
JOUBERT’S THEOREM FAILS IN CHARACTERISTIC 2

ZINOVY REICHSTEIN

Abstract. Let L/K be a separable field extension of degree 6. An 1867 theorem of P. Joubert
asserts that if char(K) 6= 2 then L is generated over K by an element whose minimal polynomial
is of the form t6 + at4 + bt2 + ct+ d for some a, b, c, d ∈ K. We show that this theorem fails in
characteristic 2.

I. Introduction. The starting point for this note is the following classical theorem.

Theorem 1. (P. Joubert, 1867) Let L/K be a separable field extension of degree 6. Assume
char(K) 6= 2. Then there is a generator y ∈ L for L/K (i.e., L = K(y)) whose minimal
polynomial is of the form

(2) t6 + at4 + bt2 + ct+ d

for some a, b, c, d ∈ K.

Joubert [Jo] gave a formula, which associates to an arbitrary generator x for L/K another
generator y ∈ L whose minimal polynomial is of the form (2). He did not state Theorem 1 in
the above form, did not investigate under what assumptions on L, K and x his formula applies,
and, most likely, only considered fields of characteristic zero. A proof of Theorem 1 based on
an enhanced version of Joubert’s argument has been given by H. Kraft [Kr, Main Theorem
(b)]. A different (earlier) modern proof of Theorem 1, based on arithmetic properties of cubic
hypersurfaces, is due to D. Coray [Co, Theorem 3.1]. (Coray assumed that char(K) 6= 2, 3.) Since
both of these proofs break down in characteristic 2, Kraft [Kr, Remark 6] asked if Theorem 1
remains valid when char(K) = 2. In this paper we will show that the answer is “no" in general
but “yes" under some additional assumptions on L/K.

II. Notational conventions. Suppose L/K is a field extension of of degree n. Every y ∈ L,
defines a K-linear transformation L → L given by z 7→ yz. We will denote the characteristic
polynomial of this linear transformation by tn − σ1(y)t

n−1 + · · ·+ (−1)nσn(y). It is common to
write tr(y) in place of σ1(y). The minimal and the characteristic polynomial of y coincide if and
only if y is a generator for L/K.

If L/K is separable, then σi(y) = si(y1, . . . , yn), where y1, . . . , yn are the Galois conjugates
of y and si is the ith elementary symmetric polynomial. Furthermore, if [L : K] = 6, then
condition (2) of Theorem 1 is equivalent to σ1(y) = σ3(y) = 0.

We will be particularly interested in the “general" field extension Ln/Kn of degree n con-
structed as follows. Let F be a field and x1, . . . , xn be independent variables over F . The sym-
metric group Sn acts on F (x1, . . . , xn) by permuting x1, . . . , xn. Set Kn := F (x1, . . . , xn)

Sn =
F (a1, . . . , an), where ai = si(x1, . . . , xn), and Ln := F (x1, . . . , xn)

Sn−1 = Kn(x1), where Sn−1

permutes x2, . . . , xn. Note that by construction Ln/Kn is a separable extension of degree n.
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We remark that since Sn has no proper subgroups containing Sn−1, there are no proper subex-
tensions between Kn and Ln. Thus for n > 2, y ∈ Ln generates Ln/Kn if and only if y 6∈ Kn.

III. Main results.

Theorem 3. Let F be a field of characteristic 2, m ≥ 1 be an integer, and n := 2 · 3m. Then
there is no y ∈ Ln−Kn such that σ1(y) = σ3(y) = 0.

In particular, setting m = 1, we see that Theorem 1 fails in characteristic 2. We will deduce
Theorem 3 from the following more general

Theorem 4. Let F be a field of characteristic 2, m > 1 be an integer, p be an odd prime, and
n := 2pm. Then there is no y ∈ Ln−Kn such that tr(y) = tr(y2) = · · · = tr(yp) = 0.

By Newton’s formulas, tr(y3) = tr(y)3 − 3 tr(y)σ2(y) + 3σ3(y). Thus in characteristic 6= 3,

σ1(y) = σ3(y) = 0 ⇐⇒ tr(y) = tr(y3) = 0 .

Moreover, in characteristic 2, tr(z2) = tr(z)2 for any z ∈ Ln and thus

tr(y) = tr(y2) = · · · = tr(yp) = 0 ⇐⇒ tr(y) = tr(y3) = · · · = tr(yp−2) = tr(yp) = 0 .

