NUMBER OF COMPONENTS OF
THE NULLCONE
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ABSTRACT. For every pair (G, V) where G is a connected simple
linear algebraic group and V is a simple algebraic G-module with
a free algebra of invariants, the number of irreducible components
of the nullcone of unstable vectors in V' is found.

1. We fix as the base field an algebraically closed field k of character-
istic zero. Below the standard notation and terminology of the theory
of algebraic groups and invariant theory [25] are used freely.

Consider a finite dimensional vector space V over the field £ and a
connected semisimple algebraic subgroup G of the group GL(V'). Let
ngyv: V — V//G be the categorical quotient for the action of G on V,
i.e., V//G is the irreducible affine algebraic variety with the coordinate
algebra k[V]¢ and the morphism Ty 1s determined by the identity
embedding k[V]¢ — k[V]. Denote by Ngy the nullcone of the G-
module V, i.e., the fiber W&}V(ﬂ'G,V(O)) of the morphism 7 ;.. A point
of the space V lies in Mgy if and only if its G-orbit is nilpotent, i.e.,
contains in its closure the zero of the space V' (see [25, 5.1]).

This article owes its origin to the following A. Joseph’s question [15]:
may it happen that the nullcone Ng v is reducible if the group G is sim-
ple, its natural action on V is irreducible, and the algebra of invariants
k[V]Y is free?

Pairs (G, V) with a free algebra of invariants k[V]¢ have been stu-
died intensively in the 70s of the last century (see [25], [20] and the
literature cited there). Under the assumptions of simplicity of the group
G and irreducibility of its action on V' they are completely classified and
constitute a remarkable class which admits a number of other important
characterizations.

In Theorem 3 proved below we find the number of irreducible compo-
nents of the nullcone Mgy for every pair (G, V) from this class. As a
corollary we obtain the affirmative answer to A. Joseph’s question. The
proof is based on the aforementioned classification and characterizati-
ons that are reproduced below in Theorems 1 and 2.

*This work is supported by the RSF under a grant 14-50-00005.
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2. Up to conjugacy in GL(V'), the group G is uniquely determined
as the image of a representation G — GL(V') of its universal cover-

ing group G. The equivalence class on this representation, if it is irre-
ducible, is uniquely determined by its highest weight A\ (with respect to

a fixed maximal torus and a Borel subgroup of the group G containing
this torus). With this in mind, we shall write G = (R, A), where R is
the type of the root system of the group G. Note that (R, \) = (R, \*),
where A" is the highest weight of the dual representation. We denote
by wi, ..., w, the fundamental weights of the group G numbered as in
Bourbaki [3]. If R = A,,B,, C,,D,, then we assume that, respectively,
r>1,3,2 4.
The following theorem is proved in [16]:

Theorem 1. All connected nontrivial simple algebraic subgroups G of
the group GL(V') that act on V irreducibly and have a free algebra of
invariants k[V]%, are exhausted by the following list:

(i) (adjoint groups):
(A, @1 + @,); (B, @2); (Dr, @2); (Cry 2001);
(B, @2), (E7, @1); (Es, s); (Fa, @1); (Ga, @2)
(i) (isotropy groups of symmetric spaces):
(Br,@1); (Dry @1); (Az, @2); (A, 2001);
(B, 21); (Dy, 2w01); (As, 2002); (Co, 2001); (Ar, 4w1);
(Cr, @2); (A7, @4); (B, @a); (Cy, @4); (Ds, ws); (Fa, @4);
(iii) (groups G with k[V]¢ = k):
(A, @1); (Ar,w9), 7 = 4 even; (C.,w); (D5, ws);
(iv) (groups G with tr degk[V]Y =1 not included in (i) and (ii)):
(Ar,2w1),7 2 2; (A, @2), 7 2 5 odd;
(A1, 3w1); (A5, 3); (As, @3); (A7, @3);
(Bs, @3); (Bs, @s); (C3, @s3); (De, @s ); (D7, @7);
(Go, @1); (B, @1); (E7, @07);
(v) (other groups):
(Ag, 3w1); (As, w3); (Be, ).
Remark 1. There are no repeated groups inside each of these five lists

(i)=(v). The unique group included in two different lists (namely, in (i)
and (ii)) is (A1, 2a;). The groups G with trdegk[V]¢ = 1 included in
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at least one of the lists (i), (ii) are (B, @), (D, @1), (A3, @s), (Ca, w2),
(A1, 2w1), (By,4) and only these groups.

3. Recall from [25, 3.8, 8.8], [20, Chap.5, §1, 11], [21] that an
algebraic subvariety S in V is called a Chevalley section with the Weyl
group W(S) := N(5)/Z(S), where N(S) :={ge€ G |g-5S =S} and
Z(S)={g€G|g-s=sVse S}, if the homomorphism of k-algebras
kV]E — E[S]VS) f + fls, is an isomorphism. A linear subvariety in
V' that is a Chevalley section with trivial Weyl group (i.e., a linear
subvariety intersecting every fiber of the morphism 7 at a single
point) is called a Weierstrass section. A linear subspace in V' that is a
Chevalley section with a finite Weyl group is called a Cartan subspace.

Recall also (see [25, Thm. 3.3 and Cor. 4 of Thm. 2.3]) that semisimp-
licity of the group G implies the equality

Mey = magcdimG-v:dimV—dimV//G. (1)
’ (S

Consider the following properties:

(FA) k[V]% is a free k-algebra;

(FM) k[V] is a free k[V]%-module;

(ED) all fibers of the morphism 7, have the same dimension;
(EDg) dimNg,y = mgy (see (1));

(FO) every fiber of the morphism 7, contains only finitely many
G-orbits;
(FOg) Ng,v contains only finitely many G-orbits;
(NS) G-stabilizers of points in general position in V' are nontrivial;
(CS) there is a Cartan subspace in V;
(WS) there is a Weierstrass section in V.

The following implications between them hold true:

(FM) < (FA)&(ED) (see [20, p. 127, Thm. 1]);

) < (ED) < (FOq) (see |20, p.128, Thm. 3, Cor.]);
(FOp) < (FO) (see[25, Cor.3 of Prop. 5.1]);

) = (FM) < (WS) (see[20, p.133, Thm.7]).
Theorem 2. For the connected simple algebraic subgroups G in GL(V),

acting on V irreducibly, all nine properties (FA), (FM), (ED), (EDy),
(FO), (FOyp), (NS), (CS), and (WS) are equivalent'.

'n [19, p. 207, Thm.], the property (NS) is replaced by the property that the
G-stabilizer of every point of V' is nontrivial. It is a mistake: for instance, the SLo-
module of binary forms in x and y of degree 3 has the property (FA), but the
SLy-stabilizer of the form z?y is trivial.
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Proof. The complete list of the groups G having the property (FA) is
obtained in [16]; the one having the property (ED) is obtained in [9],
[20, p. 141, Thm. 8] and, in the same papers, that having the property
(FM); the one having the property (FO) is obtained in [17]. The results
of papers [1], [2], [7], [8] yield the complete list of the groups G having
the property (NS). Matching the obtained lists proves the equivalence
of the properties (FA), (FM), (ED), (FO), and (NS) (see [25, Thm. 8.§]
and [20, p. 127, Thm. 1]). Tt is proved in [20, p. 142, Thm. 9] that each
of the properties (CS) and (WS) is equivalent to the property (ED). O

Remark 2. The conditions of simplicity of the group GG and irreduci-
bility of its action on V' in Theorem 2 are essential, see [21].

4. Now we turn to finding the number of irreducible components of
the nullcone Ng v .

Lemma 1. If dim V)G < 1, then the nullcone N,y is irreducible. If
dim VJG = 0, then it contains an open dense G-orbit.

Proof. The equality dimV//G = 0 means that dim VG is a single
point. By the definition of the nullcone, the latter condition is equiva-
lent to the equality Ngy = V. In particular, in this case the nullcone
Ng.v is irreducible. On the other hand, in view of (1), the equality
dim V /G = 0 is equivalent to that V' contains a G-orbit of dimension
dim V| i.e., an open and dense orbit.

In view of smoothness of V', the algebraic variety VG is normal
(see. [25, Thm. 3.16]). Let dim V /G = 1. It follows from rationality of
the algebraic variety V', dominance of the morphism 7 y,, and Liiroth’s
theorem that the curve V/G is rational. Being normal, it is smooth.
Hence V//G is isomorphic to an open subset of the affine line. Since
every invertible element of the algebra k[V] is a constant, the algebra
k[V] has the same property. Hence the curve V//G is isomorphic to
the affine line, and therefore, there is a polynomial f € k[V]¢ such
that f(0) = 0 and k[V]% = k[f]. Since the group G is connected and
has no nontrivial characters, the polynomial f is irreducible (see [25,
Thm. 3.17]). Since Ng,v = {v € V' | f(v) = 0}, this implies irreducibili-
ty of the nullcone Ng . O

Theorem 3. The nullcone Ngy of the connected nontrivial simple
algebraic group G C GL(V) acting irreducibly on V' and having the
equivalent properties listed in Theorem 2 is reducible if and only if G
1s contained in the following list:

(Dy, 2w1), (A3, 2w05), (A7, w0y4). (2)
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For every group G from list (2), the number of irreducible components
of the nullcone Ng vy is equal to 2.

Proof. ;From Theorem 2 we obtain the following interpretation of the
number of irreducible components of the nullcone Mg y. Using (1)
and the fiber dimension theorem (see [11, Chap. II, §3]), we infer that
dimension of every irreducible component of the nullcone Ngy is at
least m 1, This and the property (EDg) imply that dimension of every
irreducible component of the nullcone Ng v is equal to mg . But in
view of the property (FOy) every irreducible component of the nullcone
Ng.v is the closure of some G-orbit. Hence the number of irreducible
components of the nullcone Ngy is equal to the number of me.y-
dimensional nilpotent G-orbits in V.

Now we shall use Theorem 1 and find, for every group G listed in it,
the number of irreducible components of the nullcone Ng .

1. If the group G is adjoint, then according to [17, Cor. 5.5], the
nullcone Ny is irreducible. This conclusion covers all the groups G
from list (i) of Theorem 1.

2. In view of Lemma 1, the nullcone Ng y is irreducible for all the
groups G from lists (iii) and (iv) of Theorem 1 and also for the groups
with trdeg,k[V]® = 1 mentioned in Remark 1.

3. Consider all the groups G from list (v) of Theorem 1.

(3a) The orbits of the group (Ag, 3w ) are the orbits of the natural
action of the group SL3 on the space of cubic forms in three variables.
According to [25, 5.4, Example 2°], the Hilbert—-Mumford criterion imp-
lies the existence of a linear subspace L in V such that Ngy = G - L.
Hence the nullcone Ng y is irreducible.

(3b) The orbits of the group (As,ws) are the orbits of the natural
action of the group SLg on the space of 3-vectors A*k?. The classificati-
on of them is obtained in [4]; it shows (see [4, Table 6, dim S = 0]) that
in this case there is a unique nilpotent orbit of dimension mg , = 80.
Hence the nullcone Ny is irreducible.

(3c) The orbits of the group (Bg, wg) are the orbits of the natural
action of the group Spin,; on the space of spinor representation. The
classification of them is obtained in [14]; it shows (see [14, Thm. 1(3)])
that in this case there is a unique nilpotent orbit of dimension m, ;, =
62, and hence the nullcone Ng v is irreducible.

4. Let us now consider all the groups G from the remaining list (ii)
of Theorem 1. By virtue of the Lefschetz principle, we may (and shall)
assume that & = C. All these groups are obtained by means of the
following general construction.
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Consider a semisimple complex Lie algebra b, it adjoint group Ad b,
and an involution 6 € Auth. The decomposition

h=tdp, where t:={xech|l(z)=xa}, p={zebh|bx)=—x}

is a Zy-grading of the Lie algebra b, and ¢ is its proper reductive subal-
gebra (see [5]). Let K be the connected algebraic subgroup of Ad b with
the Lie algebra €. The subspace p is invariant with respect to the re-
striction to K of the natural action of the group Adh on h. The action
of K on p arising this way determines a homomorphism ¢: K — GL(p).

For every group from list (ii) of Theorem 1, there is a pair (b, §) such
that V =p and G = ((K).

Next, we use the following facts (see [18], [13], [5], [24]).

In b, there is a 6-stable real form v of the Lie algebra b, such that
t= (tN¥)d (tNp) is its Cartan decomposition (thereby tMNt is a com-
pact real form of the Lie algebra £). The semisimple real Lie algebra
t is noncompact and the juxtaposition t ~» 6 determines a bijections
between the noncompact real forms of the Lie algebra b, considered up
to an isomorphism, and the involutions in Aut b, considered up to con-
jugation. By means of this bijection and described construction, every
group G from list (ii) of Theorem 1 is determined by some noncompact
semisimple real Lie algebra s; we say that G and s correspond each
other.

The nullcone Ny, for the action of K on p contains only finitely
many K-orbits, therefore, every its irreducible component contains an
open dense K-orbit; the latter is called principal nilpotent K-orbit and
its dimension is equal to the maximum of dimensions of K-orbits in p.

Let o: ) = b, v+ iy — o — iy, z,y € t. Denote by N, the set
of nilpotent elements of the Lie algebra t. In every nonzero K-orbit
O C Nk, there is an element e such that {e, f := —o(e),h := [e, f]}
is an slo-triple (i.e., [h,e] = 2e and [h, f| = —2f). Then the element
(i/2)(e+f—h) lies in N, its Ad t-orbit &” does not depend on the choice
of e, the equality 2dim¢ & = dimg ¢’ holds, and the map & +— 0’ is
a bijection between the set of nonzero K-orbits in N, and the set of
nonzero Ad t-orbits in N,.

A nilpotent element of a real semisimple Lie algebra s is called com-
pact if the reductive Levi factor of its centralizer in s is a compact Lie
algebra, [24]. For all simple real Lie algebras s and their compact ele-
ments x, the orbits (Ads) - x are classified (and their dimensions are
found) in [24]. If, in the above notation, the elements of an Ad t-orbit
0’ are compact, then the K-orbit & is called (—1)-distinguished, [22].
All principal nilpotent K-orbits are (—1)-distinguished, [23].
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It follows from the aforesaid that the number of irreducible compo-
nents of the nullcone N , is equal to the number of (—1)-distinguished
K-orbits of maximal dimension in p, and also to the number of orbits
(Adrt) - z of maximal dimension, where x is a compact element in t.

This reduces the problem to pointing out for every group G from list
(ii) of Theorem 1 the simple real Lie algebra s corresponding to it, and
then to finding the number of orbits (Ads) - x, where z is a compact
element of s, such that their dimension is maximal.

Now we shall perform this for every group from list (ii) of Theorem 1,
except those from Remark 1 that have already been considered above.

(4a) Let G be one of the groups (B,,2w;), (D,,2w;), (As,2w,),
(Cy, 2w01), (A1, 4w1). Therefore, £ = so,,, where, respectively, n = 2r+1
(with > 3), 2r (with » > 4), 6, 5, 3. Hence the maximal compact
subalgebra in s is s0,.0 (see [5], [13], [24, Table 1]). In this case, s is
a real form of the Lie algebra sl,, (see Summary Table at the end of
[25] and Tables 7, 9 in Reference Chapter of [5]). It follows from this
and Table 8 in Reference Chapter of [5] that s = s[,(R). According
to [24, Thm. 8], the number of orbits (Ads) - x, where x is a nonzero
compact element of s, is equal to 1 if n is add, and to 2 if n is even,
and in the case of even n both of these orbits have the same dimension.
Therefore, the nullcone Ny is irreducible for odd n and has exactly
two irreducible components for even n.

(4b) Let G = (C,, w2). Therefore, ¢ = sp,,., so the maximal compact
subalgebra in s is sp,, (see [5], [13], [24, Table 1]). In this case, s is a
real form of the Lie algebra sly, (see Summary Table at the end of [25]
and Tables 7, 9 in Reference Chapter of [5]). It follows from this and
Table 8 in Reference Chapter of [5] that s = sl,.(H). According to [24,
Thm. 8], the number of orbits (Ads) -z, where x is a nonzero compact
element of s, is equal to 1. Therefore, the nullcone N y is irreducible.

(4c) Let G = (A7, wy4). Then £ = slg, so the maximal compact sub-
algebra in s is sug (see [5], [13], [24, Table 1]). In this case, s is a real
form of the Lie algebra E; (see Summary Table at the end of [25] and
Tables 7, 9 in Reference Chapter of [5]). It follows from this and [24,
Table 5] that, using E. Cartan’s notation, s = E7(). According to [24,
Table 12], for this s, the number of (—1)-distinguished K-orbits of max-
imal dimension (= 63) in Nk, is equal to 2. Therefore, the number of
irreducible componenets of the nullcone NV y is equal to 2 as well.

(4d) Let G = (C4,wy). Therefore, £ = spg, and hence the maximal
compact subalgebra in s is sp,, (see [5], [13], [24, Table 1]). In this

case, 6 is a real form of the Lie algebra Eg (see Summary Table at the
end of [25] and Tables 7, 9 in Reference Chapter of [5]). It follows from
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this and [24, Table 5] that s = Eg(). According to [24, Table 7], for this
s, there is a unique (—1)-distinguished K-orbit of maximal dimension
(=36) in Nk ,. Therefore, the nullcone Ng y is irreducible.

(4e) Let G = (Dg, ws). Therefore, € = s046, so the maximal compact
subalgebra in s is s0160 (see [5], [13], [24, Table 1]). In this case, s is
a real form of the Lie algebra Eg (see Summary Table at the end of
[25] and Tables 7, 9 in Reference Chapter of [5]). It follows from this
and [24, Table 5] that s = Egs). According to [24, Table 14], for this
s, there is a unique (—1)-distinguished K-orbit of maximal dimension
(=129) in Nk,. Hence the nullcone Ng y is irreducible.

(4f) Let G = (F4,w,). Therefore, € = f4, so the maximal compact
subalgebra in s is Fy_s50) (see [24, Sect. 5]). In this case, s is a real
form of the Lie algebra Eg (see Summary Table at the end of [25] and
Tables 7, 9 in Reference Chapter of [5]). It follows from this and [24,
Table 5] that s = Eg(_s6). According to [24, Table 9], for this s, there is
a unique (—1)-distinguished K-orbit of maximal dimension (= 24) in
Nk . Hence in this case the nullcone Ng y is irreducible. O

Remark 3. In [10] is obtained an algorithm that employs only elemen-
tary geometric operations (the orthogonal projection of a finite system
of points onto a linear subspace and taking its convex hull) and, starting
from the system of weights of the G-module V' and the system of roots
of the group G, finds a finite set of linear subspaces L in V' such that the
irreducible components of maximal dimension of the nullcone N are
the varieties G- L. In particular, if the property (EDg) holds (see above
the list of properties after formula (1)), this algorithm describes all the
irreducible components of the nullcone N¢y. For instance, this is so
for every pair (G, V) from Theorem 1. The computer implementation
of this algorithm is obtained in [12].
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