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Abstract. In this paper we establish different ways to compute the period of a
generic torsor of a group of multiplicative type. We also study the relationships
among the periods of generic torsors of Q, T and W , where Q is a group of
multiplicative type, T is the maximal subtorus of Q and W is the maximal
finite quotient group of Q.

1. Introduction

Let F be our fixed base field, and let Q be a smooth commutative linear algebraic
group over F . For every field extension K/F , there is a bijective correspondence
between the set of isomorphism classes of Q-torsors (principal homogeneous spaces)
over K and the first Galois cohomology group H1(K,Q). The period of a Q-torsor
is the order of the corresponding element in H1(K,Q). Note that the period of a
Q-torsor is always finite as H1(K,Q) is a torsion group.

A short exact sequence of linear algebraic groups

1 // Q // P
φ

// S // 1 ,

where P is connected, reductive and special, is called a resolution of Q. Since we
can embed Q into GLn for some positive integer n, resolutions of Q exist. The
generic fiber of the morphism φ : P → S is a Q-torsor over the function field F (S)
of S, moreover it is a generic Q-torsor (see [1, section 6] and [5]). In this paper by
a generic Q-torsor, we mean a generic Q-torsor that arises from a resolution of Q
as above.

When Q is an algebraic torus, the period of a generic Q-torsor is studied in [7].
Based on the technique developed in [7], we generalize the results to the case where
Q is a smooth group of multiplicative type (see Corollary 4.3). We also study in
Section 5 the relationships among the periods of generic torsors of Q, T and W ,
where T is the maximal subtorus of Q and W is the maximal finite quotient group
of Q. In Section 6 we give an application of our results.

2. Periods of Generic Torsors

Proposition 2.1. Let Q be a smooth commutative linear algebraic group over F .
Assume that one of the following conditions hold:

(a) F is infinite.
(b) The connected component Q0 of Q is reductive.
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Then the period of a generic Q-torsor is divisible by the period of any Q-torsor over
any field extension K/F .

Proof. The proof is essentially the same as that of [7, Proposition 1.1]. Suppose
that F is a finite field. Then by assumption the connected component Q0 of Q is
reductive.
Claim: The natural map H1(F,Q) → H1(F ((t)), Q) is injective.

The following argument is suggested by Philippe Gille. Consider the exact se-
quence of linear algebraic groups over F

1 // Q0 // Q // π0(Q) // 1

where π0(Q) is finite étale. It induces the following commutative diagram

π0(Q)(F ) //

∼=

��

H1(F,Q0) //

f1

��

H1(F,Q) //

f2

��

H1(F, π0(Q))

f3

��

π0(Q)(F ((t))) // H1(F ((t)), Q0) // H1(F ((t)), Q) // H1(F ((t)), π0(Q))

By [6, Theorem I.1.2.2] f1 is injective. Notice that f3 is injective also, hence by
four lemma f2 is injective.

It follows from the claim that we may replace F by F ((t)) and assume that our
base field is infinite.

Let E → SpecF (S) be a generic Q-torsor that arises from a resolution of Q

1 // Q // P
φ

// S // 1 .

We denote by [E] the class of Q-torsor E → SpecF (S) in H1(F (S), Q), and [P ]
the class of φ : P → S in the first étale cohomology group H1

ét(S,Q). Then [E] is
equal to the image of [P ] under the natural map H1

ét(S,Q) → H1
ét(SpecF (S), Q) =

H1(F (S), Q). As H1(F (S), Q) is the colimit of H1
ét(U,Q) over all nonempty open

subsets U ⊆ S, there exists a nonempty open U such that the order of [P ]U , where
[P ]U is the image of [P ] in H1

ét(U,Q), is equal to the order of [E].
Let R be a Q-torsor over K, where K is a field extension over F . The above

resolution induces a long exact sequence

(1) P (K) // S(K) // H1(K,Q) // H1(K,P ) .

Since P is special, H1(K,P ) is trivial. Thus there exists a point s ∈ S(K) such
that the class [R] of R in H1(K,Q) is equal to the class of the Q-torsor φ−1(s).
Notice that K is infinite, it follows from [2, Corollary 18.3] that the set K-rational
points P (K) is dense in P . This implies that φ(P (K)) is dense in S because
φ : P → S is surjective. Hence φ(P (K)) · s is also dense in S and there exists a
point s′ ∈ U ∩ (φ(P (K)) · s). From the long exact sequence (1) the class of φ−1(s′)
is equal to that of φ−1(s). Therefore by replacing s by s′ we may assume s ∈ U(K).
Then the morphism s : SpecK → U → S induces the following map

H1
ét(S,Q) −→ H1

ét(U,Q) −→ H1
ét(SpecK,Q) = H1(K,Q)

[P ] 7−→ [P ]U 7−→ [φ−1(s)] = [R]

It follows that the order of [R] divides the order of [P ]U , which is equal to the order
of [E]. �
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By Proposition 2.1 all generic Q-torsors have the same period. In other words,
the period of a generic Q-torsor depends only on Q, and we denote this number
by e(Q). Proposition 2.1 also shows that e(Q) is the smallest positive integer that
annihilates H1(K,Q) for every field extension K/F . Thus e(Q) can be viewed as
the “exponent” of the first Galois cohomology functor

H1(−, Q) : Fields/F // Ab

where Fields/F is the category of field extensions of F and field homomorphisms
over F , and Ab is the category of abelian groups.

3. Preliminaries on Groups of Multiplicative Type

Unless otherwise specified, all groups of multiplicative type in this paper are over
F and are smooth, and they all split over a finite Galois extension L/F . Let G be
the Galois group Gal(L/F ), and let Q∗ be the character G-module of a group of
multiplicative type Q over L. Notice that the connected component of a smooth
group of multiplicative type is a torus, which is reductive, hence we can apply
Proposition 2.1.

Let

θ : 1 // Q // R
g

// S // 1

be an exact sequence of groups of multiplicative type, where S is a torus.
For any subgroup H of G, we have the following pairing:

(2) H0(H,HomZ(Q
∗,Z))⊗H1(H,S∗) → Ext1G(Q

∗, S∗).

First we identify

H0(H,HomZ(Q
∗,Z)) = HomG(Q

∗,Z[G/H ]) = Ext0G(Q
∗,Z[G/H ])

and

H1(H,S∗) = Ext1H(Z, S∗) = Ext1G(Z[G/H ], S∗).

Then we use the composition product for Ext,

Ext0G(Q
∗,Z[G/H ])⊗ Ext1G(Z[G/H ], S∗) → Ext1G(Q

∗, S∗).

The following proposition is a slight generalization of [7, Proposition 2.1].

Proposition 3.1. The following are equivalent:

(a) For every field extension K/F , the homomorphism gK : R(K) → S(K) is
surjective.

(b) The generic point ξ of S in S(F (S)) is in the image of gF (S).
(c) The exact sequence θ has a rational splitting.
(d) There exists a commutative diagram of morphisms of groups of multiplicative

type with splitting field L/F :

1 // P //

��

M //

��

S // 1

1 // Q // R
g

// S // 1

with exact rows and P is a quasi-split torus.



4 WANSHUN WONG

(e) The class of the exact sequence θ in Ext1G(Q
∗, S∗) lies in the image of the map

ϕ :
∐

H<G

H0(H,HomZ(Q
∗,Z)) ⊗H1(H,S∗) → Ext1G(Q

∗, S∗)

induced by the pairing (2), where the coproduct is taken over all subgroups H
of G.

If S is coflasque, these conditions are also equivalent to

(f) The exact sequence θ splits.

Proof. (a) ⇒ (b): Obvious.
(b) ⇒ (c): Let x ∈ R(F (S)) be a point such that gF (S)(x) = ξ. The commutative

diagram

SpecF (S)
x

//

ξ
$$
■■

■■
■■

■■
■■

R

g

��

S

implies that there is a nonempty open subset U ⊆ S together with the following
commutative diagram

U //

i
��
❅❅

❅❅
❅❅

❅❅
R

g

��

S

where i : U → S is the inclusion.
(c) ⇒ (d): By assumption there exists a rational splitting h : S //❴❴❴ R . Let U

be the domain of definition of h, and let Λ be the lattice L[U ]×/L×. The character
lattice S∗ of S is isomorphic to L[S]×/L× which is a sublattice of Λ, and the factor
lattice Λ/S∗ is permutation by the proof of [3, Proposition 5]. Let M and P be the
tori with character lattices Λ and Λ/S∗ respectively.

The character group R∗ of R is isomorphic to a subgroup of L[R]× (the sub-
group of group-like elements), therefore there is a natural homomorphism R∗ →
L[R]×/L×. The morphism h : U → R induces a homomorphism L[R]×/L× → Λ.
The composition R∗ → L[R]×/L× → Λ then induces a morphism of groups of
multiplicative type M → R. Since h is a splitting, by construction the compo-
sition M → R → S is equal to the morphism M → S induced by the inclusion

S∗ �

�

// Λ .
(d) ⇒ (a): For every K/F , H1(K,P ) = 0 implies M(K) → S(K) is surjective,

so gK is also surjective.
(d) ⇔ (e): The diagram in (d) exists if and only if there is a quasi-split torus

P and a homomorphism α : Q∗ → P ∗ such that the class of the exact sequence
θ lies in the image of the induced map α∗ : Ext1G(P

∗, S∗) → Ext1G(Q
∗, S∗). Since

P is quasi-split, P ∗ is a direct sum of lattices of the form Z[G/H ], where H is a
subgroup of G.

Consider the case P ∗ = Z[G/H ]. The map α is given by an element a ∈
H0(H,HomZ(Q

∗,Z)). Also, we have shown that Ext1G(Z[G/H ], S∗) = H1(H,S∗).
Then the map α∗ coincides with multiplication by a with respect to the pairing (2).

(f) ⇒ (c): Obvious.
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(e) ⇒ (f) if S is coflasque: Notice that H1(H,S∗) = 0 for every subgroup H of
G because S is coflasque. Therefore im(ϕ) is trivial, and it implies that θ is a split
short exact sequence. �

4. Main result

Let

χ : 1 // Q
ι

// P // S // 1

be a coflasque resolution of Q, i.e. P is a quasi-split torus and S is a coflasque
torus. By [4, Proposition 1.3] coflasque resolutions of Q exist.

Theorem 4.1. Let f : Q → Q′ be a morphism of groups of multiplicative type.
Then the following are equivalent:

(a) f factors through ι : Q→ P .
(b) f factors through some quasi-split torus.
(c) The induced map H1(K,Q) → H1(K,Q′) is the zero homomorphism for every

field extension K/F .

Proof. It is clear that (a) ⇒ (b) ⇒ (c), so it suffices to prove (c) ⇒ (a).
Assume (c) holds. Let R be a group of multiplicative type defined by the follow-

ing commutative diagram

χ : 1 // Q
ι

//

f

��

P //

��

S // 1

θ : 1 // Q′ // R
g

// S // 1

where the rows are exact. For every field extension K/F , the commutative diagram

P (K) //

��

S(K) // H1(K,Q)

0

��

R(K)
gK

// S(K) // H1(K,Q′)

shows that gK : R(K) → S(K) is surjective. Since S is coflasque, by Proposition
3.1 θ is a split short exact sequence. Then the result follows easily from the the
following commutative diagram

1 // Q
ι

//

f

��

P //

��

S // 1

1 // Q′ // R
g

//

∼=

��

S // 1

1 // Q′
i1

// Q′ ⊕ S
p2

// S // 1,

where i1 and p2 are canonical inclusion and projection respectively. �

Remark 4.2. Note that (b) ⇒ (a) can be proved directly as follows (see [3, Lemma
4]): Suppose f factors through a quasi-split torus R, our goal is to show that

f : Q→ R → Q′ factors as Q
ι
→ P → R → Q′.
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Consider the exact sequence

HomG(R
∗, P ∗)

ι∗
// HomG(R

∗, Q∗) // Ext1G(R
∗, S∗) .

Since R∗ is a permutation module and S∗ is coflasque, Ext1(R∗, S∗) is trivial. Hence

R∗ → Q∗ factors as R∗ → P ∗ ι∗
→ Q∗.

If Q′ is a torus, by [4, Proposition 1.3] there exists a flasque resolution of Q′

κ : 1 // S′ // P ′
ρ

// Q′ // 1 ,

i.e. a short exact sequence where P ′ is a quasi-split torus and S′ is a flasque torus.
Using the same argument above we can show that the conditions in Theorem 4.1
are also equivalent to

(d) f factors through ρ : P ′ → Q′.

The following corollary shows that e(Q) can be computed in many different ways.

Corollary 4.3. The following numbers are the same:

(i) e(Q), the period of a generic Q-torsor.

(ii) n1 := the smallest positive integer n such that the morphism Q
n

// Q

factors through ι : Q→ P .
(iii) The order of the class of χ in Ext1G(Q

∗, S∗).

(iv) n2 := the smallest positive integer n such that the morphism Q
n

// Q

factors through some quasi-split torus.

If Q is a torus, then Q has a flasque resolution κ, and the above numbers are
also equal to

(v) n3 := the smallest positive integer n such that the morphism Q
n

// Q

factors through ρ : P ′ → Q.
(vi) The order of the class of κ in Ext1G(S

′∗, Q∗).

Proof. First, it is clear that n1 is equal to the order of the class of χ. Then by the
equivalence of (a) and (b) in Theorem 4.1 we have n1 = n2. Finally, recall that

e(Q) is equal to the smallest integer n such that H1(K,Q)
n

// H1(K,Q) is the

zero homomorphism for every field extension K/F , therefore by Theorem 4.1 again
we get e(Q) = n1 = n2.

If Q is a torus, by Remark 4.2 we see that n2 = n3, which is also equal to the
order of class of κ. �

Example 4.4. Let Q be a group of multiplicative type. Then e(Q) = 1 if and only
if Q is a direct summand of a quasi-split torus, i.e. if and only if Q is an invertible
torus.

Example 4.5. Let L/F be a finite Galois extension with Galois group Gal(L/F ) =

G. Consider the norm 1 torus Q = R
(1)
L/F (Gm,L), i.e. the torus defined by the short

exact sequence

χ : 1 // Q // RL/F (Gm,L)
N

// Gm // 1

where N is the norm map. Notice that the above exact sequence is a coflasque
resolution of Q, hence e(Q) is equal to the order of the class of the following exact
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sequence of character lattices (also denoted by χ)

χ : 0 // Z
N

// Z[G] // Q∗ // 0

in Ext1G(Q
∗,Z). The norm map of character lattices N : Z → Z[G] is given by

N(1) =
∑

g∈G

g. It is then easy to verify that e(Q) = order ([χ]) = |G| = [L : F ].

5. Relationships among e(W ), e(T ) and e(Q)

For any group of multiplicative type Q, we have an exact sequence

ζ : 1 // T // Q // W // 1

where T is a torus and W is finite. The existence of the exact sequence ζ comes
from the fact that the Z-torsion elements of Q∗ form a G-submodule (W ∗) of Q∗.

Lemma 5.1. e(W ) = exponent of W .

Proof. Denote the exponent of W by n. Since Wn = 1, the homomorphism

H1(K,W )
n

// H1(K,W ) factors throughH1(K, 1) = 0 for every field extension

K/F . Hence e(W ) | n.
Recall that L is a splitting field of W , so WL = µn1

× · · ·×µnr
for some positive

integers n1, . . . , nr, where the least common multiple lcm{n1, . . . , nr} of n1, . . . , nr
is equal to n. Then for every field extension K/L,

H1(K,WL) = H1(K,µn1
)× · · · ×H1(K,µnr

)

= K×/(K×)n1 × · · · ×K×/(K×)nr .

Therefore n = lcm{n1, . . . , nr} = e(WL) | e(W ) by Proposition 2.1. �

Remark 5.2. Lemma 5.1 can also proved by using Corollary 4.3. First, e(W )

is the smallest positive integer n such that the morphism W ∗ n
// W ∗ factors

through a permutation module. Since W ∗ is finite and any permutation module
is Z-torsion free, e(W ) equals the smallest integer n such that nw = 0 for every
w ∈ W ∗, which is just the exponent of W .

Example 5.3. Let Q be the group scheme of n-th roots of unity µn over F , where
char(F ) does not divide n. The exact sequence

χ : 1 // µn // Gm
n

// Gm // 1

is a coflasque resolution of Q. It is known that Ext1
Z
(Z/nZ,Z) ∼= Z/nZ, and [χ] is

the canonical generator of Ext1
Z
(Z/nZ,Z). Hence we recover the result e(µn) = n.

Next we are going to find a lower bound for e(Q) in terms of e(T ) and e(W ).

Lemma 5.4. e(W ) | e(Q).

Proof. Since L is a splitting field of Q, we have QL = TL ×WL and TL is a split
torus. Therefore e(WL) = e(QL). It remains to observe that e(W ) = e(WL) by
Lemma 5.1, and e(QL) | e(Q) by Proposition 2.1. �

Lemma 5.5. e(T ) | e(Q).
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Proof. By Theorem 4.1 Q∗
e(Q)

// Q∗ factors through ι∗ : P ∗ → Q∗. Since P ∗ is a

permutation module, it is Z-torsion free and the homomorphism Q∗ → P ∗ factors
through T ∗. This is illustrated in the following commutative diagram

Q∗

π
��
��

e(Q)
// Q∗

T ∗ // P ∗

ι∗
==⑤⑤⑤⑤⑤⑤⑤

Then the composition T ∗ // P ∗ ι∗
// Q∗ π

// // T ∗ is just the homomorphism

of multiplication by e(Q). Therefore e(T ) | e(Q). �

Corollary 5.6. lcm{e(T ), e(W )} | e(Q).

Let λ be the order of [ζ] in Ext1G(T
∗,W ∗). Then λ is the smallest positive integer

such that T ∗ λ
// T ∗ factors through Q∗,

T ∗
ψ

// Q∗ // // T ∗

for some ψ : T ∗ → Q∗. Since Q∗ = T ∗ ⊕W ∗ as an abelian group, we can write
every element in Q∗ in the form (x, y) where x ∈ T ∗, y ∈ W ∗.

Lemma 5.7. ψ can be chosen so that ψ(x) = (λx, 0) for every x ∈ T ∗.

Proof. First note that T ∗ is isomorphic to λT ∗ as a G-module, because T ∗ is Z-free.
Consider the following exact sequence of G-modules

(3) 0 // W ∗ // λQ∗ +W ∗ // λT ∗ // 0

where λQ∗ +W ∗ is a submodule of Q∗, and the homomorphisms are the canonical
ones. The composition

λT ∗
∼=

// T ∗
ψ

// λQ∗ +W ∗

is a splitting homomorphism for (3). Therefore λQ∗+W ∗ is isomorphism to λT ∗⊕
W ∗ as G-modules. �

Proposition 5.8. lcm{e(T ), e(W )} | e(Q) | lcm{λe(T ), e(W )}.

Proof. By Corollary 5.6 it suffices to prove the second divisibility. Choose ψ such

that ψ(x) = (λx, 0) for every x ∈ T ∗. Let n = lcm{e(T ), e(W )
λ }, where λ divides

e(W ) because λ is also the smallest positive integer such that W ∗ λ
// W ∗ factors

through Q∗. Then we consider the composition

β : Q∗ −→ T ∗ n
−→ T ∗

ψ
−→ Q∗

(x, y) 7−→ x 7−→ nx 7−→ (λnx, 0).

Since e(W ) is equal to the exponent of W ∗, β is just the endomorphism of Q∗

given by multiplication by λn. By Theorem 4.1, T ∗ n
// T ∗ factors through a

permutation module. Therefore β also factors through a permutation module, and
it implies that

e(Q) | λn = lcm{λe(T ), e(W )}. �

The following examples show that the inequalities in Proposition 5.8 are sharp.
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Example 5.9. Let L/F be a quadratic field extension and char(F ) 6= 2, and let
σ be the generator of G = Gal(L/F ). Consider the group of multiplicative type Q
given by Q∗ = Z ⊕ Z/nZ (as abelian group) with G-action σ(a, b) = (−a, a + b),
where char(F ) does not divide n. By [7, Example 4.1] e(T ) = [L : F ] = 2, and by
Lemma 5.1 e(W ) = n.

By using [4, Lemma 0.6] we can construct a coflasque resolution of Q∗ explicitly
and show that e(Q) = 2n. In particular, if n = 2, then λ = 2 also and we have
lcm{λe(T ), e(W )} = 4 = e(Q) > lcm{e(T ), e(W )}.

Example 5.10. Let L/F be a field extension such that G = Gal(L/F ) is a cyclic
group of order 4, for example F = Q(i) and L = Q(ξ16), and let σ be a generator
of G. Let T be the torus given by

1 // Gm // RL/F (Gm) // T // 1 .

Then T ∗ is (isomorphic to) the kernel of the augmentation map Z[G] → Z. As an
abelian group T ∗ is generated by a := 1− σ, b := 1− σ2, c := 1− σ3.

Consider Q∗ = T ∗ ⊕ Z/2Z⊕ Z/2Z (as abelian group) with G-action

σ(xa+ yb+ zc, u, v) = ((−x− y − z)a+ xb + yc, x+ y + v, u)

for every x, y, z ∈ Z and for every u, v ∈ Z/2Z. By direction verification

0 // Z/2Z⊕ Z/2Z // Q∗ // T ∗ // 0

does not split, hence λ = 2. By [7, Example 4.1] e(T ) = [L : F ] = 4. We claim that

e(Q) = 4 also by noting that Q∗ 4
// Q∗ factors as

Q∗ // // T ∗ i
// Z[G]

φ
// Q∗

where i is the inclusion, and φ is given by φ(1) = (a+b+c, 0, 0). Hence lcm{e(T ), e(W )} =
4 = e(Q) < lcm{λe(T ), e(W )}.

6. Application

In the proof of Lemma 5.5 we have shown that Q∗
e(Q)

// Q∗ factors as

Q∗ π
// // T ∗ // P ∗ // Q∗

where P ∗ is a permutation module. If we write Q∗ = T ∗ ⊕ W ∗ (as an abelian
group), the composition homomorphism T ∗ → Q∗ above is injective as it is given
by x 7→ (e(Q) · x, 0). Let Z be the group of multiplicative type defined by Z∗ =
Q∗/ im(T ∗), and we have an exact sequence

1 // Z // Q // T // 1 .

Passing to cohomology we obtain

H1(K,Z) // H1(K,Q)

&&
▼▼

▼▼
▼▼

▼▼
▼▼

0
// H1(K,T )

H1(K,P )

88qqqqqqqqqq

.

Therefore Z is a finite subgroup of Q, with exponent e(Q), such that the natural
map H1(K,Z) → H1(K,Q) is surjective for every field extension K/F .
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The following proposition shows that the exponent of any finite subgroup of Q
with such property must be at least e(Q).

Proposition 6.1. Let Q be a group of multiplicative type, and Z be any finite
subgroup of Q such that H1(K,Z) → H1(K,Q) is surjective for every field extension
K/F . Then e(Q) divides the exponent of Z.

Proof. First we recall that by Lemma 5.1 the exponent of the finite group Z is
equal to e(Z). For every field extension K/F , e(Z) ·H1(K,Z) = 0. By assumption
H1(K,Z) → H1(K,Q) is surjective, hence e(Z) ·H1(K,Q) = 0 also. It follows that
e(Q) divides e(Z). �
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