In particular, for p = 3, Theorem 4 reduces to Theorem 3.

Theorem 5. Let L/K be a separable field extension of degree 6. Assume char(K) = 2 and one
of the following conditions holds:

(a) there exists an intermediate extension K ⊂ L′ ⊂ L such that [L′ : K] = 3,

(b) K is a C1-field.

Then there is a generator y ∈ L for L/K satisfying σ1(y) = σ3(y) = 0.

For background material on C1-fields, see [Se1, Sections II.3].

IV. Proof of Theorem 4: the overall strategy. It is easy to see that if Theorem 4 fails
for a field F , it will also fail for the algebraic closure F . We will thus assume throughout that F
is algebraically closed.

Our proof of Theorem 4 will use the fixed point method, in the spirit of the arguments
in [RY2, Section 6]. The idea is as follows. Assume the contrary: tr(y) = · · · = tr(yp) = 0 for
some y ∈ Ln−Kn. Based on this assumption we will construct a projective F -variety X with
an Sn-action and an Sn-equivariant rational map ϕy : A

n 99K X defined over F . Here Sn acts
on A

n by permuting coordinates in the usual way. The Going Down Theorem of J. Kollár and
E. Szabó [RY1, Proposition A.2] tells us that every abelian subgroup G ⊂ Sn of odd order has a
fixed F -point in X. On the other hand, we will construct an abelian p-subgroup G of Sn with
no fixed F -points in X. This leads to a contradiction, showing that y cannot exist. We will now
supply the details of the proof, following this outline.

V. Construction of X, ϕy, and the abelian subgroup G ⊂ Sn. Every y ∈ Ln gives rise
to an Sn-equivariant rational map (i.e., a rational covariant)

fy : A
n 99K A

n

fy(α) = (h1(y)(α), . . . , hn(y)(α)) ,

where A
n is the n-dimensional affine space defined over F , α = (a1, . . . , an) ∈ A

n, elements
of F (x1, . . . , xn) are viewed as rational functions on A

n, and h1, . . . , hn are representatives of
the left cosets of Sn−1 in Sn, such that hi(1) = i. Note that h1(y) = y, h2(y), . . . , hn(y) are
the conjugates of y in F (x1, . . . , xn). Since y ∈ Ln := F (x1, . . . , xn)

Sn−1 , hi(y) ∈ F (x1, . . . , xn)
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depends only on the coset hi Sn−1 (i.e., only on i) and not on the particular choice of hi in this
coset.

Recall that we are assuming that tr(y) = · · · = tr(yp) = 0. Thus the image of fy is contained
in the Sn-invariant subvariety X ⊂ A

n given by

(6) a1 + · · ·+ an = a21 + · · ·+ a2n = · · · = ap1 + · · · + apn = 0 .

Because n is even and we are working in characteristic 2, if X contains α ∈ A
n then X contains

the linear span of α and α0 := (1, . . . , 1). Using this observation, we define an Sn-equivariant

rational map ϕy : A
n 99K X as a composition ϕy : A

n
fy
99K X

π
99K X , where π denotes the linear

projection A
n 99K P(Fn/D), D := SpanF (α0) is a 1-dimensional Sn-invariant subspace in Fn,

and X ⊂ P(Fn/D) is the image of X under π. Points in the projective space P(Fn/D) ≃ P
n−2

correspond to 2-dimensional linear subspaces L ⊂ Fn containing D. Points in X correspond to
2-dimensional linear subspaces L ⊂ Fn, such that D ⊂ L ⊂ X. In particular, X is closed in
P(Fn/D). The rational map π associates to a point α ∈ A

n the 2-dimensional subspace spanned
by α and α0. Note that π(α) is well defined if and only if α 6∈ D. Since we are assuming that
y 6∈ Kn, the image of fy is not contained in D. Thus the composition ϕy = π ◦ fy : A

n 99K X is
a well-defined Sn-equivariant rational map.

Finally, the abelian p-subgroup G ⊂ Sn we will be working with, is defined as follows. Recall
that n = 2pm. The regular action of (Z/pZ)m on itself allows us to view (Z/pZ)m as a subgroup
of Spm . Here we denote the elements of (Z/pZ)m by g1, . . . , gpm and identify {1, . . . , pm} with
{g1, . . . , gpm}. We now set G := (Z/pZ)m × (Z/pZ)m →֒ Spm × Spm →֒ Sn.

