LOCAL-GLOBAL PRINCIPLE FOR REDUCED NORMS OVER
FUNCTION FIELDS OF p-ADIC CURVES

R. PARIMALA, R. PREETI, AND V. SURESH

ABSTRACT. Let F' be the function field of a p-adic curve. Let D be a central
simple algebra over F' of period n and A € F*. We show that if n is coprime to p
and D - (A) = 0 in H3(F,u®?), then X is a reduced norm. This leads to a Hasse
principle for the SL;(D), namely an element A € F* is a reduced norm from D if
and only if it is a reduced norm locally at all discrete valuations of F'.

1. INTRODUCTION

Let K be a p-adic field and F' a function field in one-variable over K. Let Qg
be the set of all discrete valuations of F'. Let G' be a semi-simple simply connected
linear algebraic group defined over F. It was conjectured in ([5]) that the Hasse
principle holds for principal homogeneous spaces under G over F' with respect to
Qp; i.e. if X is a principal homogeneous space under G over F with X (F),) # () for
all v € Qp, then X (F) # (. If G is SL1(D), where D is a central simple algebra over
F of square free index, it follows from the injectivity of the Rost invariant ([19]) and
a Hasse principle for H3(F, p1,,) due to Kato ([16]), that this conjecture holds. This
conjecture has been subsequently settled for classical groups of type B,, C,, and D,
([14], [23]). Tt is also settled for groups of type ?A,, with the assumption that n + 1
is square free ([14], [23]).

The main aim of this paper is to prove that the conjecture holds for SL;(D) for
any central simple algebra D over F' with index coprime to p. In fact we prove the
following (11.1)

Theorem 1.1. Let K be a p-adic field and F' a function field in one-variable over
K. Let D be a central simple algebra over F of index coprime to p and A € F*. If
D-(\)=0¢€ H3F,u%?), then X is a reduced norm from D.

This together with Kato’s result on the Hasse principle for H?(F, u,) gives the
following (11.2)

Theorem 1.2. Let K be p-adic field and F' the function field of a curve over K.
Let Qp be the set of discrete valuations of F'. Let D be a central simple algebra over
F of index coprime to p and N € F*. If X is a reduced norm from D ® F, for all
v € Qp, then X is a reduced norm from D.

In fact we may restrict the set of discrete valuations to the set of divisorial discrete
valuations of F'; namely those discrete valuations of F' centered on a regular proper
model of F' over the ring of integers in K.

Here are the main steps in the proof. We reduce to the case where D is a division
algebra of period /¢ with ¢ a prime not equal to p. Given a central division algebra
D over F of period n = (¢ with £ # p and A\ € F* with D - (\) = 0 € H3(F, u®?),
we construct a degree ¢ extension L of F' and p € L* such that Npp(p) = A,

(D®L)-(n) =0 and the index of D ® L is strictly smaller than the index of D.
1
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Then, by induction on the index of D, u is a reduced norm from D ® L and hence
Np/p(p) = Ais a reduced norm from D.

Let 2 be a regular proper 2-dimensional scheme over the ring of integers in K with
function field F' and X, the reduced special fibre of Z". By the patching techniques
of Harbater-Hartman-Krashen ([9], [10]), construction of such a pair (L, u1) is reduced
to the construction of compatible pairs (L,, y1,) over F, for all z € X, (7.5), where
for any x € Xg, F} is the field of fractions of the completion of the regular local
ring at x on 2. We use local and global class field theory to construct such local
pairs (L, pt). Thus this method cannot be extended to the more general situation
where F' is a function field in one variable over a complete discretely valued field
with arbitrary residue field.

Here is the brief description of the organization of the paper. In §3, we prove a few
technical results concerning central simple algebras and reduced norms over global
fields. These results are key to the later patching construction of the fields L, and
Wz € L, with required properties.

In §4 we prove the following local variant of (1.1)

Theorem 1.3. Let F' be a complete discrete valued field with residue field k. Suppose
that k s a local field or a global field. Let D be a central simple algebra over F of
period n. Suppose that n is coprime to char(k). Let o € H?*(F, u,) be the class of D
and X € F*. If a- (\) =0 € H3(F, u%?), then X is a reduced norm from D.

Let A be a complete regular local ring of dimension 2 with residue field x finite,
field of fractions F' and maximal ideal m = (m,d). Let ¢ be a prime not equal to
char(k). Let D be a central simple algebra over F' of index (" with n > 1 and « the
class of D in H?(F, pm). Suppose that D is unramified on A except possibly at 7
and 0. In §5, we analyze the structure of D. We prove that index of D is equal to
the period of D. A similar analysis is done by Saltman ([25]) with the additional
assumption that F' contains all the primitive £"-roots of unity, where ¢" is the index
of D. Let A\ € F*. Suppose that A\ = un"4* for some unit u € A and r,s € Z and
a-(\) =0 € H*(F,u3?). In §6, we construct possible pairs (L, ) with L/F of degree
(, i € L such that Np/p(p) = A, ind(D® L) < ind(D) and a- (u) = 0 € H3(L, u3?).

Let K be a p-adic field and F' a function field of a curve over K. Let ¢ be a prime
not equal to p, D a central division algebra over F' of index ¢" and « the class of D
in H(F, jupn). Let A € F* with a- (\) =0 € H3(F, u2?). Let 2" be a normal proper
model of F' over the ring of integers in K and X its reduced special fibre. In §7, we
reduce the construction of (L, u) to the construction of local (L,, ) for all z € X
with some compatible conditions along the “branches”.

Further assume that 2" is regular and ramgy (a)U suppg (A) U Xp is a union of
regular curves with normal crossings. We group the components of X, into 8 types
depending on the valuation of A, index of D and the ramification type of D along
those components. We call some nodal points of X, as special points depending on
the type of components passing through the point. We also say that two components
of Xy are type 2 connected if there is a sequence of type 2 curves connecting these
two components. We prove that there is a regular proper model of F’ with no special
points and no type 2 connection between certain types of component (8.6).

Starting with a model constructed in (8.6), in §9, we construct (Lp, up) for all
nodal points of Xy (9.8) with the required properties. In §10, using the class field
results of §3, we construct (L,, p,) for each of the components 1 of X, which are
compatible with (Lp, pp) when P is in the component 7.
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Finally in §11, we prove the main results by piecing together all the constructions

of §7, §9 and §10.

2. PRELIMINARIES

In this section we recall a few definitions and facts about Brauer groups, Ga-
lois cohomology groups, residue homomorphisms and unramified Galois cohomology
groups. We refer the reader to ([4]) and ([8]).

Let K be a field and n > 1. Let ,Br(K) be the n-torsion subgroup of the Brauer
group Br(K). Assume that n is coprime to the characteristic of K. Let u, be the
group of n'® roots of unity. For d > 1 and m > 0, let H4(K, u®™) denote the d*™®
Galois cohomology group of K with values in ™. We have H'(K, u,,) ~ K*/K*"
and H*(K,u,) ~ ,Br(K). For a € K*, let (a), € H'(K, u,) denote the image of
the class of a in K*/K*". When there is no ambiguity of n, we drop n and denote
(a), by (a). If K is a product of finitely many fields K;, we denote [] H4(K;, u&™)
by HY(K, ™).

Every element of H'(K,Z/nZ) is represented by a pair (E,o), where E/F is a
cyclic extension of degree dividing n and o a generator of Gal(£/F). Let r > 1. Then
(E,o0)" € HY(K,Z/nZ) is represented by the pair (E’, o) where E' is the fixed field
of the subgroup of Gal(E/F) generated by ¢/¢, where d = gcd(n,r) and o/ = o”.
In particular if r is coprime to n, then (E,0)" = (E,0"). Let (E,0) € H'(K,Z/nZ)
and A\ € K*. Let (F,0,)\) = (E/F,0,)\) denote the cyclic algebra over K

(E,U,/\):E@Ly@@Eyn_l

with y” = X\ and ya = o(a)y. The cyclic algebra (E, o, \) is a central simple algebra
and its index is the order of A in K*/Ng/k(£*) ([1, Theorem 18, p. 98]). The pair
(E, o) represents an element in H'(K,Z/nZ) and the element (E,0)-(\) € H*(K, )
is represented by the central simple algebra (E, o, \). In particular (E,0,\) ® E is
a matrix algebra and hence ind(E, 0, \) < [E : F].

For A\, u € K* we have ([1, p. 97])

(E,o,\) + (E,o,n) = (E, 0, \u) € H*(K, ).

In particular (E,0,A\7') = —(E, 0, \).

Let (E, 0, A) be a cyclic algebra over a field K and L/K be a field extension. Since
E/K is separable, F ® L is a product of field extensions E;, 1 < i < t, of L with
E; and E; isomorphic over L and E;/L is cyclic with Galois group a subgroup of
the Galois group of E/K. Then (E,0,\) ® L is Brauer equivalent to (E;, 0;, \) for
any ¢, with a suitable ¢;. In particular if L is a finite extension of K and E'L is the
composite of F and L in an algebraic closure of K, then EL/L is cyclic with Galois
group isomorphic to a subgroup of the Galois group of E/K and (E,0,\) ® L is
Brauer equivalent to (E'L,0’, A) for a suitable o’

Lemma 2.1. Let E/F be a cyclic extension of degree n, o a generator of Gal(E/F')
and A € F*. Let m be a factor of n and d = n/m. Let M/F be the subextension of

E/F with [M : F] =m. Then (E/F,0,)) ® F(¥A) = (M(¥/X)/F(V)),0 @ 1,v/)).



4 PARIMALA, PREETI, AND SURESH
Proof. We have (E,0)? = (M,c) € H'(F,Z/nZ) and hence
(E,0,\) @ F(VA) = (E(VN/F(V)),0@1,)\)
(E(VN)/F(VA),0 @1, (YN
= (B(VN/F(VX),c21)?- (V))
(M(VN)/F(VN),0 @1,V

4

Let K be a field with a discrete valuation v, residue field x and valuation ring R.
Suppose that n is coprime to the characteristic of k. For any d > 1, we have the
residue map 9x : HYK, u®) — H Y (k, p271). We also denote dx by 0. An ele-
ment o in HY(K, u®?) is called unramified at v or R if d(a) = 0. The subgroup of all
unramified elements is denoted by H¢ (K/R, u%?%) or simply HZ (K, u®"). Suppose
that K is complete with respect to v. Then we have an isomorphism H(r, u%) =
H? (K, ;12 and the composition H%(k, u®") = H? (K, u®") — HY (K, u) is de-
noted by ¢, or simply .

Let K be a complete discretely valued field with residue field x, v the discrete
valuation on K and m € K* a parameter. Suppose that n is coprime to the char-
acteristic of k. Let 0 : H*(K,u,) — H'(k,Z/nZ) be the residue homomorphism.
Let E/K be a cyclic unramified extension of degree n with residue field Fy and o
a generator of Gal(F/K) with oy € Gal(Ey/k) induced by o. Then (E,o,7) is a
division algebra over K of degree n. For any A € K*, we have

a(Ea g, )‘) = (EOa UO)V(A)'
For A\, u € K*, we have
(B, 0,A) - (1)) = (Eo, 00) - ((=1)"M"®0),

where 6 is the image of ;\L:—Ei; in the residue field.

Suppose FEj is a cyclic extension of k of degree n. Then there is a unique unramified
cyclic extension E of K of degree n with residue field Ey. Let o9 be a generator of
Gal(Ey/k) and o € Gal(F/K) be the lift of oyg. Then o is a generator of Gal(E/K).
We call the pair (E, o) the lift of (Ey, 09).

Let X be an integral regular scheme with function field F'. For every point x of
X, let Ox , be the regular local ring at x and x(z) the residue field at z. Let ﬁA’XJ be

the completion of O , at its maximal ideal m, and F} the field of fractions of o Xz
Then every codimension one point x of X gives a discrete valuation v, on F. Let
n > 1 be an integer which is a unit on X. For any d > 1, the residue homomorphism
HYF, 13) — H (k(2), p59 ") at the discrete valuation v, is denoted by d,. An
element o € HY(F, u®™) is said to be ramified at z if 9,(a) # 0 and unramified at
x if 0,(a) = 0. If X = Spec(A) and z a point of X given by (7), 7 s prime element,
we also denote F, by F, and k(z) by x(m).

Lemma 2.2. Let K be a complete discretely valued field and € a prime not equal to
the characteristic of the residue field of K. Suppose that K contains a primitive ('
root of unity. Let L/K be a cyclic field extension or the split extension of degree €.
Let € L and A = Npjk(p) € K. Then there exists 0 € L with Np/x(0) = 1 such
that L = K(p0) and 0 is sufficiently close to 1.

Proof. Since [L : K] is a prime, if yp ¢ K, then L = K(u). In this case 6 = 1 has
the required properties. Suppose that p € K. If L = [[ K, let 0, € K*\ {£1}
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sufficiently close to 1 and 6 = (6p,0;",1,---,1). Suppose L is a field. Let o be a
generator of Gal(L/K). Since L/K is cyclic, we have L = K(\/a) for some a € K*.
For any sufficiently large n, 0 = (1 + 7"\/a)"'o(1 + 7"\/a) € L has the required
properties. U

Lemma 2.3. Let K be a field and E/K be a finite extension of degree coprime to
char(K). Let L/K be a sub-extension of E/K and e = [E : L]. Suppose L/K is
Galois and E = L(«/m) for some m € L*. Then E/K is Galois if and only if E
contains a primitive e®® root of unity and for every T € Gal(L/K), 7(7) € E*.

Proof. Suppose that E/K is Galois. Let f(X)= X¢—7m € L[X]. Since [E: L] =e¢
and E = L(y/m), f(X) is irreducible in L[X]. Since f(X) has one root in E and
E/L is Galois, f(X) has all the roots in E. Hence E contains a primitive e root
of unity. Let 7 € Gal(L/K). Then 7 can be extended to an automorphism 7 of E.
We have 7(7) = 7(7) = (7(x/7))¢ € E*©.

Conversely, suppose that E contains a primitive e'
for every 7 € Gal(L/K). Let

g x)= I & =r(m).
T € Gal(L/K)

Then ¢g(X) € K[X] and ¢g(X) splits completely in E. Since e is coprime to char(K),
the splitting field Ey of g(X) over K is Galois. Since L/K is Galois and E is the
composite of L and Ey, F/K is Galois. O

b root of unity and 7(7) € E*¢

Lemma 2.4. Let F' be a complete discretely valued field with residue field k and
m € F a parameter. Let e be a natural number coprime to the characteristic of k. If
L/F is a totally ramified extension of degree e, then L = F(5/vr) for some v € F
which is a unit in the valuation ring of F'. Further if e is a power of a prime ¢ and
0 € F*\ F* is a norm form L, then L = F(¥/9).

Proof. Since F' is a complete discretely valued field, there is a unique extension of
the valuation v on F' to a valuation vy, on L. Since L/F is totally ramified extension
of degree e and e is coprime to char(k), the residue field of L is k and v (7) = e.
Let mp € L with vp(my) = 1. Then 7 = wn¢ for some w € L with v (w) = 0.
Since the residue field of L is same as the residue field of F'| there exists w; € F
with v(w;) = 0 and the image of w; is same as the image of w in the residue field
k. Since L is complete and e is coprime to char(x), by Hensel’s Lemma, there exists
u € L such that w = wyu®. Thus 7 = wnf = wiun¢ = wy(urg)®. In particular
wy'm € L* and hence L = F({/vr) with v = w; .

Let € F*\ F*°. Suppose that 6 is a norm from L. Let p € L with Np,p(p) = 6.
Since L = F(y/vm) with v € F a unit in the valuation ring of F and 7 € F a
parameter, «/um € L is a parameter at the valuation of L. Write u = wo(y/vm)® for
some wy € L a unit at the valuation of L and s € Z. As above, we have wy = vyu§
for some v; € K and u; € L. Since vy € F', we have

0 = Nijp(p) = Npyp(wo(vVom)®) = Npyp(vius(Vor)®) = viNpp(u)(om)®.
Since e is a power of a prime ¢ and # ¢ F*', s is coprime to ¢ and hence L =
F(v/0). O

Lemma 2.5. Let k be a local field and ¢ a prime not equal to the characteristic of
the residue field of k. Let Lo/k be a an extension of degree { and 0y € k*. If 0y & k**
and Oy is a norm from Ly, then Ly = k(v/0y).
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Proof. Suppose that Lgy/k is ramified. Since 0y € k**, by (2.4), Lo = k(3/0p).
Suppose that Lg/k is unramified. Let 7 be a parameter in k and write 6y = urn”
with u a unit in the valuation ring of k. Since 6 is a norm from Ly, ¢ divides 7.
Since 6y not an (" power in k, u is not an /*" power in k and k(\/0y) = k() is
an unramified extension of k of degree ¢. Since k is a local field, there is only one
unramified field extension of k of degree ¢ and hence Ly = k(\/u) = k(+/8y). O

Lemma 2.6. Suppose I is a complete discretely valued field with residue feld k a
local field. Let ¢ be prime not equal to char(k). Let L/F be a degree ¢ field extension
with 6 a norm from L. If 0 & F*, then L ~ F(~/0).

Proof. If L/ F is a ramified extension, then by (2.4), L ~ F(v/6). Suppose that L/F
is an unramified extension. Let Lo be the residue field of L. Then Ly/k is a field
extension of degree ¢ and the image @ of 6 in s is a norm from Ly. Since 6 ¢ F**,
0 is not an (™" power in k. Since s is a local field, Ly =~ (\Z/E) (2.5) and hence

L~ F(0). O

Lemma 2.7. Let F' be a complete discretely valued field with residue field k a global
field. Let L/F be an unramified cyclic extension of degree coprime to char(k) and
Lo the residue field of L. Let 6 € F be a unit in the valuation ring of F and 0 be the
image of 6 in k. Suppose that 0 is a norm from L. If jig € Lo with Ny, x(p10) = 0,
then there exists 1 € L such that Ny p(p) = 0 and the image of p in Lq is jio.

Proof. Let o be a generator of the Galois group of L/F and oy be the induced
automorphism of Ly/k. Since § € F is a norm from L, there exists p/ € L with
Np/p(p') = 0. Since 0 is a unit at the discrete valuation of F', y/ € L is a unit at
the dlscrete valuation of L. Let &' be the image of i’ in Lg. Then Ny, /(1) = 0 and
hence IW'ji5 " € Ly is a norm one element. Thus there exist a € Lo such that 7'p;*

a'og(a). Let b € L be alift of a and = p/bo(b)~'. Then Ny p(p) = Npp(p') =0
and the image of p in L is py. U
For L = Hf F, let o be the automorphism of L given by o(ay, - ,ap) = (ag, - ,ap, a1).

Then any o', 1 <i < ¢ —1is called a generator of Gal(L/F).

Lemma 2.8. Let I be a field and ¢ a prime not equal to the characteristic of F'. Let
L be a cyclic extension of F or the split extension of degree ¢ and o a generator of
the Galois group of L/ F. Suppose that there exists an integert > 1 such that F' does
not contain a primitive (" root of unity. Let p € L with Npjp(p) =1 and m > t.
If € L*" then there exists b € L* such that p = b=""o(b"").

Proof. Suppose L = [[F and p € L** for some s > 1 with Np/p(p) =

= (05,---,0;) € L with 6---0; = 1. Let b = (1,601,--- ,0,1) € L Then
w=>b"*%a(b*).

Suppose L/F' is a cyclic field extension. Write p = uém for some pg € L. Let
py = pub". Then p = pt". Let 6y = Nir(po) and 6y = Npjp(p). Then 6 = 05" .
Since Ny p(p) = 1, we have 0{" = Ny p(pi”) = 1. If 6; # 1, then F contains a
primitive (™" oot of unity. Since m >t and F' has no primitive " root of unity,
01 = 1. Hence Ny p(p1) = 1 and by Hilbert 90, 11 = b 'o(b) for some b € L. Thus
=" =0v""o®"). O
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3. GLOBAL FIELDS

In this a section we prove a few technical results concerning Brauer group of global
fields and reduced norms. We begin with the following.

Lemma 3.1. Let k be a global field, ¢ a prime not equal char(k), n,d > 2 andr > 1
be integers. Let Ey be a cyclic extension of k, oy a generator of the Galois group of
Eo/k and 0y € k*. Let 8 € H?*(k, pun) be such that ri = (Ey, 00,00) € H*(k, pim).
Let S be a finite set of places of k containing all the places of k with B ® k, # 0.
Suppose for each v € S, there is a field extension L, of k, of degree ¢ or L, is the
split extension of k, of degree { and u, € L}, such that

1) Np, i, (p) = bo

2)rB® L, =(Ey® L,,00 ®1, )

3) ind(f ® Ey® L,) < d.
Then there ezists a field extension Lo/k of degree £ and po € Lo such that

1) Nio k(o) = 6o

2) T6®L0 = (EQ@LQ,O‘Q@L/,LQ)

4) Lo®k,~ L, forallv € S.

5) o is close to p, for allv € S.

Proof. Let € be the set of all places of k£ and
S"=8SU{v e Q| b is not a unit at v or Ey/k is ramified at v}

Let v € S’\S. Then f®k, = 0. Let L, be a field extension of k, of degree ¢ such that
0o € N(L}). Let p, € L, with Ny, g, (jt,) = 6p. Since B®k, =0, ind(BREy® L,) =
1 < d. Since the corestriction map cor : H2(L,, pn) — H?(ky, puen) is injective (cf.
[17, Theorem 10, p. 237]) and cor(Ey ® L,,00 @ 1,p,) = (Ey ® ky,00 ® 1,0p) =
6@k, =0, (Ey® L,,00®1,pu,) =0=r8® L,. Thus, if necessary, by enlarging
S, we assume that S contains all those places v of k with either 6, is not a unit at v
or Ey/k is ramified at v and that there is at least one v € S such that L, is a field
extension of k, of degree ¢.

Let v € S. By (2.2), there exists 6, € L, such that Ny, s, (6,) =1, L, = k,(0,1,)
and 6, is sufficiently close to 1. In particular 6, € Lﬁn and hence rf ® L, = (Ey ®
Ly,o0®1,p,)=(FEy®L,,00®1, 1,0,). Thus, replacing p, by p,0,, we assume that
L, = k,(,). Let f,(X) = X 4+bp 1, X 4+ 40, X + (1) € k,[X] be the
minimal polynomial of u, over k,.

By Chebotarev density theorem ([7, Theorem 6.3.1]), there exists vy € Q4 \ S such
that Ey ® k,, is the split extension of k,,. By the strong approximation theorem
([3, p. 67]), choose b; € k, 0 < j < ¢ — 1 such that each b; is sufficiently close
enough to b;, for all v € S and each b; is an integer at all v ¢ S U {1p}. Let
Lo = k[X]/( X+ b1 X -+ 5, X + (1)) and uo € Lo be the image of X.
We now show that Ly and py have the required properties.

Since each b; is sufficiently close enough to b;, at each v € S, it follows from
Krasner’s lemma that Ly ® k, ~ L, and the image of o ® 1 in L, is close to pu, for
allv € S (cf. [26, Ch. II, §2]). Since L, is a field extension of k, of degree ¢ for at least
onev € S, Ly is a field extension of degree £ over k. Since X‘+b, 1 X" 14 ..+ (—1)%,
is the minimal polynomial of 1, we have N (o) = 6.
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To show that ind(3® Ey® Lg) < d and r3 = (Ey, 09, j10) € H*(Lg, pten), by Hasse-
Brauer-Noether theorem (cf. [3, p. 187]), it is enough to show that for every place
w of Ly, ind(B8 ® Fy ® Ly,) < dand 18 ® Ly, = (Ey, 00, fto) @ Ly € H*(Ly, fien).

Let w be a place of Ly and v a place of k lying below w. Suppose that v € S.
Then Lo ® k, ~ L,. Suppose L, =[]k, is the split extension. Then L,, ~ k,. By
the assumption on L,, we have ind(f ® Ey ® k,) < d. Since p, is close to pg, we
have Tﬁ ® Ll/ = (EO ® LIM 0o, MV) = (EO ®L® kl/a 00, ,UO)

Suppose that L, is a field extension of k, of degree ¢. Then L,, ~ Ly®k, ~ L, and
by the assumption on L,,, we have r® L, = (Ey, 0¢, i, )®L, and ind(fREy®L,) < d.
Since p is close to p,, we have rf ® L, = (Ey ® Ly, 00, ) = (Eo @ L ® k,, 09, o).

Suppose that v ¢ S and v # 1. Then 6y is a unit at v, Ey/k is unramified at v
and 8 ® k, = 0. Since each b; is an integer at v and pg is a root of the polynomial
Xt by 1 X+ oo+ 51 X + (—1)%00, o is an integer at w. Since f is a unit at
v, I is a unit at w. In particular (Fy ® Ly, 00,0) = 0 = r8 ® L,. If v = 1,
then by the choice of vy, 8 ® k, = 0, Ey ® k, is the split extension of k, and hence
(EQ,Uo,,l,Lo)@Lw:O:Tﬁ@Lw. [

Corollary 3.2. Let k be a global field, ¢ a prime not equal char(k), n and r > 1 be
integers. Let Oy € k*, r > 1 and B € H*(k, jum). Suppose that vl =0 € H*(k, pupm)
and $ # 0. Then there exists a field extension Ly/k of degree { and py € Lo such
that Nzo/k(t0) = 0o, 78 ® Lo = 0 and ind(8 ® Lo) < ind(3).

Proof. Let S be a finite set of places of k containing all the places of k with § # 0.
Let v € S. If 0y & k**, then, let L, = k,(v/0y) and p, = /0y € L,. If 6y € k**, then,
let L,/k, be any field extension of degree ¢ and p, = V0, € k, C L,. In both the
cases, we have Ny /i, (tw) = 60p. Since L, /k, is a degree ¢ field extension, ¢ divides
ind(5) and k, is a local field, ind(8 ® L,)) < ind(B) ( [3, p. 131]). Since ¢ = 0 and
L, /k, is a field extension of degree ¢, r5® L, = 0. Let Ey = k. Then, by (3.1), there
exist a field extension Lg/k of degree ¢ and pu € Ly with required properties. O

Lemma 3.3. Let k be a global field and ¢ a prime not equal to char(k). Let Ey/k be
a cyclic extension of degree a power of ¢ and oy a generator of Gal(Ey/k). Letn > 1,
Oy € k* and B € H?(k, jun) be such that vl = (Ey, 0q,0y) for some r > 1. Suppose
that rBREy # 0. If v is a place of k such that \/0y & k,, then ind(B® Ey®k, (/) <

Proof. Write r¢ = m{® with m coprime to . Then d > 1. Since m{¢p = rif =
(Eo, 00, 0p), we have ml¢8 @ Ey = 0. Since m is coprime to £ and the period of 3 is
a power of ¢, it follows that (3 ® Ey = 0. Since r3 ® Ey # 0, (4"'3® Ey # 0 and
per(f ® Ey) = (4.

Let v be a place of k. Suppose that /0y ¢ Ey ® k,. Then [Ey @ k,(v/0,) :
FEy®k,] = ¢ and hence ind(3 ® Ey ® k,(v/0y)) < ind(8® Ey) ([3, p. 131]). Suppose
that vy € Ex®k,. Then Ey®k,(/0y) = Ex®k,. Write Ey®k, = [[ E; with each E;
a cyclic field extension of k,. Since Ey/k is a Galois extension, £; ~ E; for all i and
j and mllB @k, = (Ey, 09, 00) @k, = (E;, 0;,0y) for all i, for suitable generators o; of
Gal(E;/k,). Since /0y € Ey®k,, /0y € E; for all i and hence QéEi:H”W € Ng, /i, (E}).
Since the period of (E;, 0;,6p) is equal to the order of the class of 6y in the group
kli/NEz/ku(Ez*) ([1, p. 75]), per(EZ-,al-,Go) < [Ez : ]{7,,]/6 < [EZ : ]{],,]

Suppose that per(f ® k,) < [F; : k,]. Since k, is a local field, per(f ® E;) = 1.
Thus per(8® Ey ® k,) = per(f ® E;) = 1 < (% = per(f ® Ey).
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Suppose that per(3 ® k,) > [E; : k,]. Since ml?8 @ k, = (E;,04,0p) and m is
coprime to ¢, we have per(8 ® k,) < {4per(E;, 0;,0p). Since k, is a local-field,

d g
per(39 Byh) = per(o ) = PG < FRUEIR) <l per(s )

Since k, is a local field, period equals index and hence the lemma follows. O

Proposition 3.4. Let k be a global field and ¢ a prime not equal to char(k). Let
Ey/k be a cyclic extension of degree a power of £ and oy a generator of Gal(Ey/k).
Let 0y € k* and B € H?(k,ppm) be such that r{3 = (Ey,00,0y) for some r > 1.
Suppose that rf @ Ey # 0. Then there exist a field extension Lo/k of degree ¢ and
o € Lo such that

1) Nipy /(o) = bo

2) T’B (%9 LQ = (EO (%9 LQ,O’O X 1,/10).

Proof. Let S be the finite set of places of k consisting of all those places v with
B®k, #0. Let v € S. Suppose that 0y & k. Let L, = k,(v/0) and p, = /0y € L,.
Then Np, i, (1) = 6. By (3.3), ind(8 ® Ey ® k,) < ind(8 ® Ep). In particular
ind(f®Ey®L,) <ind(f® Ey®k,) <ind(S® Ey). Since corg, /i, (rB®L,) = rif =
(Eo ® ky, 00,00) = cor, /i, (Eo ® Ly, 00 ®1, ) and corestriction is injective (cf. [17,
Theorem 10, p. 237]), we have 13 ® L, = (Ey ® L,,00 ® 1, 1,,).

Suppose that 6y = ! for some y,, € k,. Since k, is local field containing a primitive
(" root of unity and Ey®k, is a cyclic extension, there exists a cyclic field extension
L, /k, of degree ¢ which is not contained in Ey ® k,. Then Ny, (1) = ph = 6.
Since L, is not a subfield of Ey ® k,, ind(f ® Ey ® L,) < ind(f ® Ey ® k,) <
ind(8® Ey) ([3, p. 131]). Since cory, sk, (rB@L,) = r1lf&k, = (Ey®k,,00®1, ptl,) =
cory, /i, (Eo ® Ly, 00 ® 1, 1,,), by (cf. [17, Theorem 10, p. 237]), we have r ® L, =
(Eo® Ly,00®1, 1,,).

By (3.1), we have the required Ly and p. O

Proposition 3.5. Let k be a global field and ¢ a prime not equal to char(k). Let
Ey/k be a cyclic extension of degree a positive power of ¢ and oy a generator of
Gal(Ey/k). Let 0y € k* and 8 € H*(k, pen) be such that r(3 = (Ey, 09, 0) for some
r > 1. Suppose that r8 @ Ey = 0. Let Ly be the unique subfield of Ey of degree ¢
over k. Then there exists py € Lo such that

1) Niosi(po) = bo

2) T’B (%9 LQ = (EO (%9 LQ,O’O X 1,/10).

Proof. Since rf ® Ey = 0 and Ey/k is a cyclic extension, we have 3 = (Ey, o9, it')
for some ' € k. We have (Ey, o, ') = lr8 = (Eo, 00, 0p). Thus 6y = Ng,i(y) .
Let po = Npy/r,(y)' € Lo. Since Ly C Ey, we have 3 ® Ly = (Ey/Lo, 06, pt') =
(Eo/ Loy 0ty Neyyro(@)i) = (Eo/ Lo, 7t o) (ck. §2) and

Niosk(k0) = Noe(Neo o (y)) 1" = 6.
]

Corollary 3.6. Let k be a global field and ¢ a prime not equal to char(k). Let Ey/k
be a cyclic extension of degree a power of { and oy a generator of Gal(Ey/k). Let
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Oy € k* and B € H?(k, pem) be such that rif = (Ey, 09,0y) for some r > 1. Suppose
that r3 ® Ey = 0. Let Ly be the unique subfield of Ey of degree ¢ over k. Let S be a
finite set of places of k. Suppose for each v € S there exists j, € Ly ® k,, such that
® Niosk, /k, (1) = 0o

L rﬁ®LO®ku = (EO®LO®]€I/7O-O® 17,“@/)'

Then there exists i € Ly such that

1) Niosi(p) = 6o

2) 1B & Lo = (Eoy® Lo, 00 ® 1, 1)

3) w is close to p, for allv € S.

Proof. By (3.5), there exists ug € Lo such that

i NLo/k(MO) = 90

® r3® Lo = (Eo® Lo, 00 ® 1, ug).

Let v € S. Then we have

L4 NLo/k‘(IU/O) = 90 = NLO@)ku/ku(/’LV)

® (Ey®Ly®ky,00®1, 1) = (Eo® Lo ®ky, 00 @1, 1)

Let b, = pop, ' € Lo®k,. Then Npygp, jk, (by) =1 and (Ey® Ly®k,,00®1,b,) = 1.
Thus, there exists a, € Ey ® Ly ® k, with Ng,eroek, /Lo, (@v) = b,. We have
NEyorLo@ky /k, (0v) = Nigek, /ok, (by) = 1. Since Ey/k is a cyclic extension with o
a generator of Gal(Ey/k), for each v € S, there exists ¢, € Ey ® Ly ® k, such
that a, = ¢, (0o ® 1)(¢,). By the weak approximation, there exists ¢ € Ey ® Lg
such that c is close to ¢, for all v € S. Let a = ¢ (0 ® 1)(c) € Fy ® Ly and
1= toNEyoL/Le(¢) € Lo. Then p has all the required properties. O

4. COMPLETE DISCRETELY VALUED FIELDS

Let F' be a complete discretely valued field with residue field x. Let D be a central
simple algebra over F of period n coprime to char(x). Let A € F* and o € H?(F, p,,)
be the class of D. In this section we analyze the condition a - (A\) = 0 and we use
this analysis in the proof of our main result (§10). As a consequence, we also deduce
that if « is either a local field or a global field and « - (A) = 0 in H*(F, u?), then A
is a reduced norm from D.

We use the following notation throughout this section:

e [ a complete discretely valued field.

e « the residue field of F.

e v the discrete valuation on F'.

e 7 € F* a parameter at v.

e n > 2 an integer coprime to char(k)

e D a central simple algebra over F' of period n.

e o € H?(F, u,) the class representing D.

Let Ejy be the cyclic extension of k and oy € Gal(Ey/k) be such that d(a) = (Ep, o).
Let (E, o) be the lift of (Ey, 0¢) (cf. §2). The pair (E,0) or E is called the lift of
the residue of a. The following is well known.

Lemma 4.1. Let « € H*(F,p,), (E,0) the lift of the residue of a. Then a =
o + (E,o,7) for some o € H2 (F, u,). Further o/ @ E = a ® E is independent of
the choice of .

Proof. Since (FE,0,7) = 0(a), o/ = a — (E,o,7) € H?(F,ju,) and a = o +
(E,o,m). O
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Lemma 4.2. Let n > 2 be coprime to char(k) and o € H*(F,p,). If a = o/ +
(E,o,7) as in (4.1), then ind(o) = ind(o/ ® E)[E : F] = ind(a ® E)[E : F].

Proof. Cf. ([6, Proposition 1(3)] and [15, 5.15]). O

Lemma 4.3. Let E be the lift of the residue of a. Suppose there exists a totally
ramified extension M/F which splits o, then a @ E = 0.

Proof. Write « = o/ +(F, 0, m) asin (4.1). Since &/ QF = a®E, we have ' Q EQ M =
0. Since E® M/ E is totally ramified, the residue field of E® M is same as the residue
field of E. Since o/ ® E® M =0 and o/ ® F is unramified, it follows from ([28, 7.9
and 8.4]) that a ® F =o' ® F = 0. O

Lemma 4.4. Let n > 2 be coprime to char(k). Let « € H*(F, u,) and (E, o) be the
lift of the residue of . If a ® E =0, then o = (E, 0, un) for some u € F* which is
a unit at the discrete valuation and per(a) = ind(«).

Proof. We have a = o/ + (E,0,7) as in (4.1). Since ¢/ ® E = a ® E = 0, we have
o = (E,o0,u) for u € F*. Since E/F and o are unramified at the discrete valuation
of F', u is a unit at the discrete valuation of F'. We have o« = (F,0,u) + (E,0,7) =
(E,o,ur). Since E/F is an unramified extension and ur is a parameter, (E, o, ur)
is a division algebra and its period is [E : F|. In particular ind(a) = per(a). O

Theorem 4.5. Let F' be a complete discretely valued field with residue field k. Sup-
pose that k is a local field. Let £ be a prime not equal to the characteristic of k,
n=/(% and o € H*(F, j1,). Then per(a) = ind(«).

Proof. Write « = o + (E, 0, 7) as in (4.1). Then E is an unramified cyclic extension
of F' with d(a) = (Ep,09) and o' is unramified at the discrete valuation of F. Let
@ be the image of o/ in H?(k, uy,)

Suppose that per(d(«)) = per(«). Then per(d(«)) = [Fy : k]. Since F' is complete
discretely valued field and E/F unramified extension, we have [Ey : k] = [E : F].
Thus,

0 = per(a)
= per(a)
= per(a)
= per(a)
per(a)

In particular, per(a’) divides per(a) = [Ey, k] = [E : F]. Since k is a local field,
@' ® Ey is zero ([3, p.131]) and hence o/ ® E is zero. By (4.4), we have a = (E, 0, 07)
for some 6 € F' which is a unit in the valuation ring. In particular, « is cyclic and
ind(«o) = per(a) = [E : F].

Suppose that per(d(«)) # per(a). Then per(d(a)) < per(«a). Since per(d(a)) =
per(E, o, 7), we have per(a) = per(a’). Since k is a local field, per(@’) = ind(a).
Let Ey be the residue field of E. Since per(a’) = per(a/) and per(d(«)) = [Ey : K],
we have [Ej : k] < per(@’). Since & is a local field,

per (@)
[Eo : K]

ind(@' ® Ey) =
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Since E is a complete discrete valued field with residue field £y and o' is unramified
at the discrete valuation of ., we have ind(o/ ® F) = ind(@ ® Ep). Thus, we have
ind(a) = ind(d’ @ E)[E:F] (by(4.2))

= ind(@ ® Ey)[FEy : K]
= 2[5 : 4
= per(a’) = per(a).
O
Proposition 4.6. Suppose that k is a local field. Let n > 2 be coprime to char(k). If

L/F is a finite field extension, then the corestriction homomorphism H?(L, u%%) —
H3(F, u%?%) is bijective.

Proof. Let k' be the residue field of L. Since k and ¥’ are local fields, H?(k, u%?) =
H3(K', u®?) = 0 (|27, p. 86]). Since F' and L are complete discrete valued fields, the
residue homomorphisms H?(F, u%?%) % H?(k, p,) and H3(L, u$?) % H?(K', i) are
isomorphisms (cf. [28, 7.9]). The proposition follows from the commutative diagram

H3(L,p2) % H2(K, )

+ +
HYF i) 55 H (s ),
where the vertical arrows are the corestriction maps ([28, 8.6]). O

Lemma 4.7. Let ¢ be a prime not equal to char(k) and n = (¢ for some d > 1. Let
a € H*(F,u,) and X € F*. Write A = 01" for some 0,7 € F with v(0) = 0 and
v(m) =1. Let (E,0) be the lift of the residue of « and o« = o'+ (E,0,7) as in (4.1).
Then

INa-(N)=0 < ra' =(FE,0,0) < ra=(E,o,\).
In particular, if d(a-(\)) =0 and r = v(\) is coprime to £, then ind(a ® F(v/))) <
ind(a) and a - (VX) =0 € H*(F(V/)), u2?).

Proof. Since rav = ra’ + (E,o0,7") and A = 07", ra = (E, 0, \) if and only if ra’ =
(E,0,0).
We have
1

O(a-(N) =0((a' + (E,0,m)) - (077)) = ra’ + (Ep, 00,0 ),
where 0(a) = (Ep, 09).
Thus (v - (A)) = 0 if and only if ra’ + (Eo,ao,gfl) = 0 if and only if r& =

(Ep, 09, 0) if and only if ra = (E,0,6) ( F being complete).
U

Lemma 4.8. Let n > 2 be coprime to char(k) and ¢ a prime which divides n. Let
a € H3(F, ju,), A = 07" € F* with 0 a unit in the valuation ring of F, ™ a parameter
and o = o + (E,0,7) be as in (4.1). Suppose that o - (\) = 0 € H3(F, u%?) and
there exist an extension Ly of k of degree { and pg € Ly such that

o NLO/N(/‘LO) =0,

® T’a/®L0 = (EQ ®L0,0‘0 (%9 1,/10).

Then, there exist an unramified extension L of F' of degree { and p € L such that

e residue field of L is Ly,

e 1 a unit in the valuation ring of L,
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i ﬁ = Mo,
o Npjp(p) =0,
o a- (un") € H3(L, u$?) is unramified.

Proof. Since £ is a prime and [Lg : k] = ¢, Ly = r(pug) for any puj € Lo \ £. Let
g(X) =X +b X+ + b, X + by € 5[X] be the minimal polynomial of g over
k. Let a; be in the valuation ring of F' mapping to b; and f(X) = X* +a, X1 +
o+ X +ag € FIX]. If po € &, then we take uy = p1o. Since Ni,/x(pto) = 0, we
have by = (—1)%0. In this case we take ag = (—1)%d. Since g(X) is irreducible in
k[X], f(X) € F[X] is irreducible. Let L = F[X]/(f). Then L/F is the unramified
extension with residue field Lo. If g € &, then § = N, Lo/ (fo) = pb. Since F is
a complete discretely valued field and ¢ is coprime to char(k), there exists pu € F
which is a unit in the valuation ring of F which maps to o and p’ = 6. If py & &,
then let 1 € L be the image of X. Then the image of ju is po and Np/p(p) = 6.
Since L/F, E/F and o' are unramified at the discrete valuation of F', we have
Op(a - (un")) = ra ® Ly and O ((E,o,7) - (un")) = 0 (F®@ Lo @ 1,u™1) - (7)) =
(Eo ® Lo, 00 ® 1, p15%). Since a = o' + (E, 0, ), we have
Op(a-(pr") = 0u((«/ @ L) (un")) + IL((E,0,7) - (um"))
= T’a/®L0+(E0®L0,O'0®]_,,U/61)
= 0
U

Lemma 4.9. Suppose that k is a local field. Let ¢ be prime not equal to char(k) and
n =% Let o € H*(F,u,) and X\ € F*. Suppose X & F**, a # 0 and o - (\) = 0.
Then ind(a @ F(v/X)) < ind(a) and o - (VX)) =0 € H¥}(F(V)), u2?).

Proof. Suppose v()\) is coprime to ¢. Then, by (4.7), we have ind(a ® F(V/\)) <
ind(a) and o - (V) = 0 € H3(F(V/), u2?).

Suppose that v(\) is divisible by . Write A = 7' with § € F a unit in the
valuation ring of F'.

Write @« = o + (E,o,7) as in (4.1). Then ind(a) = ind(¢/ ® E)[E : F] and
ind(a ® F(v0)) < ind(o/ @ E(V0))[E(V0) : F(V)] (cf. 4.2). If VO € E, then
F(V0) ¢ E = E(v#). In particular [E(V0) : F(v0)] = [E : F(V/)] < [E : F].
Since ind(o/ ® E(v/#)) < ind(o/ @ E), it follows that ind(a ® F(v/0)) < ind(a).

Suppose V0 ¢ E. Since E is unramified extension of F and 6 is a unit in the
valuation ring of E, E(v/8) is an unramified extension of F with residue field Eo(V8),
where Fj is the residue field of E and @ is the image of @ in the residue field. Since
F is a complete discretely valued field and 6 is not an ¢ power in E, 6 is not an ¢
power in Ey and [Eg(V0) : Eo] = ¢.

Suppose o ® E # 0. Then @ ® Ej # 0. Since Ej is a local field and ind(@’) is a
power of £, ind(a ® Ey(VA)) < ind(@ ® Ey) ([3, p. 131]). Hence ind(o/ @ E(v/0)) <
ind(o/ ® F) and ind(a ® F(v#)) < ind(a).

Suppose that o/ ® E = 0. Then, by (4.4), a = (E, o, ur) for some unit u in the
valuation ring of F'. Since - (A) =0, (E,o,ur) - (\) = 0. Since E/F is unramified
with residue field Ej, u, 6 are units in the valuation ring of F' and 7 a parameter,
by taking the residue of a - (A\) = 0, we see that (E0700’§*1Eed) =0 € H*(k, itn)
(cf. 4.7). In particular, fu—‘ is a norm from FEy. Since [E : k] is a power of £ and
Ey/k is cyclic, there exists a sub extension L of Fy such that [L : k] = £. Then
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fu—"? is a norm from L and hence @ is a norm from L. Since 6 is not in x*/, by (2.5),
L = /{(\Z/E) In particular V8 € E, and hence v € E. Thus ind(a ® F(v0)) =
ind((E,o,ur) ® F(V/#)) < ind(E, o, ur) = ind(a). O

Lemma 4.10. Suppose k is a local field. Let ¢ be a prime not equal to char(k) and
n = (% Let a € H*(F,pu,) and X € F*. Suppose that k contains a primitive (*®
root of unity. If a # 0 and a - () = 0 € H3(F, u®?), then there exist a cyclic field
extension L/F of degree £ and p € L* such that Np/p(pn) = A, ind(a ® L) < ind(o)
and o - (p) = 0 € H3(L,u%?). Further, if X\ € F*', then L/F is unramified and
e F.

Proof. Suppose A is not an /" power in F. Let L = F(v/A) and = v/A. Then, by
(4.9), ind(a ® L) < ind(a) and a - () = 0 € H3(L, u®?).

Suppose A = pf for some pu € F*. Write o = o/ + (E, 0, 7) as in (4.1).

Suppose that o/ ® E'= 0. Then, by (4.4), a = (E, 0, ur) for some u € F* which
is a unit in the valuation ring of F'. Let L be the unique subfield of £ with L/F of
degree (. Then ind(a ® L) < ind(«). Since corpr(a - (1)) = a- (p') = - (A) =0,
by (4.6), o+ (1) = 0in H3(L, p,,). We also have X = p* = Ny p(p).

Suppose that o/ ® E # 0. Let Ey be the residue field of E. Then Ey/k is a cyclic
field extension of k of degree equal to the degree of E/F. Since k is a local field
and contains a primitive /'" root of unity, there are at least three distinct cyclic field
extensions of k of degree ¢. Since Ey/k is a cyclic extension, there is at most one
sub extension of Ej of degree ¢ over k. Thus there exists a cyclic field extension
Lo/k of degree ¢ such that Fy ® Ly is a field. Let L/F be the unramified extension
with residue field Ly. Then £ ® L is a field. Let @ be the image of o/ in H?(k, j,).
Since F is a complete discretely valued field, @ ® Ey # 0. Since Ey ® Lo/ Ep is a
field extension of degree ¢ and & is a local field, ind(@’ ® Ey ® Ly) < ind(@ ® Ey)
([3, p. 131]). Since E is a complete discretely valued field, ind(e/ ® E ® L) <
ind(o ® E). Since L/F is unramified, (o ® L) = 9(a) ® Ly (cf. [4, Proposition
3.3.1]) and hence the decomposition a ® L = ¢ ® L+ (FE ® L,oc ® 1,7) is as in
(4.1). Thus, by (4.2), ind(av ® L) < ind(cr). As above, we also have A = Ny p(u)
and « - (u) =0 € H*(L, u%?). O

Lemma 4.11. Suppose k is a global field. Let ¢ be a prime not equal to char(k) and
n="0. Let o € H¥(F,p,) and A\ € F*. If o« # 0 and o - (\) = 0 € H3(F, u%?),
then there exist a field extension L/F of degree £ and p € L* such that Np/p(p) = A,
ind(a ® L) < ind(a) and o~ (u) =0 € H3(L, u%?).

Proof. Suppose that v(\) is coprime to £. Then, by (4.7), L = F(v/\) and p = v/A
has the required properties.

Suppose that v()) is divisible by . Let 7 be a parameter in . Then A\ = 07" with
v(0) = 0. Write « = o/ + (E,0,m) as in (4.1). Let @ be the image of o' in H?*(k, j,,)
and 6y the image of 0 in k. Since a - (\) = 0, by (4.7), we have réa’ = (Ey, 09,6),
where Fjy is the residue field of £ and oy induced by o.

Suppose that r&’ @ Ey # 0. Then, by (3.4) , there exist a extension Ly/k of degree
¢ and po € Lo such that Ny .(po) = 0o, ind(@ ® Ey ® Ly) < ind(@ ® Ep) and
ra’ X LQ = (EO X L(), oo, /,LQ)

Suppose that r@’ ® Ey = 0. Suppose that Ey # k. Let Lg be the unique subfield
field of FEy of degree ¢ over k. Then, by (3.5), there exists pug € Lo such that
Nio/k(po) = 0y and 1@’ @ Loy = (Ko, 00, fo)-
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Suppose that Ey = k. Then, by (3.2), there exist a field extension Ly/k of degree
¢ and po € Lo such that Ny /,(p0) = 0p and ind(@’ ® Ly) < ind(a).
By (4.8), we have the required L and px. O

Theorem 4.12. Let F' be a complete discrete valued field with residue field k. Sup-
pose that k is a local field or a global field. Let D be a central simple algebra over F'

of period n. Suppose that n is coprime to char(k). Let o € H*(F, j1,,) be the class of
D and )\ € F*. If a- (\) =0 € H3(F, u%?), then X\ is a reduced norm from D.

Proof. Write n = f‘fl <o+ (% ¢; distinet primes, d; > 0, D = Dy ® - - ® D, with each
D; a central simple algebra over F' of period power of ¢; ([1, Ch. V, Theorem 18]).
Let a; be the corresponding cohomology class of D;. Since ¢;’s are distinct primes,
a-(A) =0 if and only if a; - (\) = 0 and X is a reduced norm from D if and only if
A is a reduced norm from each D;. Thus without loss of generality we assume that
per(D) = ¢ for some prime /.

We prove the theorem by the induction on the index of D. Suppose that deg(D) =
1. Then every element of F* is a reduced norm from D. We assume that deg(D) =
n=1/0>2,

Let A € F* with - (\) =0 € H3(F, u2?). Let p be a primitive /! root of unity.
Since [F(p) : F] is coprime to n, A is a reduced norm from F' is and only if \ is a
reduced from D ® F(p). Thus, replacing F' by F(p), we assume that p € F.

Since k is either a local field or a global field, by (4.10, 4.11), there exist an
extension L/F of degree ¢ and p € L* such that Ny p(p) = A, a- () = 0 and
ind(o ® L) < ind(a). Thus, by induction, px is a reduced norm from D ® L. Since
Np/p(p) = A, Xis a reduced norm from D. O

The following technical lemma is used in §6.

Lemma 4.13. Let k be a finite field and K a function field of a curve over k. Let
u,v,w € K* and 0 € K*. Let { a prime not equal to char(k) and 0 = wul. If
Kk contains a primitive (" root of unity and w € x**, then for r > 1, the element

(v, ¥/0) is H2(K(Y/0) is trivial over K( v/8,v/v + uN).

Proof. Let L = K( V0. \/v+ uM) and = (v, %)g Since L is a global field, to show
that § ® L is trivial, it is enough to show that g ® L, is trivial for every discrete
valuation v of L. Let v be a discrete valuation of L. Since v € k*, v is a unit at v.
If # is a unit at v, then §® L is unramified at v and hence f ® L, is trivial. Suppose
that € is not a unit at v. Since u and v are units at v, A is not a unit. Suppose that
v(\) > 0. Then v € L** and hence 8 ® L, is trivial. Suppose that v(\) < 0. Then
vul € L,. Since r > 1, 0 = uw) and V= L,, we have V0 = Vwul € L,. Hence
Vw € L,. Since w € k*\ k*, v € k* and & is a finite field, /v € k(\/w). Since
k(Yw) C L,, B® L, is trivial. O

We end this section with the following well known facts.

Lemma 4.14. Let F' be a complete discrete valued field with the residue field k. Let
a € Br(F) and L/F an unramified extension with residue field Ly. Suppose that
per(a) is coprime to char(k). Let O(a) = (Eo,00). If (o @ L) is trivial, then Ey is
1somorphic to a subfield of L.

Proof. Let Ly be the residue field of L. Since L/F is unramified, (Ey,0¢) ® Lo

O(a) ® Ly = d(a ® L) (cf. [4, Proposition 3.3.1]). Since a ® L =0, 0(a® L) =
and hence Fj is isomorphic to a subfield of Lj.

o |l
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Corollary 4.15. Let L/ F be a cyclic extension of degree n, T a generator of Gal(L/F")
and 0 € F*. If v(0) is coprime to n and ind(L/F,7,0) = [L : F], then [L : F| =
per(O(L/F,1,0)).

Proof. Let = (L/F,7,0) and m = per(9(f)). Since n = [L : F] =ind(S), m divides
n. Since v(6) is coprime to n, F( %/6)/F is a totally ramified extension of degree m
with residue field equal to the residue field & of F. Since 9(8 @ F(¥/0)) = md(B),
B ® F(%/0) is unramified. Since F(3/0)/F (%) is totally ramified and 8 ®@ F(3/0)
is trivial, 8 ® F(¥/#) is trivial (cf. 4.3). Hence n = m. O

5. BRAUER GROUP - COMPLETE TWO DIMENSIONAL REGULAR LOCAL RINGS

Through out this section A denotes a complete regular local ring of dimension 2
with residue field x and F' its field of fractions. Let ¢ be a prime not equal to the
characteristic of k and n = ¢¢ for some d > 1. Let m = (,d) be the maximal ideal
of A. For any prime p € A, let F, be the completion of the field of fractions of the
completion of the local ring A, at p and x(p) the residue field at p.

Lemma 5.1. Let E; be a Galois extension of F, of degree coprime to char(k). Then
there exists a Galois extension E of F of degree [E, : Fy| which is unramified on A

except possibly at 6 and Gal(E/F) ~Gal(E,/Fy).

Proof. Since A is complete and m = (7, ), k(7) is a complete discretely valued field
with residue field x and the image & of § as a parameter. Let E, be the residue field
of E,. Then Ey/k(m) is a Galois extension with Gal(Ey/k(7)) ~ Gal(E,/F;). Let
Ly be the maximal unramified extension of x(m) contained in Ey. Then L is also
a complete discretely valued field with 0 as a parameter. Since Ey/Ly is a totally

ramified extension of degree coprime to char(k), we have Ey = LO(\e/ﬁ) for some
v € Ly which is a unit at the discrete valuation of Ly (cf. 2.4).

Since Ey/k(m) is a Galois extension, Ey/Lo and Lg/k(m) are Galois extensions.
Let kg be the residue field of Ey. Then the residue field of Ly is also kg. Since kg
is a Galois extension of k and A is complete, there exists a Galois extension L of F’
which is unramified on A with residue field kq. Let B be the integral closure of A
in L. Then B is a regular local ring with residue field kg (cf. [21, Lemma 3.1]). Let
u € B be a lift of v.

Let E = L(~/ud). Since L/F is unramified on A, E/F is unramified on A except
possibly at 6. In particular £/F is unramified at 7 with residue field Ey. By the
construction [F : F| = [Ep : k(7)]. Hence E® F, ~ E,.

Since L/F is a Galois extension which is unramified at 7, we have Gal(L/F') ~
Gal(Lo/k(m)). Let 7 € Gal(L/F) and T €Gal(Ly/k(m)) be the image of 7. Since
Eo /() is Galois and Ey = Lo(Vvd), by (2.3), Ey contains a primitive e root of
unity p and 7(vd)) € E§. In particular p € kg. Since B is complete with residue
field kg, p € B and hence p € L C E. Since 7(vd) = 7(v)d and v, 7(vd) € Ef,
7(v)/v € E§. Since T(v) and v are units at the discrete valuation of Ly and Ey/ Ly
is totally ramified, 7(v)/v € L§. Since B is complete and the image of 7(u)/u in Lo
is 7(v) /v, T(u)/u € L°. Since E = L(~/ud), 7(ud) € E°. Thus, by (2.3), E/F is
Galois. Since E® F, ~ E,, Gal(E/F) ~Gal(E,/F}). O

Since A is complete and (7, d) is the maximal ideal of A, A/(7) is a complete dis-

crete valuation ring with & is a parameter and A/(d) is a complete discrete valuation
ring with 7. The following follows from ([16, Proposition 1.7]).
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Lemma 5.2. ([16, Proposition 1.7]) Let m > 1 and o € H™(F, u5"™ V). Suppose
that o is unramified on A except possibly at ™ and 6. Then

05(0r(@0)) = —0=(95()).

Let H™(F, ji5, (mfl)) be the intersections of the kernels of the residue homomor-
phisms 85 : H™F, pS™ V) = H™ 1 (k(0), 1™ ) for all primes § € A. The
following lemma follows from the purity theorem of Gabber.

Lemma 5.3. Form > 1, H"'(F, Mg(mﬂ)) ~ Hm(ﬁ,lu%@(mfl)).

Proof. By the purity theorem of Gabber (cf. [24, CH. XVI]), we have H'(F, ug(mfl)) ~
HQZ(A,ug(mfl)). Since A is complete, we have Hg?(A,uff(mfl)) ~ Hm(/f,uff(mfl))
(cf. [20, Corollary 2.7, p.224]). O

Lemma 5.4. Let m > 1 and o € H™(F, ,u%(m_l)). Suppose that o is unramified ex-
cept possibly at w. Then there exist ag € H™(F, ,u%(m_l)) and B € H™ !(F, m?(m‘”)
which are unramified on A such that

a=aoy+ p-(m).

Proof. Let By = 0x(a). By (5.2), By € Hm_l(/ﬁ(ﬂ),uf?(mﬂ)) is unramified on A/(7).
Since A/(m) is a complete discrete valuation ring with residue field s, we have
Hﬂ_l(ﬁ(ﬁ),u%(m_m) ~ H™ !k, M%(m—%)‘ Since A is a complete regular local ring
of dimension 2, H™ Y(F,uS™ ) ~ H™ (x, 4" ) (5.3). Thus, there exists
B € Hm YF, u®™=Y) which is a lift of 8. Then ag = a — 3 - () is unramified on
A. Hence a = o + 3 - (). O

Corollary 5.5. Let m > 1 and o € H™(F, ug(mfl)) is unramified on A except pos-
sibly at m and §. If a® Fs = 0, then o = 0. In particular if oy, an € H™(F, ug(mfl))
unramified on A except possibly at m and § and oy ® Fy = as ® Fy, then a; = .

Proof. Since a ® Fs = 0, « is unramified at 6. Thus « is unramified on A except
possibly at 7. By (5.4), we have a = ag + 8 - () for some ag € H™(F, "™ V)
and 8 € H™"(F, ,ﬁ(m”’) which are unramified on A. Since a ® F;5 = 0, we have
(B-(m) ® Fs = —ap ® Fs. Since - (m) and «p are unramified at §, we have
B+ (%) = —ajp, where - denotes the image over x(d). Since £(§) is a complete discrete
valued field with 7 as a parameter, by taking the residues, we see that the image of
Bis 0 in H™ (k, ,u%(m_m). Since A is a complete regular local ring, § = 0 (5.3).
Hence a = ap is unramified on A. Since a ® F5; =0, a =0 € H™(k(0), uf?(m_l)). In
particular the image of o in H™(k, uf? (m_l)) is zero. Since A is a complete regular
local ring, v = 0 (5.3). O

Corollary 5.6. Let m > 1 and o € H™(F, p™ ). If a is unramified on A except

possibly at m and §, then per(a) = per(a ® F,) = per(a ® Fy).

Proof. Suppose t = per(a ® Fs). Then ta ® Fs = 0 and hence, by (5.5), ta = 0.
Since per(a® Fy) < per(a), it follows that per(«) = per(a® Fs). Similarly, per(a) =
per(a ® Fy). O

Corollary 5.7. Suppose that k is a finite field. Let o € H*(F, ju,). If o is unramified
except at m and o, then there exist a cyclic extension E/F and o € Gal(E/F) a
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generator, u € A a unit, and 0 < i,j < n such that o« = (E,o,un'?) with E/F is
unramified on A except at § and i =1 or E/F is unramified on A except at m and
j=1.

Proof. Since n is a power of the prime ¢ and na = 0, per(9;(«)) and per(ds(«)) are
powers of £. Let d’ be the maximum of per(d;(«)) and per(9ds(«)). Then 0, (d'a) =
d'0:(a) = 0 and Os(d'r) = d'05(«r) = 0. In particular d’«v is unramified on A. Since
K is a finite field, d’a = 0. Hence per(«) divides d’ and d’ = per(«). Thus per(a) =
per(0:(a)) or per(ds(a)).

Suppose that per(a) = per(d;(«)). Since 0, (a®F,) = 0,(a), we have per(d,(a)) <
per(a® F;) < per(a). Thus per(a® Fy) = per(0-(a® F;)). Thus, by (4.4), we have
a® F, = (E;/Fy,o0,0r) for some cyclic unramified extension E,/F, and 0 € F, a
unit in the valuation ring of Fi.

By (5.1), there exists a Galois extension E/F which is unramified on A except
possibly at (§) such that F ® F, ~ E,. Since E./F, is cyclic, E/F is cyclic. Since
6 € F, is a unit in the valuation ring of F and the residue field of F} is a complete
discrete valued field with § as parameter, we can write § = ué’67 for some unit
ueA b eF,and0<j<n-1 Then a® F, ~ (E,o,ué’7)® F,. Thus, by (5.5),
we have a = (E, 0, ud'r).

If per(a) = per(ds()), then, as above, we get @ = (F, o, un’d) for some cyclic
extension F/F which is unramified on A except possibly at 7. O

The following is proved in (29, 2.4]) under the assumption that F contains a
primitive n'" root of unity.

Proposition 5.8. Suppose that r is a finite field. Let o € H*(F,p,). If a is
unramified on A except possibly at () and (§). Then ind(a) = indla ® F,) =
an(Oé ® F(;)

Proof. Suppose that « is unramified on A except possibly at (7) and (9). Then,
by (5.7), we assume without loss of generality that o = (E/F,0,7?) with E/F
unramified on A except possibly at §. Then ind(a) < [E : F]. Since E/F is
unramified on A expect possibly at §, we have [E : F] = [E, : F;] and ind(a® F;) =
|Ey : Fy]. Thus [E : F| = [E,; : F;] = ind(a ® F;) < ind(a) < [E : F] and hence
[E: F|] = ind(a ® F;) = ind(«).

U

Corollary 5.9. Suppose that k is a finite field. Let o € H*(F, ). If o is unramified
on A except possibly at (m) and (§). Then ind(a) = per(a)

Proof. By (5.6), per(a) = per(a ® F;) and by (4.5), ind(a ® Fy) = per(a ® Fy).
Thus per(a) = ind(a ® Fy). By (5.8), we have ind(«) = per(a). O

The following follows from ([11] and [13]).

Proposition 5.10. Let a € H*(F,p,). Let ¢ : 2 — Spec(A) be a sequence of
blow-ups and V = ¢~ (m). Then ind(a) = l.cm{ind(a ® F,) | z € V}.

Proof. Follows from similar arguments as in the proof of ([11, Theorem 9.11]) and
using ([13, Theorem 4.2.1]). O

We end this section with the following well known result
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Lemma 5.11. Let E/F be a cyclic extension of degree (¢ for some d > 1. If E/F
is unramified on A except possibly at &, then there exist a subeztension E,, of E/F
and w € E,, which is a unit in the integral closure of A in E,, such that E,,/F
is unramified on A and E = E,,( W) Further if k is a finite field, k contains a

primitive (™ root of unity and 0 < e < d, then Ng,,/r(w) € A is not an " power
in A.

Proof. Let E(m) be the residue field of E at 7. Since £/ F is unramified at A except
possibly at o, by (5.6), [E(n) : k(m)] = [E : F|. Since E/F is cyclic, E(m)/k(m)
is cyclic. As in the proof of (5.1), there exist a cyclic extension Ey/F unramified
on A and a unit w in the integral closure of A in Ej such that the residue field of
Eo( Ywd) at 7 is E(r). By (5.5), we have E ~ Eo( Ywd). Let E,, = E,. Then E,,
has the required properties.

Suppose that x is a finite field and contains a primitive /! root of unity. Let B
be the integral closure of A in F,,. Then B is a complete regular local ring with
residue field £ a finite extension of k.

Let wy = Ng,,/p(w) € A* and wy € x*. Suppose that wy € A*. Then w, € k*.
Since k contains a primitive ¢ root of unity, we have | k™ /™ |=| x*/k* |= (.
Since norm map is surjective from x’ to x, the norm map induces an isomorphism
from s /K" — k*/k**. Thus the image of w in #’ is an ¢*® power. Since B is
a complete regular local ring, w € B*. Suppose 0 < e < f. Then v € E.
Since E,,/F is nontrivial unramified extension and F(v/9)/F is a nontrivial totally
ramified extension of F', we have two distinct degree ¢ subextensions of E/F, which
is a contradiction to the fact that E/F is cyclic. Hence wy & A*. 0

6. REDUCED NORMS - COMPLETE TWO DIMENSIONAL REGULAR LOCAL RINGS

Throughout this section we fix the following notation:
e A a complete two dimensional regular local ring
e F' the field of fractions of A
e m = (m,0) the maximal ideal of A
e v = A/m a finite field
e / a prime not equal to char(k)
on = (1
e o € H?(F, u,) is unramified on A except possibly at (7) and (d)
o \ = wrdt, w € Aaunit and s,t € Z with 1 < s5,t < n.

The aim of this section is to prove that if @ # 0 and « - (A\) = 0, then there
exist an extension L/F of degree ¢ and p € L such that ind(a ® L) < ind(«) and
Np/p(p) = A, We assume that
e [ contains a primitive /*" root of unity.

We begin with the following

Lemma 6.1. If a - (\) = 0, then sa = (E,0,\) for some cyclic extension E of F
which is unramified on A except possibly at d. In particular, if s is coprime to {, then
a = (E' o', \) for some cyclic extension E' of F' which is unramified on A except
possibly at 9.

Proof. By (4.7), there exists an unramified cyclic extension E, of F} such that sa ®
F, = (E;,0,)). Let E(m) be the residue field of E;. Then E(7) is a cyclic extension
of k(m). By (5.1), there exists a cyclic extension E of F' which is unramified on
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A except possibly at 0 with £ ® F, ~ E.. Since E/F is unramified on A except
possibly at ¢ and A = wn®§" with w a unit in A, (E,0,\) is unramified on A

except possibly at (m) and (J). Since « is unramified on A except possibly at ()
and (0), sa — (E,0,\) is unramified on A except possibly at (7) and (J). Since
Soz®F—(Eﬂ,a)\):(EJ)\)®F,T,by(55) = (E,0,\). O

Lemma 6.2. Suppose that oa-(\) = 0 and X & F*. If a # 0, then ind(a®@F(v/\)) <
ind(a) and o - (VX) =0 € H}(F(V/)), u2?).

Proof. Suppose that s is coprime to ¢. Then, by (6.1), o = (E’, ¢’, A) for some cyclic
extension E’ of F' which is unramified on A except possibly at §. Since v (\) = s
is coprime to ¢ and E’/F is unramified at m, it follows that ind(a) = [E’ : F]. In
particular, ind(a ® F(v/)\)) < [E' : F]/¢ < ind(«). Similarly, if ¢ is coprime to £,
then ind(a ® F(v/A)) < ind(a). Further a - (VA) = (E',0', \) - (V/A) = 0.

Suppose that s and ¢ are divisible by £. Since A = wr®¢*, we have F(v/\) = F({/w).
Let L = F(v/A) = F(y/w) and B be the integral closure of A in L. Since w is a
unit in A, by ([21, Lemma 3.1]), B is a complete regular local ring with maximal
ideal generated by m and §. Since w is not an /** power in F' and A is a complete
regular local ring, the image of w in A/m is not an ¢** power. Since A/(m) is also a
complete regular local ring with residue field A/m, the image of w in A/(7) is not an
(" power. Since F is a complete discrete valued field with residue field the field of
fractions of A/(7), w is not an £ power in F. Since a-(\) = 0 and the residue field
of F is a local field, by (4.9), ind(a ® L,) < ind(«). Hence, by (5.8), ind(a ® L) <
ind(a).

Since L, = L ® F, and Ls = L ® Fj are field extension of degree ¢ over F, and
Fjs respectively and cores(a - (VA)) = a - (\) =0, by (4.6), (a- (VA)) ® Ly = 0 and
(- (VN)) ® Ls = 0. Hence, by (5.5), a - (vVA) = 0. O

Lemma 6.3. Suppose o = (E/F, o, uné"™) for some m >0, u a unit in A, E/F a
cyclic extension of degree % which is unramified on A except possibly at 6 and o a
generator of Gal(E/F). Let (¢ be the ramification index of E/F at 6 and f = d—e.
Let i > 0 be such that 05 + (% > ¢m. Let v € A be a unit which is not in F** and
L = F(Vos?+t"=tm L yr). If f >0, then ind(a ® L) < ind(a)

Proof. Let B be the integral closure of A in L and r = ¢/ 4 (% — ¢m. Since ¢/ + (4 >
¢m, L = F(v/vd" + urm) and vd" + um is a regular prime in A. Thus B is a complete
regular local ring (cf. [21, Lemma 3.2]) and 7, § remain primes in B. Note that 7
and 0 may not generate the maximal ideal of B. Let L, and Ls be the completions
of L at the discrete valuations given by 7 and d respectively. Since v & F**, F({/v) is
the unique degree ¢ extension of F; which is unramified on A. Since f > 0, there is a
subextension E of degree ¢ over F' which is unramified on A and hence F'(y/v) C E.

Since E/F' is unramified on A except possibly at §, by (5.8), [E : F| = [E, : F}]
and hence ind(«) = per(a) = [E : F].

Since r is divisible by ¢, L, ~ F,({/v) and hence L, C E,. Thus ind(a ® L,) <
ind(a). Since r > 0, Ls ~ Fs(y/ur). Since a = (E/F,o,urd™), ind(a ® Ls) <
[EQLs: Ls] < [E : F] In particular by (4.5), per(a®Fy) < ind(«a) and per(a®Fy) <
ind(«). Since a® L is unramified on B except possibly at 7 and § and H*(B, ) = 0,
per(a® L) < ind(«). If d = 1, then per(a® L) < ind(«) = ¢ and hence per(a® L) =
ind(a ® L) =1 < ind(«). Suppose that d > 2.
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Let ¢ : " — Spec(B) be a sequence of blow-ups such that the ramification locus
of @ ® L is a union of regular curves with normal crossings. Let V = ¢~1(P). To
show that ind(a ® L) < ind(«), by (5.10), it is enough to show that for every point
zof V,ind(a ® L,) < ind(«).

Let z € V be a closed point. Then, by (5.9), ind(a ® L,) = per(a ® L,). Since
per(a ® L,) < ind(«), ind(a ® L,) < ind(«).

Let € V be a codimension zero point. Then ¢(x) is the closed point of Spec(B).
Let 7 be the discrete valuation of L given by x. Then k(7)) ~ k’(t) for some finite
extension k' over x and a variable t over k. Let v be the restriction of 7 to F.

Suppose that v(6") < v(r). Then L® F, = F,(v/vé7). Since ¢ divides 7, L® F, =
F,(\/v). Since F(y/v) C E, ind(a ® L ® F,) < ind(«). Suppose that v(§") > v(7).
Then L ® F, = F,(y/ur) and as above ind(a ® L ® F,) < ind(«). Suppose that
v(6") = v(r). Let A =7/6". Then X is a unit at v and L; = F,(v/v + uX). We have
umdt™ = uA§HM = y A" and

a®F,=(E®F,/F,0®1Lurd™) = (E®F,/F,0©1u)" ).

Since [E : F] =, a @ F, = (E® F,/F,,0 ® 1,u\d""). Suppose that f = d.

Then E/F is unramified and hence every element of A* is a norm from E. Thus

(E®F,/F,, 01, wou)) with wy € A*\ A*. Suppose that f < d. Thene =d—f > 0

and hence by (5.11), we have E = E,,.( Y/wd), for some unit w in the integral closure

of Ain E,,, with N( Vwd) = w6 with w, € A*\ A*'. Thus
a®F,=(E®F,/F, c®1,u\")=(E®F,/F,,0® 1, wul).

with wy = w; '

If FE® F, is not a field, then ind(a ® F,) < [F : F|. Suppose E ® F, is a
field. Let 0 = wouA. Since a ® F, = (E® F,/F,,0 ® 1,0), indla ® L ® F,) <
. pd—1 pd—1 . pd—1
indla® Lo F,(“ V0)) [LeF,(" V) : L& F,]. Since LR F,(" vV0): L& F,] <
(! < [E : F], it is enough to show that o ® L @ F,( Zd_\l/g) is trivial.

Since F(y/v)/F is the unique subextension of E/F degree ¢ and [E : F| = (%
we have @ @ F,(“V8) = (F,(“V8,0)/F("“V8),0, “Vb) (cf. 2.1). Let M =
F( Zd_\l/g). Since & contains a primitive /' root of unity, we have a@M = (v, Zd_\l/g) 0
Then M is a complete discrete valuation field. Since X is a unit at v, 6 is a unit

d—1 =
at v. Hence the residue field of M is w(v)( " \/5) Since # and v are units at v,
a® M = (v, edfxl/é) is unramified at the discrete valuation of M. Hence it is enough
d—1 =
to show that the specialization 8 of o ® M is trivial over r(v)(" \/5) ® Lo, where
Ly is the residue field of L ® F), at v.

Suppose that L;/F, is ramified. Since L; = F,(v/u +v)), v + u) is not a unit
at v. Thus v = —uA modulo Fjed and 0 = wou\ = —wov modulo Fjed. In
particular Zd_\l/g = */—wov modulo M*. Since T,Wy € k and k a finite field,
B = (V7, edfxl/é) = (v, “\/=wev) is trivial.

Suppose that Lj/F), is unramified. Then Ly = s(7)(v/T + u)). Since k(7) is a

d—1 =
global field and d — 1 > 1, by (4.13), 8® Lo( " V) = 0. O
Lemma 6.4. Suppose L./F, and Ls/Fs are unramified cyclic field extensions of

degree U and i, € Ly, us € Ls such that
e indla® L) < dy for some dy,
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® A\ =Ny k. (px) and X = Np;/r, (1),
- (:uﬂ') =0¢€ HB(LW7M%2)7 - (,u(s) =0¢€ H3(L5,/L%2),
e if\€ [ and a = (E/F,0,vr) for some cyclic extension E/F which is unramified
on A except possibly at §, then Ls/Fs = Fs(\/vm).
Then there ezists a cyclic extension L/F of degree { and p € L such that
e indla® L) < do,
® A= Ny/p(p),
o a-(u)=0¢€ H*L, u3?),
o LRF,~L,.and L ® Fs~ Lg.

Proof. Since a - (pr) = 0 € H*(Lr, p?) and A = Np_ g, (1ux), by taking the core-
striction, we see that o - (\) = 0 € H3(F, ,T,,un 2). Since « - (A\) is unramified on A
except possibly at 7 and 0, by (5.5), a- (A) =

Suppose that A & F*‘. Then, by (2.6) and ( 2), L = F(v/A) and p = v\ have
the required properties.

Suppose that A € F*‘. Let L(r) and L(§) be the residue fields of L, and Ljs
respectively. Since L,/F; and Ls/Fs are unramified cyclic extensions of degree /,
L(m)/k(m) and L(0)/k(J) are cyclic extensions of degree £. Since F' contains a primi-
tive /" root of unity, we have L(7) = k(7)[X]/(X*—a) and L(0) = x(0)[X]/(X*—b)
for some a € k() and b € k(§). Since x(m) is a complete discretely valued field with
0 a parameter, without loss of generality we assume that a = u0 for some unit
u; € A and € =0 or 1. Similarly we have b = Uae for some unit uy € A and € =0
or 1.

By (5.7), we assume that a = (E/F, o, umd’) for some cyclic extension F/F which
is unramified on A except possibly at J, © a unit in A and j > 0. Then ind(«a) =
[E : F]. Let Ey be the residue field of E at . Then [E : F] = [Ey : k(m)]. Since
Or(a) = (Ey/k(),T), per(O:(a)) = [E : F] = ind(«). Since L./F;, is an unramified
cyclic extension of degree ¢ and ind(a ® L,) < ind(«), the residue field L(7) of L,
is the unique degree ¢ subextension of Ey/k(m).

Suppose that € = ¢ = 0. Since L, and L; are fields, u; and uy are not ¢ powers.
Let L/F be the unique cyclic field extension of degree ¢ which is unramified on A.
Then L ® F, ~ L, and L ® F5 ~ Ls. Let B be the integral closure of A in L. Then
B is a regular local ring with maximal ideal (7, d) and hence by (5.8) ind(a ® L) <
ind(a).

Suppose € = 1. Then L, = Fy(¥/u;0) and L(7) = ﬁ(ﬁ)(f/ﬁ) Since Ey/k(m)
is a cyclic extension containing a totally ramified extension, Ey/k(m) is a totally
ramified cyclic extension. Thus k(7) contains a primitive 04" oot of unity and
Ey = k(m)( ei/u_Tg) In particular F' contains a primitive /%" root of unity and
a = (u10,und?) = (uy6,u'w). Since Ls/Fy is an unramified extension of degree ¢ with
ind(a ® Ls) < ind(a), as above, we have Ls = F5(v/u/7) and hence o = (uy6, ugn).
Let L = F(v/uid +usm). Then L ® F, ~ L, and L ® Fs ~ Ls. Since for any
a,b € F*, (a,b) = (a+b, —a~'b), we have o = (uym+uzd, —uj ' m tuyd). In particular
ind(a ® L) < ind(«).

Suppose that ¢ = 0 and € = 1. Suppose j is coprime to ¢. Then, by (4.15),
ind(a) = per(ds(c)) and as in the proof of (5.7), we have o = (E'/F, o', vén?") for
some cyclic extension E’/F which is unramified on A except possibly at 7. Thus,
we have the required extension as in the case € = 1.
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Suppose j is divisible by ¢. Since € = 0, L, = F(/u1). Since the residue field
L, (m) of L, is contained in the residue field £y of £ at m, F'({/u;) C E and hence
E/F is not totally ramified at 6. Since E/F' is unramified on A except possibly at
5, by (5.11), E = E,,( Y/wd) for some unit w in the integral closure of A in E,,.
Suppose e = 0. Then E = E,,/F is unramified on A. Since & is a finite field and
A is complete, every unit in A is a norm from E/F. Thus multiplying urd’ by a
norm from E/F we assume that o = (E/F,0,usmd’). Suppose that e > 0. Then,
by (5.11), Ng/p(wd) = w6 with w, € A*\ A*. Since A*/A* is a cyclic group
of order ¢, we have a = (E/F, 0, uymdi ') for some j'. Since j is divisible by ¢
and f > 1, j + j'¢/ is divisible by ¢. Hence, we assume that o = (E/F, o, ugmd“™)
for some m. Thus, by (6.3), there exists i« > 0 such that ind(a ® L) < ind(«) for
L= F(\l/ulﬂf”i + Uzﬂ'éem) .

By the choice, we have L/F is the unique unramified extension or L = F'(v/u10 + uam)
or L = F(/u16”" + upmd®™) with ¢/+4 > ¢m. Let B be the integral closure of
Ain L. Then B is a complete regular local ring with 7 and § remain prime in B.
Since A = wr*d" and A € F}f, we have A = win®16% for some unit wy € A. Let
p = wor*é" € F. Then Ny p(p) = p* = A, Since a - (A) =0, by (4.6), a - (1) =0
in H3(Ly, u2%) and H*(Ls, u$?). Hence « - () is unramified at all height one prime

ideals of B. Since B is a complete regular local ring with residue field s finite,
a-(p) =0 (5.3). O

Lemma 6.5. Suppose that v, () is divisible by £, o is unramified on A except possibly
at ™ and §, and - (N\) = 0. Let L, be a cyclic unramified or split extension of F, of
degree U, pir € Ly and dy > 2 such that
o NLW/FW(,U/TI') =\
e indla® L) < dy,
a-(pr) =0 in H3(Ly, py,).
Then there exists an extension L over F of degree ¢ and p € L such that
® Niyp(p) = A,
e indla® L) < dy,
o a-(u)=0¢€ H*L,u%?) and
e there is an isomorphism ¢ : L, — L ® F, with

O(pr)(pp @ 1) € (Lp @ Fr)™"

for allm > 1.

Proof. Since v()) is divisible by ¢, A = wn"*§* for some w € A a unit.

Suppose that L, =[] F; is a split extension. Let L = [ F be the split extension
of degree ¢. Since p, € L., we have pu, = (u1,---,pe) with p; € F,. Write
pi = 0;m" with §; € F a unit at its discrete valuation. Since Np_/p, (tz) = A = wr',
,---0, = w and 7"t = 770 For 2 < i < /4, let 6; be the image of 6; in the
residue field k() of Fy. Since x(m) is the field of fractions of A/(d) and A/( )

is a complete discrete valuation ring with § as a parameter, we have 6, ;0%
forsomeumtuleA For2<z<£1€t9—u5SZEF91:w01 01
and pu = (617", -+, 0r™) € L = [[F. Then Npp(p) = A Since fin"

a unit at 7 with image 1 in x(m), éﬂ”u;l € F for any m > 1. In particular
a-(0;") = a- () = 0 € H3(Fy, u?). Since o is unramified on A except possibly at
7and 6 and ; = u;0% with u; € A a unit, a- (éiﬁ”) is unramified on A except possibly
at 7 and 8. Thus, by (5.5), o - (6;7") = 0 € H3(F, u®?). Since ind(a @ L,) < dy
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and L, is the split extension, ind(a ® F,) < dy. Since « is unramified on A except
possibly at 7 and 4, by (5.8), ind(e) < do. Thus L and pu = (17", --- ,0,m"¢) € L
have the required properties.

Suppose that L, is a field extension of F,. By (5.1), there exists a cyclic extension
L of F of degree ¢ which is unramified on A except possibly at § with L ® F, ~ L.
Let B be the integral closure of A in L. By the construction of L, either L/F' is
unramified A or L = F(~v/ué) for some unit u € A. Replacing § by ud, we assume
that L/F is unramified on A or L = F(v/4). In particular, B is a regular local
ring with maximal ideal generated by (r,d’) for & = ¢ or &' = v/d (cf. [21, Lemma
3.2]). Since « is unramified on A except possibly at 7 and §, o ® L is unramified
on B except possibly at m and ¢’. Since ind(a ® L) < do, by (5.8), ind(a ® L) =
ind(a ® L) < do.

Since L/F, is unramified and Np_/r (ptr) = A = wr™6°, we have i, = 0,7 for
some 0, € L, which is a unit at its discrete valuation. Let @, be the image of 6,
in L(m). Since L(7) is the field of fractions of the complete discrete valuation ring
B/(m) and & is a parameter in B/(7), we have 0, = 70" for some unit v € B. Since
Nz /n(x) 0,) = wo , it follows that N L(r)/r(r) (U) = W. Since w is a unit in A, there
exists a unit @ € B with Ny /p(0) = w and © =0. Let y = 97" € L. Then pu;' €
L is a unit in the valuation ring at 7 with the image 1 in the residue field L(7) and
hence pp_t € L" for all m > 1. In particular a - (p) = a - (pr) = 0 € H3(L, p®?).
Since ind(a ® L) < dg, by (5.8), ind(a ® L) < dy. Since a - () =0 in H?(L,, u$?),
« is unramified on A except possibly at 7 and the support of © on A is at most m,
by (5.5), a- () =0 in H3(L, u%?). O

Lemma 6.6. Suppose that a-(\) = 0 and vs(\) = sl. Suppose that« = (E/F, 0, m™)
for some cyclic extension E/F which is unramified on A except possibly at §. Let
Ejs be the lift of the residue of o at 0. If s ® Es = 0, then there exists an integer
r1 > 0 such that wi0™™ % is a norm from the extension E/F for some unit wy € A.

Proof. Write a ® Fs = o + (E5/Fs,05,0) as in (4.1). Since a ® E; = o ® Ej,
sa’ ® Es = 0. Hence sa/ = (Ejs,0,0) for some 6 € Fs. Since o and Ej/Fs5 are
unramified at 6, we assume that 6 € Fjs is a unit at 6. Since the residue field k() of
Fy is a complete discrete valued field with the image of 7 as a parameter, without loss
of generality we assume that = wyn™ for unit wg € A and r; > 0. Let A\; = won™0°.
Since sa’ = (Es,04,0), by (4.7), a- (A1) = 0 € H3(Fy, u?). Since « is unramified on
A except possibly at 7,0 and Ay = wen™d® with wy € A a unit, a- () is unramified
in A except possibly at 7 and §. Hence, by (5.5), a- (A1) = 0 € H3(F, u®?). We have

0= aﬂ(a(/\l)) = aﬂ((E/F, g, uﬁ5m)-(w0ﬁ”55)) = (E(ﬂ')//{(ﬂ'))ﬁ) (—1)”@”@;157”“_5)'

Since (E/F, o, (—1)"uwy 6™ ~*) is unramified on A except possibly at 7 and 4,
by (5.5), (E/F,o0,(=1)"uwy '6™17%) = 0. In particular (—1)"ulwy 6™~ is a
norm from the extension E/F. t

Lemma 6.7. Suppose that a - (\) = 0 and X\ = wrn"6** for some unit w € A and r
coprime to £. Let Es be the lift of the residue of a at §. If sa ® E5 = 0, then there
exists 0 € A such that

e a-(0)=0,

e 1. (0)=0,

° u5(9) = S.
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Proof. Since r is coprime to ¢, by (6.1), o = (E/F,0,\) for some cyclic extension
E/F which is unramified on A except possible at §. Let ¢ = [E : F|. Since t is a
power of £ and r is coprime to ¢, there exists an integer ' > 1 such that ' = 1
modulo t. We have

a=a" = (E/F o,wur"8)" = (E/F,o)" - (wr"6*)" = (E/F,0)" - (w" 76",

Since r is coprime to ¢, we also have (E/F,c)" = (E/F,0") (cf. §2) and hence
o= (E/F,o",76"*"). Thus, by (6.6), there exist a unit w; € A and r; > 0 such that
w07*"1 7% is a norm from E/F. Since r'fr; — 1 is coprime to £, r'fr; — 1 is coprime
to t and hence there exists an integer r1 > 0 such that (r'fry —1)ry = 1 modulo ¢. In
particular w?¢* = (w6 **=*)"2 modulo F** and hence w}?§° is a norm from E/F.
Thus 6 = wj?0® has the required properites. O

Lemma 6.8. Let E, and Es be the lift of the residues of o at ™ and § respectively.
Suppose that o - (A) = 0 and X = wr™§% for some unit w € A. If a - (\) = 0,
ra® FE, =0 and sa ® Es = 0, then there exists 0 € A such that

e - (0)=0,
o . (0)=r,
® 1/5(9) = S.

Proof. By (5.7), we assume that o = (E/F, o, urd™) for some extension F/F which
is unramified on A except possible at § and m > 0. Without loss of generality,
we assume that 0 < m < [E : F|. By (6.6), there exists an integer r; > 0
such that w;6™"% is a norm from E/F. Let t = [E — F| and § = (—urm +
Sty (—u) A" 6%. Since t — m > o, we have v (0) = r and v5(0) = s.

Now we show that « - () = 0. Since t —m > 0, we have (—um + §""™)" 7" =
(—um)"~" modulo § and hence 6 = (—u)" "7 Tw; H(—u)" w6 = wit(—u) w6
modulo F}*. Since w0™ 7% is a norm from E/F, we have

(a-O)©F = (B/F.o,umd™)- (w (-u)"7"0") ® Fs

= (E/F,o,urd™) - (w; ' (—u)" 7" 6w, 6™ %) ®@ Fj
(E/F,o,umd™) - ((—u)"7™0™™) @ Fs

= (E/F,o,und™) - ((—umd™)™) @ Fs = 0.

Thus « - (#) is unramified at 0.
We have (—ur + §t~™)1—" = §=r)+m=1) modulo 7 and hence

0 = 5=y () 176 = (—umd™) (w6™ %) modulo F
Since wy0™1 % is a norm from E/F and t = [E : F], we have

(a-(0)®@F, = (E/F,o,urd™) - ((—umd™)" (w d™1=*)"1) @ F,
= (E/F,o,urd™) - ((—umd™)") @ F, = 0.

In particular « - (#) is unramified at 0.

Let v be a prime in A with (y) # (7) and () # (). Since « is unramified on
A except possibly at m and ¢, if v does not divide 6, then « - () is unramified at
~. Suppose 7y divides . Then v = —um + 6™, Thus urd™ = §" modulo 7. Since
Oy(a- (0)) = (E(0),7, uwo ), where E(0) is the residue field of E at # and~denotes
the image modulo 7, we have 8, (a - (0)) = (E(9),7, 7m0 ) = (E(0),7, 5t) =

Hence a - (f) is unramified on A. Since a - (#) ® F; = 0, by (5.5), we have
a-(0)=0. O
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7. PATCHING

We fix the following data:
e 1R a complete discrete valuation ring,
e K the field of fractions of R,
e r the residue field of R,
e ( a prime not equal to char(x) and n = (¢ for some d > 1.
e X a smooth projective geometrically integral variety over K,
e F' the function field of X,
oac H*F,u,), a#0,
o )\ € F* with a- (\) =0,
e 2 a normal proper model of X over R and X the reduced special fibre of Z".
o ¥ a finite set of closed points of X containing all the points of intersection of
irreducible components of Xj.

For z € 2, let A, be the completion of the regular local ring at z on 2", F, the
field of fractions of Az and k(x) the residue field at x. Let n € X be a codimension
zero point and P € X be a closed point such that P is in the closure of n. For abuse
of the notation we denote the closure of n by 1 and say that P is a point of n. A pair
(P,n) of a closed point P and a codimension zero point of Xy is called a branch if
P isin n. Let (P,n) be a branch. Let Fp, be the completion of Fp at the discrete
valuation on Fp associated to 1. Then F, and Fp are subfields of Fp,. Since x(n)
is the function field of the curve 7, any closed point of n gives a discrete valuation
on £(n). The residue field k(n)p of Fp, is the completion of x(n) at the discrete
valuation on k(n) given by P. Let n be a codimension zero point of X, and U C n
be a non-empty open subset. Let Ay be the ring of all those functions in F' which
are regular at every closed point of U. Let ¢ be parameter in R. Then t € Ry, . Let

Ay be the (t)-adic completion of Ay and Fy; be the field of fractions of Ay. Then
FCF,CF,

We begin with the following result, which follows from ([11, Theorem 9.11]) ( cf.
proof of [22, Theorem 2.4]).

Proposition 7.1. For each irreducible component X, of Xy, let U, be a non-empty
proper open subset of X, and & = X, \ U,U,, where n runs over the codimension
zero points of Xo. Suppose that Py C 2. Let L be a finite extension of F. Suppose
that there exists N > 1 such that for each codimension zero point n of Xy, ind(a ®
L ® Fy,) < N and for every closed point P € &, indla ® L ® Fp) < N. Then
indla® L) < N.

Proof. Let % be the integral closure of 2 in L and ¢ : % — 2 be the induced
map. Let &' be a finite set if closed points of # containing points of the intersection
of distinct irreducible curves on the special fibre Yy of ¢ and inverse image of &
under ¢. Let U be an irreducible component of Y; \ #). Then ¢(U) C U, for some
U, and there is a homomorphism of algebras from L® Fy, to Ly. (Note that L® Fy,
may be a product of fields). Since ind(a ® L ® Fy,) < d, we have ind(a ® Ly) < N.
Let Q € &’. Suppose ¢(Q) = P € &. Then there is a homomorphism of algebras
from L® Fp to Lg. (Once again note that L ® Fp may be a product of fields). Since
ind(a®L®Fp) < N, ind(a® Lg) < N. Suppose that ¢(Q) € U, for some U,. Then
there is a homomorphism of algebras from L ® Fy;, to Lg. Thus ind(a ® Lg) < N.
Therefore, by ([11, Theorem 9.11]), ind(a ® L) < N. O
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Lemma 7.2. Let n be a codimension zero point of Xy. Suppose there exists a field
extension or split extension L,/ F, of degree { and j,, € L, such that

1) NLn/Fn(/‘Lﬂ) =A

2) ind(a ® Ly) < ind(a)

3) - (y) =0 € H*(Ly, pu?).

Then there exists a non-empty open subset Uy of 1, a split or field extension Ly, | Fy,
of degree { and py, € Ly, such that

1) NLUW/FUW (FLUn) =A

2) ind(a ® L,) < ind(a)

3) o (py,) =0 € H*(Ly,, ;%)

4) there is an isomorphism ¢y, : Ly, ® F, — Ly, with ¢y, (py, @ 1)#;1 = 1 modulo
the radical of the integral closure of Rn in L.

Further if L,/ F,, is cyclic, then Ly, /Fy, 1is cyclic.

Proof. Suppose L, = [[ F}, is the split extension of degree ¢. Write p1,, = (pt1,- - , fte)
with p; € F,. Then A = N, /g, (itn) = pi1 - - - pre. Since ind(a ® L) = ind(a ®@ F,) <
ind(«), by ([11, Proposition 5.8], [18, Proposition 1.17]), there exists a non-empty
open subset U, of n such that ind(a) ® Fy, < ind(a). Since F, is the comple-
tion of F' at the discrete valuation given by 7, there exist 6, € F*, 1 < i </,
such that Qi,ui_l = 1 modulo the maximal ideal of }A%n. Let Ly, = HFU,7 and
/LUT’ = ()\((92 s ’9@)71,92, s ,(9@) € LUn. Then NLUW/FUn (ILLUn) = \. Since « - ((9@) €

H?(Fy,, p2?) and a- (0;) = 0 € H?(F,, u?), by ([12, Proposition 3.2.2]), there exists
a non-empty open subset V;, C U, such that a-(6;) = 0 € H*(Fy,, u%?). By replacing
U, by V,, we have the required Ly, and uy, € Ly, .

Suppose that L, /F, is a field extension of degree ¢. Let FT’; be the henselization
of F' at the discrete valuation 7. Then there exists a field extension Lf; / FT’; of degree
¢ with an isomorphism gbf] : Lf; D pn F, — L,. We identify L" with a subfield of
L, through ¢". Further if L,/F, is cyclic extension, then L"/F" is also a cyclic
extension. Let 7, € L" be a parameter. Then 7, is also a parameter in L,.Write
g = uy, for some u, € L, a unit at n. Since N/, (1,) = A, we have \ =
Ny, /F,(uy) N, F,(T,). Since u, € L, is a unit at n, N, /g, (u,) € F, is a unit at .
By ([2, Theorem 1.10]), there exists u" € L} such that NL%/F#(UZ) = Nip,/F, (un).
Let uf; = ugﬁn € Lg. Since F# is the filtered direct limit of the fields Fy, where
V ranges over the non-empty open subset of n ([12, Lemma 2.2.1]), there exists a
non-empty open subset U, of 1, a field extension Ly, /Fy, of degree ¢ and uy, € Ly,
such that Nr,, /r, (Hv,) = A and there is an isomorphism gb’(}n : Ly, ® F, ~ L with
o1, (pw,) = pir. By shrinking U, we assume that o - (uy,) = 0 € H*(Ly,, u5?) ([12,
Proposition 3.2.2]). O

Lemma 7.3. Suppose that for each codimension zero point n of Xy there exist a field
(not necessarily cyclic) or split extension L,/ F, of degree {, p, € F, and for every
closed point P of X there exist a cyclic or split extension Lp/Fp of degree { and
up € Lp such that for every point x of X

1) Np,r,(fa) = A

2) o () =0€ H(Ly, u3?)

3) indla® L,) < ind(«)

4) for any branch (P,n) there is an isomorphism ¢p,, : L, @ Fp,, = Lp ® Fp, such
that for a generator o of Gal(Lp ® Fp,/Fp,) there exists Op,, € Lp @ Fp,, such that
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Op(bn)ip' = elgﬁydg(eP,n)gd~

Then there exist

e a field extension L/F of degree {

e o non-empty open subset U, of n for every codimension zero point n of Xo

with QUW €L & P}L7

o for every P € & = X, \UU,, 0p € L® Fp

such that

1) ind(a® L) < ind(c)

2) Nigry, /Fy, (Ov,) = A and o~ (0y,) = 0 € H*(L ® Fy,, p2?) for all codimension
zero points n of X

3) Nrgrp/re(0p) =X and a- (0p) =0 € H*(L ® Fp, pu$?) for all P € &

4) for any branch (P,n), L ® Fp,/Fp, is cyclic or split and for a generator o of
Gal(L ® Fp,,/Fp,) there exists vp, € L ® Fp such that 0y, 05" = ’y;f?da(’ypm)ed.
Further if for each x € Xy, L,/ F, is cyclic or split, then L/F is cyclic.

Proof. Let n be a codimension zero point of X,. By the assumption, there exist a
cyclic or split extension L,/F, and ju, € L, such that Ny /p, (jtz) = A, o (1) =
0 € H*(L,, p$?) and ind(a ® L,) < ind(«). By (7.2), there exist a non-empty
open set U, of 7, a cyclic or split extension Ly, /Fy, of degree ¢ and uy, € Ly,
such that Np,, /m, (ty) = A, @ (1) = 0 € H*(Ly, pu5?), ind(a ® Ly,) < ind(a),
¢y 1 Ly, ® F, = L, an isomorphism and ¢, (jv,) = py. By shrinking U, if necessary,
we assume that &, N U, = 0.

Let & = X\ U,U, and P € &. Then, by the assumption we have a cyclic or
split extension Lp/Fp of degree ¢ and for every branch (P, n) there is an isomorphism
¢P777 : Ln®Fpm — LP®FP777. Thus (bP,Un = ¢P777(¢77®1> : LUn(gl*—’n(gFjp777 — LP®FP777
is an isomorphism. Thus, by ([9, Theorem 7.1]), there exists an extension L/F of
degree ¢ with isomorphisms ¢y, : L ® Fy, — Ly, for all codimension zero points 7
of Xg and ¢p : L ® Fp — Lp for all P € & such that the following commutative
diagram

U, ®1
L®FUn®FP:U — LUn®FTI®FP,77
l 1 oru,
LRFpr®Fp, 5"  Lp®Fp,

where the vertical arrow on the left side is the natural map. Further if each L,/F,
is cyclic for all x € Xy, then L/F is cyclic ([9, Theorem 7.1}).

Since ind(a® L ® Fy, ) < ind(«) for all codimension zero points of X and ind(a®
L® Fp) < ind(a) for all P € &, by (7.1), ind(a ® L) < ind(«). In particular L is a
field.

For every codimension zero point 7 of Xy, let 0y, = (¢U,7)_1(/~LU,7) € L®Fy, and for
every P € &, let 0p = (¢p) ' (up) € L ® Fp. Since ¢y, and ¢p are isomorphisms,
we have the required properties. O

Proposition 7.4. Suppose that for each point x of Xy there exist a cyclic or split
extension L, /F, of degree { and u, € L, such that

1) Np,r,(fa) = A

2) o () =0€ H(Ly, u3?)

3) indla® L,) < ind(«)

4) for any branch (P,n) there is an isomorphism ¢p,, : L, @ Fp, = Lp ® Fp, such
that for generator o of Gal(Lp ® Fp,/Fp,) there exists Op, € Lp ® Fp,, such that
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¢P,n(l‘n)ﬂj_ﬂl = elgﬁydg(eP,n)gd~
Then there exist a cyclic extension L of degree { and o € L* such that
® Npjp(p) =X and
o a-(u)=0¢€ H (L, u3?)
e indla® L) < ind(«).
Proof. Let L/F, U,, &, Oy, and fp be as in (7.3). Since each L,/F, is cyclic or
split, L/F is cyclic. Let o be a generator of Gal(L/F'). Let (P,n) be a branch. By
(7.3), there exists y(p,) € L ® Fp, such that uy, up' = fy;f?da(fyfjn). Applying ([10,
Theorem 3.6]) for the rational group G'Ly, there exist vy, € L® Fy, and vp € L& Fp
for every codimension zero point 1 of Xy and P € & such that for every branch
(P;n); Y = 0, 7P

Let iy, = pu, vt o(1p!) € L@ Fy, and iy = ppyp"o(vh) € L® Fp. If (P,n) is
a branch, then we have

d _pd
py, = uUﬂéZU(VUf ) d
_ d d _
= upﬁp,ﬁda(%,n%,,a(%f)
_ d
= upvp o(vh)
= pp € L®Fpy

Hence, by ([9, Proposition 6.3]), there exists u € L such that p = py;, and p = pp
for every codimension zero point 1 of Xy and P € . Clearly Ni,p(p) = X over F.
Let P e 2. Since a- (up) =0and a- (75) =0, a- () = 0 € H3(L @ Fp, u?).
Similarly « - (1) = 0 € H*(L ® Fy,, u%?) for every codimension zero point 1 of Xj.
Hence, by ([12, Theorem 3.1.5]), o+ () = 0 in H3(L, u2?). O

Proposition 7.5. Suppose that for each codimension zero point nn of Xy there exist

a field (not necessarily cyclic) or split extension L, /F, of degree ¢, n, € F, and for

every closed point P of X there exist a cyclic or split extension Lp/Fp of degree ¢

and pup € Lp such that for every point x of X

1) Nip,yp,(pa) = A

2) a-(uy) =0 € H(Ly, pi5?)

3) indla® L,) < ind(«)

4) for any branch (P,n) there is an isomorphism ¢p,, : L, ® Fp, — Lp ® Fp, such

that for a generator o of Gal(Lp @ Fp,/Fp,) there exists Op, € Lp @ Fp,, such that
-1 _ p-vd ¢d

opy(pn)ip = 0P77’] o(0py)"

Then there exist a field extension N/F of degree coprime to ¢, a field extension L/F

of degree € and p € (L ® N)* such that

® NL(X)N/N(,U) =\ and

oo (u)=0€HL®N, p;?)

e indla® L) < ind(a).

Proof. Let L/F, U,, &, 0y,, 0p and vp, be as in (7.3). Since L/F is a degree
¢ extension, there exists a field extension N/F' of degree coprime to ¢ such that
L ® N/N is a cyclic extension.

Let 2 be the integral closure of 2" in N and Yj the reduced special fibre of #.
Let ¢ : Yy — Xo be the induced morphism. Let y € Yy and = = ¢(y) € Xo. Then
the inclusion F' C N, induces an inclusion F, C N,. Let L; = L®pF,®F, N,. Since
L ® N/N is a cyclic extension of degree ¢, L, /N, is either cyclic or split extension
of degree (.
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Let 7 € Y; be a codimension zero point. Then n = ¢(n') € Xj is a codimension
zero point. Then F;) C F Ly, L&Fy, C L&F, and 0y, € LR F,. Let py = 0y, @1 €
L®F,®F, Ny =L,

Let @ € Y, be a closed point and P = ¢(Q)) € X,. Then P is a closed point
of Xy and Fp C Ng. Suppose that P € U, for some codimension zero point 7 of
Xgo. Then FUn C Fp, L®FUT, C L® Fp and HU,] € L® Fp. Let Hg = 9Un®1 €
L ® Fp ®p, Ng = Lg. Suppose that P is not in U, for any codimension zero point
770on. Let /,LQ :0P®1 - L®FP®FP NQ

Let y € Yy and = = ¢(x) € Xy. Since N, /p, (pta) = A, @« (pz) = 0 € H*(Ly, pn$?)
and ind(a® F,) < ind(a), it follows that Ny, /v, (11y) = A, a- (uy) = 0 € H*(L,, u5?)
and ind(a ® L;) < ind(a). |

Let (@,n') be a branch in Yy and P = ¢(Q), n = ¢(n'). Then (P,n) is a branch
in Xo. The isomorphism ¢p, : L, ® Fp, — Lp ® Fp, induces an isomorphism

o Ly @ Nowy — Lg ® Ng,y. By the choice of p,y and pg it follows that for
any generator o of Gal(Lp ® Ngy /Ng.y) there exists 0, such that ¢f, (1 )pg' =

0&%0(0@7”/)%. Thus, by (7.4), there exists a cyclic extension L'/N and p/ € L’ such
that N (i) = A, ind(a® L') < ind(a ® N) and a - (') = 0 € H*(L', u?). By

the construction we have L' = L @ N. O

8. TYPES OF POINTS, SPECIAL POINTS AND TYPE 2 CONNECTIONS

Let F, o € H*(F,uy,), A € F* with a- (\) = 0 € H3(F, u®?), 2" and X, be as in
(87). Further assume that
e 7" is regular such that ramy (a)U suppo (A) U X, is a union of regular curves with
normal crossings.

e the intersection of any two distinct irreducible curves in X is at most one closed
point.

We fix the following notation.

e & is the set of points of intersection of distinct irreducible curves in Xj.

e Uy » is the semi-local ring at the points of & on 2.

e if a codimension zero point 7 of X, contains a closed point P € &, then 7, € Oy »
is a prime defining n on Oy ».

Let ) be a codimension zero point of X,. For the rest of this paper, let (E,,0,)
denote the lift of the residue of a at n. Since o € H*(F, p1,,) with n a power of ¢,
[E, : F,] is a power of £. If « is unramified at 7, then E, = F, and let M, = F,. If
a is ramified at n, then E, # F, and there is a unique subextension of E, of degree
¢ and we denote it by M,,.

Remark 8.1. Let n be a codimension zero point of Xy. Suppose « is ramified at 7.
Since ind(a ® F,)) = ind(a ® E,)[E, : F,] (cf. 4.2) and M, C E,, it follows that
ind(a ® M,) < ind(a).

We divide the codimension zero points 17 of X as follows:

Type 1: v,()) is coprime to ¢ and ind(a ® F;)) = ind(«)

Type 2: v,()) is coprime to ¢ and ind(a ® F;)) < ind(«)

Type 3: v,(\) =7{, ra® E, # 0 and ind(o ® F})) = ind(«)
Type 4: v,(\) =7, ra® E, # 0 and ind(o ® F})) < ind(«)
Type 5: v,(\) =7r{, ra® E, =0 and ind(o ® F})) = ind(«)
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Type 6: v,(\) =7{, ra® £, =0 and ind(a ® F})) < ind(c).

Let P be a closed point of 2. Suppose P is the point of intersection of two
distinct codimension zero points 7; and 7, of Xy. We say that the point P is a
1) special point of type I if 7, is of type 1 and 7 is of type 2,
2) special point of type II if 7 is of type 1 and 7y is of type 4,
3) special point of type III if 1) is of type 3 or 5 and 7, is of type 4,
4) special point of type IV if 7 is of type 1, 3 or 5 and 7, is of type 5 with
M,, ® Fp,, not a field.

Lemma 8.2. Suppose that n; and ny are two distinct codimension zero points of
Xo and P a point of intersection of n1 and ny. Suppose that o is ramified at 1.
Let (E,,,01) be the lift of residue of o at m. If E, & Fp,, is not a field, then
ind(a ® Fp) < ind(a).

Proof. Suppose that E,, ® Fp,, is not a field. Since E,, /F,, is a cyclic extension,
Ey @ Fpy, =~ [1 By p with [Ey p : Fpy,] < [Ey, : F,]. We have (B, 01,7,) ®
Fp’m = (ET]l,PaO-177TT]1) (Cf §2)

Write a ® F,, = a; + (E,,,01,m,) as in (4.1). Then a ® Fp,, = oy @ Fp,, +
(Eyy py01, ). By (4.2), we have ind(a ® F,,) = ind(oy ® E,,)[Ey, : Fy,,]. We have

ind(a ® Fp,,) < ind(oy ® Ey, p)[En.p: Fpnl
< ind(oq ® Em)[EnhP : Fpﬂh]
< ind(oq ® Em)[Em : Fm]
= indla® F,,).
Thus, by (5.8), ind(a ® Fp) < ind(«). O

Lemma 8.3. Let n € Xy be a point of codimension zero and P a closed point on 1.
Let Zp — 2 be the blow-up at P and vy the exceptional curve in Zp. If E, ® Fp,
is not a field or n is of type 2, 4 or 6, then v is of type 2, 4 or 6.

Proof. 1t E,, ® Fp,, is not a field, then by (8.2), ind(a ® Fp) < ind(«). If n is of type
2,4 or 6, then ind(a® F})) < ind(a) and hence by (5.8), ind(a® Fp) < ind(a). Since
Fp C F,, we have ind(a ® F,) < ind(o ® Fp) < ind(«v). Hence 7 is of type 2, 4 or
6. U

Lemma 8.4. Let 1, and 1y be two distinct codimension zero points of X intersecting
at a closed point P. Suppose that ny is of type 1 or 2 and 1y is of type 2. Then there
exists a sequence of blow-ups v : X' — A such that if 0; are the strict transforms
of n;, then

1) : Z'\ 1 (P)— 2\ {P} is an isomorphism

2) ¢~Y(P) is the union of irreducible reqular curves Vi, -+ ,Vm

3) f]lm/ﬁ = {P0}7 Vi N Yig1 = {Pz}7 Ym N 12 = {Pm}: nNy = @fOT all i > L,
oMy =0 foralli <m, i N =0, Ny =0 forallj#i+1,

4) 1 and vy, are of type 6 and v;, 1 < i < m are of type 2, 4 or 6,

5) =Y (P) has no special points.

Proof. Let Zp — % be the blow-up of 2" at P and 7 the exceptional curve in Zp.
Let 7; be the strict transform of 7;. Then 7; intersects v only at one point P, and
72 intersects «y at only one point P;. Since 7y is of type 2, by (8.3), 7 is of type 2, 4
or 6 and hence P; is not a special point.
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Let 81 = vy, (A), 82 = 1, (\). Then v, (\) = s1 + so. Suppose s1 + so = (*F1ry for

some integer 79, where (¢ = ind(«). Since (4o = 0, {%rqa = 0. Thus, v is of type 6.
Hence F, is not a special point and 2p has all the required properties.

Suppose s; + so = lfry with ¢ < d and rq coprime to £. Then, blow-up the points
Py and P; and let v; and v, be the exceptional curves in this blow-up. Then we
have 7,,(\) = 2s1 + s2 and 17,,(A\) = s1 + 2s9. If 251 + s5 is not of the form ¢41ry
for some 1 > 1, then blow-up, the point of intersection of the strict transform of 7,
and 7. If 51 + 255 is not of the form ¢?*1ry for some ry > 1, then blow-up, the point
of intersection of the strict transform of 7, and ~,. Since s; and sy are coprime to /¢,
there exist ¢ and j such that is; + s, = £y and s; + js, = (417" for some r, 7’/ > 1.
Thus, we get the required finite sequence of blow-ups. 0

Proposition 8.5. There exists a reqular proper model of F with no special points.

Proof. Let P € . Then there exist two codimension zero points n; and 7, of X
intersecting at P.

Suppose that P is a special point of type 1. Let ¢ : 27 — 2 be a sequence of
blow-ups as in (8.4). Then there are no special points in ¢)~!(P). Since there are
only finitely many special points in 2", replacing 2" by a finite sequence of blow ups
at all special points of type I, we assume that 2" has no special points of type I.

Suppose P is a special point of type II. Without loss of generality we assume that,
1 is of type 1 and 1) is of type 4. Let Zp — 2 be the blow-up of 2" at P and v
the exceptional curve in Zp. Since 1, is of type 4, by (8.3), 7 is of type 2, 4 or 6.
Since 7, is of type 1 and 7, is of type 4, v, (A) is coprime to ¢ and v,, () is divisible
by £. Since v, (\) = vy, (A) 4+ 14, (A), v4(X) is coprime to ¢ and hence 7 is of type 2.
Let 7; be the strict transform of 7; in Zp. Then 7); and v intersect at only one point
Q;. Since 7 is of type 2, )1 is a special point of type I and () is not a special point.
Thus, as above, by replacing 2~ by a sequence of blow-ups of 2", we assume that
Z has no special points of type I or II.

Suppose P is a special point of type III. Without loss of generality assume that 7,
is of type 3 or 5 and 1y of type 4. Let Zp — 2 be the blow-up of 2" at P, v, n;,
and @; be as above. Since 7, is of type 4, by (8.3), v is of type 2, 4 or 6. Since v, (\)
and v,,(A\) are divisible by £, v, (X) = v, (A) 4+ 1, () is divisible by ¢. Thus 7 is of

type 4 or 6. Hence ) is not a special point. By (5.7), a ® Fp = (Ep, 0, uw,‘fllﬂm) for

some cyclic extension Ep/Fp and u € A p a unit and at least one of d; is coprime to

¢ (in fact equal to 1). In particular, a ® Fp is split by the extension Fp( §/umiini2 ),

where m is the degree of Ep/Fp which is a power of ¢. Suppose d; + dy is coprime

to (. Since v (rliml2) = dy 4 dy, Fp( Y urii Tl ) is totally ramified at . Thus, by
(4.3), 7 is of type 6. Hence ) is not a special point. Suppose that d; + dy is divisible

by (. Let m, be a prime defining 7 at Q1. Then, we have urfini2 = wymlxd+d

for some unit wy at Q1. Since one of d; is coprime to ¢ and d; + dg is divisible by
¢, d; are not divisible by ¢. In particular 2d; + ds is coprime to ¢. Let Zg, be the
blow-up of Zp at ()1 and 7' be the generic point of the exceptional curve in Zg,.
Then v, (uwgiwg‘g) = 1/7 (wlwdlwlerd?) = 2d; + dy. Since 2d; + dsy is coprime to £,
once again by (4.3), v is of type 6. In particular no point on the exceptional curve
in Z¢, is a special point. Thus, replacing 2" by a sequence of blow-ups, we assume

that 2" has no special points of type I, IT or III.
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Suppose P is a special point of type IV. Without loss of generality assume that,
m is of type 1, 3 or 5 and 7, is of type 5, with M,, ® Fp,, not a field. Let Zp — Z
be the blow-up of 2" at P and ~, 7;, @; be as above. Since M,, ® Fp,, is not a
field, by (8.3), 7 is of type 2, 4 or 6. If 7 is of type 6, then @); and Q2 are not special
points. Suppose v is of type 2 or 4. Then @)1 and () are special points of type I, II
or III. Thus, as above, by replacing 2" by a sequence of blow-ups of 2", we assume
that 2" has no special points. O

Let n and 7 be two codimension zero points of Xy (may not be distinct). We say
that there is a type 2 connection from 7 to 7’ if one of the following holds
e one of n or 1’ is of type 2
e there exist distinct codimension zero points 7y, --- ,n, of Xy of type 2 such that
1 intersects 1y, 0’ intersects n,, n; intersects n;,1 for all 1 < i < n — 1, n does not
intersect n; for i > 1, " does not intersect n; for ¢ < n and 7; does not intersect 7,
for j #i+ 1.

Proposition 8.6. There exists a reqular proper model Z~ of F such that

1) Z has no special points

2)if m and ng are two (not necessarily distinct) codimension zero points of Xo with
m of type 3 or 5 and ny of type 3, 4 or 5, then there is no type 2 connection between
m and 1.

Proof. Let 2" be a regular proper model with no special points (8.5). Let m(Z") be
the number of type 2 connections between a point of type 3 or 5 and a point of type
3, 4 or 5. We prove the proposition by induction on m(2"). Suppose m(%Z") > 1.
We show that there is a sequence of blow-ups 2~ of 2" with no special points and
m(Z") <m(Z).

Let 1 be a codimension zero point of X of type 3 or 5 and 7’ a codimension zero
point of Xy of types 3, 4 or 5. Suppose n and 1’ have a type 2 connection. Then
there exist 7y, - -+ ,n, codimension zero points of X, of type 2 with n intersecting 7,
1’ intersecting 7, and 7; intersecting n;,1 fori =1,--- n— 1.

Suppose n = 1. Let @) be the point of the intersection of 7 and n;. Let Zg — 2
be the blow-up of 2" at () and ~ the exceptional curve in Zy. Since 7, is of type
2, by (8.3), v is of type 2, 4 or 6. Since 7 is of type 3 or 5 and 7, is of type 2, ¢
divides v,(A) and ¢ does not divide v,, (A). Since v, () = v, () + vy, (A), v4(A) is not
divisible by ¢ and hence 7 is of type 2. Let 77 and 7; be the strict transform of n and
m in Zg. Since 7 is a point of type 2, the points of intersection of 7 and 7; with
are not special points. Hence Z¢ has no special points. By replacing 2~ by Z¢ we
assume that n > 2 and 2 has no special points.

Let P be the point of intersection of 7y and 7. Let 27 be as in (8.4). Then 27
has no special points and all the exceptional curves in 2" are of type 2, 4 or 6 and
the exceptional curves which intersect the strict transforms of 7; and 7y are of type
6. In particular the number of type 2 connections between the strict transforms of
n and 7’ is one less than the number of type 2 connections between n and 7n’. Since
all the exceptional curves in 2" are of type 2, 4 or 6, m(Z”") = m(Z") — 1. Thus,
by induction, we have a regular proper model with required properties. U

Lemma 8.7. Let 2" be as in (8.6) and X, the special fibre of 2. Let n be a
codimension zero point of Xy of type 2 and 1 a codimension zero point of Xy of
type 3 or 5. Suppose there is a type 2 connection from n to n'. If there is a type 2
connection from n to a type 3 or 5 point n’, then n’ =n". Further, if ny,--- ,n, are
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codimension zero points of Xo of type 2 giving a type 2 connection from n to n' and
Y1, Ym codimension zero points of X of type 2 giving another type 2 connection
fromn ton', then n =m and n; = ~; for all i.

Proof. Suppose 7" is a codimension zero point of Xy of type 3 or 5 with type 2
connection to 1. Since 7 is of type 2 and there is a type 2 connection from 7’ to
n”. Since no two points of type 3 or 5 have a type 2 connection (cf. 8.6), ' = n".
Suppose 71, - - -, Ym is of type 2 connection from n to . If n; is not equal to 7;, then
we will have type 2 connection from n’ to 17’ and hence a contradiction to the choice
of Z (cf. 8.6). Thus n = m and n; = ~; for all i. O

Let 1 be a codimension zero point of Xy of type 2 and 1’ be a codimension zero
point of X of type 3 or 5. Suppose there is a type 2 connection 7y, -- ,n, from n
to . Then, by (8.7), ' and 7, are uniquely defined by 1. We call this point of
intersection of 7, with 1’ as the point of type 2 intersection of n and 7. Once
again note that such a closed point is uniquely defined by 7.

9. CHOICE OF Lp AND jip AT CLOSED POINTS

Let F, a € H*(F, ), A € F* with a- (\) =0 € H3(F, u®?), 2" and X, be as in
(87 and §8). Throughout this section we assume that 2" has no special points and if
71 and 7, are two (not necessarily distinct) codimension zero points of X, with 7, is
of type 3 or 5 and 1, is of type 3, 4 or 5, then there is no type 2 connection between
m and 7.

Let n be a codimension zero point of X of type 5. Then we call n of type 5a
if o is unramified at n and of type 5b if « is ramified at 1. Suppose 7 is of type
5b. Then « is ramified and hence M, is the unique subextension of E, of degree ¢,
where (E,, 0,) is the lift of the residue of a.

For the rest of the paper we assume that  is a finite field.

Lemma 9.1. Letn be a codimension zero point of Xo of type 5b. Then ind(a® M,
ind(a) and there exists j, € M, such that Nyg, r,(fty) = A and o - (j,;) =
H(My, 11,7).

Proof. Since n is of type 5b, a is ramified at 7, v,(\) = rf and ra® E,, = 0. By (8.1),
ind(a ® M) < ind(er). Write a ® F, = o/ + (Ey,0,m,) as in (4.1) and A = 6,7
where 6, is a unit at n and , is a parameter at 7. Let [y be the image of ¢ in
H?*(k(n), ). Since o/ @ E, = a® E, and ra ® E, = 0, 1y @ E(n) = 0. Let
6y be the image of 6, in x(n). Then, by (3.5), there exists po € M,(n), such that
Nty my/rm) (o) = 0o and vy @ M, (n) = (E£,(n), 0, o). Thus, by (4.8), there exists
fy € M, with the required properties. 0

n) <
0 e

Lemma 9.2. Let P € &2, n; and 1y be codimension zero points of Xy containing P.
Suppose that ny and ny are of type 5. Then there exist a cyclic field extension Lp/Fp
of degree { and pp € Lp such that
1) Nip /i (i) =

2) ind(a ® Lp) < md( )

3) a-(up) =0¢€ H*(Lp, 1,?),

4) if ; is of type Sa, then Lp ® Fp,, /Fp,, is an unramified field extension,

5) if m; is of type 5b, then Lp @ Fp,, ~ M, @ Fp,,.

Proof. Since 2" has no special points, P is not a special point of type IV. Since 7,
and 7, are of type 5 intersecting at P, M, ® Fp,, and M,, ® Fp,, are fields. Suppose
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n; is of type ba. If a ® Fp,, =0, then let Lp,,/Fp,, be any cyclic unramified field
extension with A a norm and y,,, € Lp,, with N, /rp, () = A I a® Fpy, # 0,
then let Lp,. /Fp, be a cyclic unramified field extension of degree ¢ and p,, be as
in (4.10). Suppose n; is of type 5b. Let Lp, = M, ® Fp,, and u, € M, be as
in (9.1). Then, by choice Lp,,/Fp, are unramified field extensions. By applying
(6.4) to Lp,, and f,,, there exist a cyclic field extension Lp/Fp and pp € Lp with
required properties. 0

Lemma 9.3. Let n be a codimension zero point of Xo of type 3 and P a closed point
on the closure of 1. Then, there exists a cyclic field extension Lp,/Fp, of degree {
such that if a @ E, @ Fp, # 0, then ind(a ® E, ® Lp,) < ind(la ® £, ® Fp,).

Proof. Since E,/F, is a cyclic unramified field extension of degree a power of /,
E, ® Fp, ~ [[ Ep, for some cyclic field extension Ep,/Fp, of degree a power of
(. Let E(n)p be the residue field of Ep,. Then E(n)p/r(n)p is a cyclic extension
of degree a power of . Note that either E(n)p = k(n)p or E(n)p/r(n)p is a cyclic
extension of degree a positive power of ¢. If E(n)p = k(n)p, then let L(n)p/k(n)p
be any cyclic extension of degree . Suppose E(n)p # k(n)p. Since E(n)p/k(n)p is
a cyclic extension of degree a positive power of £, there is only one subextension of
E(n)p which is cyclic over x(n)p of degree £. Since k(n)p is a local field containing
primitive /" root of unity, there are at least 2 non-isomorphic cyclic field extensions
of k(n)p of degree £. Thus there exists a cyclic field extension L(n)p/k(n)p of degree
¢ which is not isomorphic to a subfield of E(n)p. Let Lp,/Fp, be the unramified
extension of degree ¢ with residue field L(n)p.

Suppose a ® B, ® Fp, # 0. Then a ® Ep, # 0. Since Ep, and Lp, are cyclic
field extensions of Fp, and Lp, is not isomorphic to a subfield of Ep,, Ep, @ Lp,
is a field and [Ep, ® Lp,, : Epy| = [Lp, : Fp,| = (. In particular E(n)p @ L(n)p
is a field and [E(n)p ® L(n)p : E(n)p] = £. Write a ® F,, = o + (E,,0,,m,) as in
(4.1). Since a ® E, = ¢’ ® E,, a ® E, is unramified at . Let Sp be the image
of a ® E, ® Fp,, in H*(E(n)p, ptn). Since a @ Ep, # 0 and Ep, is a completely
discretely valued field with residue field E(n)p, Sp # 0. Since E(n)p is a local field,
ind(Bp ® E(n)p ® L(n)p) < ind(Bp) and hence ind(a ® £, ® Lp,) = ind(a ® Ep, @
Lp,) < ind(a® Ep,) = ind(a ® E, ® Fp,). O

Lemma 9.4. Let P € &2, n; and 1y be codimension zero points of Xy containing
P. Suppose that n, is of type 2 and ny is of type 5 or 6. Then there exist u; € Fp,
1 <i </, such that

pacc e = A,

Vm(:ul) = l/m(/\), Vm(ui) =0 fori>2,

U, (i) = vy (N) /€ for all i > 1,

a-(u) =0 € H*(Fp, pu3?).

Proof. Since n; is of type 2 and 17 is of type 5 or 6, we have A = wﬁg}ﬂggé with
coprime to ¢ and rya ® E,, = 0. Hence, by (6.7), there exists # € Fp such that
a-(0) =0, v,(0) =0 and v,,(0) = ry. For i > 2, let g; =6 and p; = N ~*. Then
1; have the required properties. O

Lemma 9.5. Let P € &2, 0y and ny be codimension zero points of Xy containing P.
Suppose that n; and ny are of type 5 or 6. Then there exist u; € Fp, 1 < i <, such
that
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1) pn- e = A
2) vy, (i) = vy, (M) /€ for alli >0 and j = 1,2,

4) o (u) =0 € H3(Fp, pi®).

Proof. Since 1, and 7y are of type 5 or 6, by (6.8), there exists # € Fp such that
a-(0) =0 and v,,(#) = v, (N\)/l for i = 1,2. For i > 2, let u; = 0 € Fp and
p1 = A0t € Fp. Then p; have the required properties. 0

Lemma 9.6. Let P € &2, n; be a codimension zero point of Xo of type 3 and ns
a codimension zero point of Xo of type 5. Suppose m1 and n intersect at P. