGP of this Sping action is trivial, and hence the action of Eg < 114 on W is generically
free. Therefore ed(E7) < ed(Eg x pq) < 54 + 53 — 78 = 29. O

2. ESSENTIAL 2-DIMENSION

Lemma 2.1. [MR09, Lemma 3.3] Assume we have algebraic groups 1 — T — N —
F — 1, such that T is a split torus, and F' is finite. Let V be a faithful N -representation
which decomposes into a sum of one-dimensional weight spaces for T, and let A be the
associated set of weights. Consider the N-invariant open subset U = (Al —0)A ¢ AN =
V.
(1) If f € F acts non-trivially on ker(Z[A] — T), then f acts non-trivially U/T.
(2) N/T acts faithfully on U/T if and only if N acts generically freely on V.

Proof. For the first statement, assume f acts trivially on U/T and choose an arbitrary
Yexd € ker(Z[A] — T). Choose an isomorphism between the varieties U 2 (Gy,)%,
inducing a multiplicative structure on U (which is not necessarily compatible with the
action of V). Consider the functions U — k* defined in terms of the A-coordinates uy
of an arbitrary v € U, as

d1(u) = [T dalu) = T (upa)>.
AEA A€A

These functions are invariant under the action of 7" on U. Now choose ny € N in the
preimage of f. Since ny acts linearly on V, there are constants by and c¢ such that
¢1(u) = ¢1(ng - u) = [[(brup.a)> = cpo(u). Since u € (G,,)" was arbitrary, the only
way ¢1 and ¢2 can be constant multiples of each other is if ¢y = f - ¢y for every A € A;
in other words, f fixes YcyA.

For the second statement, assume N/T" acts faithfully on U/T. For each non-trivial
f € N/T, choose a representative ny € N. The action of f on U/T is non-trivial, and
therefore there is an open dense set Uy C U on which nt has no fixed points for any
t € T. The finite intersection NUy is open and dense in U, and N acts with trivial
stabilizers on it. In other words, N acts generically freely on U, and hence on V. For
the converse, we just need to notice that a faithful representation of a finite group is
always generically free. O

Remark 2.2. The above Lemma was proved in [MR09] when the exact sequence is split,
in which case the converse of the first statement is also true; the standard representation
of Ngr,(T') is a counter-example to the converse of the first statement.

Theorem 2.3. ed(E7;2) < 27.
Proof. This upper bound will be proved using the following sequence of inequalities:
ed(E7; 2) < ed(E6 X 4, 2) < ed(NEG(T) X 4, 2) < 33 —6=27.

Since conjugation by py preserves T' ([Ga01, 2.4]), we have Ngguu, (T) = Ngg(T') % 4.
Now the middle inequality follows from [Se02, I111.4.3, Lemma 6].

Choose a Sylow 2-subgroup W) < W(Eg), and let Ny C Ng,(T) x pq be the
preimage of F := W®) x p4. Let o be the square of a generator of ju; it is the non-
trivial element in the centre of E7. One can verify the following facts using a computer
algebra program such as Magma.

e The F orbits of A are of size 2, 4, 16 and 32.
e The weights in the largest orbit Ags additively generate the weight lattice
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e The kernel of the F action on ker(Z[Asy] — T') is (o).

So the subspace Vzo C V @ V* generated by the weight spaces of Aso is an irre-
ducible Ns-representation of dimension 32. Let V7 be the one-dimensional non-trivial
representation of uy, which we also consider as an Ny representation via projection to
4. We claim that No acts generically freely on Vio x V7.

For U C V39 x V1 as in the above Lemma, the third point implies that the F' action
on U/T has kernel contained in (o). But ¢ acts non-trivially on Vj, and hence on
U/T, since T acts trivially on V. So F' acts faithfully on U/T, and hence by Lemma
2.1, the Ny action on V3y x Vi is generically free. Now we have the upper bound
ed(Ngy(T') x pg;2) < 33 — 6 = 27, and the result follows. O
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