VI. Conclusion of the proof of Theorem 4. It remains to show that G has no fixed
F -points in X. A fixed F -point for G in X corresponds to a 2-dimensional G-invariant subspace
L of Fn such that D ⊂ L ⊂ X. It will thus suffice to prove the following claim: no G-invariant
2-dimensional subspace of Fn is contained in X.

Since F is an algebraically closed field of characteristic 2 and G is an abelian p-group, where
p 6= 2, the G-representation on Fn is completely reducible. More precisely, Fn decomposes

as F pm

reg [1] ⊕ F pm

reg [2], the direct sum of the regular representations of the two factors of G =

(Z/pZ)m × (Z/pZ)m. Each F pm

reg [i] further decomposes as the direct sum of pm one-dimensional
invariant spaces

Vχ[i] := SpanF (χ(g1), . . . , χ(gpm)) ,

where χ : (Z/pZ)m → F ∗ is a multiplicative character. Thus Fn = F pm

reg [1]⊕ F pm

reg [2] is the direct
sum of the two-dimensional subspace

(Fn)G = V0[1]⊕ V0[2] = {(a, . . . , a
︸ ︷︷ ︸

p
m

times

, b, . . . , b
︸ ︷︷ ︸

p
m

times

) | a, b ∈ F} ,

where 0 denotes the trivial character of (Z/pZ)m, and 2pm− 2 distinct non-trivial 1-dimensional
representations Vχ[i], where i = 1, 2, and χ ranges over the non-trivial characters (Z/pZ)m → F ∗.
Note that χ(g)p = χ(gp) = 1 for any character χ : (Z/pZ)m → F ∗, and thus

χ1(g1)
p + · · ·+ χ(gpm)

p = 1 + · · ·+ 1
︸ ︷︷ ︸

p
m

times

= pm = 1 in F .

(Recall that char(F ) = 2 and p is odd.) Since one of the defining equations (6) for X is
xp1 + · · · + xpn = 0, we conclude that none of the 2pm G-invariant 1-dimensional subspaces Vχ[i]
is contained in X, and the claim follows. �

VII. Proof of Theorem 5. Let L0 be the 5-dimensional K-linear subspace of L given by
tr(y) = 0. Let Y be the cubic threefold in P

4
K = P(L0) given by σ3(y) = 0 (or equivalently,
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tr(y3) = 0). It is easy to see that Y is a cone, with vertex 1 ∈ L0, over a cubic surface Y in
P
3
K := P(L0/K), defined over K. Note that Y is a K-form of the variety X we considered in the

proof of Theorem 4. Applying the Jacobian criterion to the defining equations (6) of X, (with
p = 3 and n = 6), we see that X is a smooth surface, and hence, so is Y . Either condition (a) or
(b) implies that there exists a y ∈ L−K such that tr(y) = tr(y3) = 0. Equivalently, Y (K) 6= ∅.
It remains to show that we can choose a generator y ∈ L with tr(y) = tr(y3) = 0 or equivalently,
that Y has a rational point away from of the “diagonal" hyperplanes xi = xj in P

3, 1 6 i < j 6 6.

(Note that the individual diagonal hyperplanes are defined over K, but their union is defined
over K.)

Suppose K is an infinite field. Since Y (K) 6= ∅, Y is unirational; see [Ko]. Hence, K-points
are dense in Y , so that one (and in fact, infinitely many) of them lie away from the diagonal
hyperplanes. Thus we may assume without loss of generality that K = Fq is a finite field of
order q, where q is a power of 2, and L = Fq6 . (Note that in this case both conditions (a) and
(b) are satisfied.) If y ∈ L is not a generator, it will lie in Fq2 or Fq3 . Clearly tr(y) 6= 0 for

any y ∈ Fq2−Fq and tr(y) = tr(y3) = 0 for any y ∈ Fq3 . Thus a non-generator y ∈ L satisfies

tr(y) = tr(y3) = 0 if and only if y ∈ Fq3 . In geometric language, elements of Fq3 are the K-points

of a line in Y , defined over K = Fq. We will denote this line by Z. It suffices to show that Y
contains a K-point away from Z.

By [Ma, Corollary 27.1.1], |Y (K)| ≥ q2 − 7q + 1. On the other hand, since Z ≃ P
1 over K,

|Z(K)| = q + 1. Thus for q > 8, Y has a K-point away from Z. In the remaining cases, where
q = 2, 4 and 8, we will exhibit an explicit irreducible polynomial over Fq of the form (2):

t6 + t+ 1 is irreducible over F2 see [Ch, p. 199],

t6 + t2 + t+ α is irreducible, over F4, where α ∈ F4−F2, and

t6 + t+ β is irreducible over F8, for some β ∈ F8−F2; see [GT, Table 5]. �

VIII. Concluding remarks. (1) Theorem 1 extends a 1861 result of C. Hermite [He],
which asserts that every separable extensions L/K of degree 5 has a generator y ∈ L with
σ1(y) = σ3(y) = 0. Surprisingly, Hermite’s theorem is valid in any characteristic; see [Kr, Main
Theorem (a)] or [Co, Theorem 2.2].

(2) It is natural to ask if results analogous to Theorem 1 are true for separable field extensions
L/K of degree n, other than 5 and 6: does L/K always have a generator y ∈ L with σ1(y) =
σ3(y) = 0? If n can be written in the form 3m1 + 3m2 for some integers m1 > m2 > 0, then
the answer is “no" in any characteristic (other than 3); see [Re, Theorem 1.3(c)], [RY2, Theorem
1.8]. Some partial results for other n can be found in [Co, §4].

(3) Using the Going Up Theorem for G-fixed points [RY1, Proposition A.4], our proof of
Theorem 4 can be modified, to yield the following stronger statement. Suppose K ′/Kn is a finite
field extension of degree prime to p. Set L′ := Ln⊗Kn

K ′. Then there is no y ∈ L′−K ′ such that
tr(y) = tr(y2) = · · · = tr(yp) = 0. In particular, under the assumptions of Theorem 3, there is
no y ∈ L′−K ′ with σ1(y) = σ3(y) = 0 for any finite field extension K ′/Kn of degree prime to 3.

(4) Our argument shows that the G-action on X is not versal in the sense of [Se2, Section I.5]
or [DR]. Otherwise X would have a G-fixed point; see [DR, Remark 2.7]. Moreover, in view of
Remark (3) above, the G-action on X is not even p-versal. Since G ⊂ An ⊂ Sn, the same is true
of the An- and Sn-actions on X . This answers a question raised by J.-P. Serre in a letter to the
author in 2005.

(5) Theorem 3 corrects an inaccuracy in the statement of Joubert’s theorem in [Re, Theorem
1.1], where the assumption that char(K) 6= 2 was inadvertently left out.
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(6) In the case where K = Fq is a finite field, Theorem 5 was communicated to the author by
F. Voloch, along with an alternative proof, which is reproduced below with his permission.

“As in your comment after Theorem 4, it is enough to find y in Fq6 , not in a smaller field, with

tr(y) = tr(y3) = 0, where the trace is to Fq. These conditions are equivalent to the existence of
x, z ∈ Fq6 with y = xq − x, y3 = zq − z, so zq − z = (xq − x)3. Letting u = z + x3, we get an

affine plane curve uq−u = x2q+1+xq+2 over Fq6 (here q is a power of 2). It is a general fact that
any affine plane curve of the form uq − u = f(x), where f(x) polynomial of degree d prime to q,
has genus (q− 1)(d− 1)/2, and its smooth projective model has exactly one point at infinity. In
particular, our curve has genus q(q−1). By the Weil bound the number of points on the smooth
projective model of this curve is at least q6 + 1− 2q(q − 1)q3. There is one point at infinity and
at most q5 points with y = xq−x ∈ Fq3 ; these are the bad points. If q > 2, our curve has a good

point, one that gives rise to a generator of Fq6 over Fq, because q6+1−2q(q−1)q3 > 1+q5 for any
q > 2. For q = 2, I can exhibit an explicit ‘Joubert polynomial’, as in your formula (2). In fact,
there are exactly two irreducible Joubert polynomials over F2, t

6+ t+1 and t6+ t4+ t2+ t+1."

Acknowledgement. The author is grateful to M. Florence, H. Kraft, D. Lorenzini, J.-P. Serre,
F. Voloch, and the anonymous referee for helpful comments.
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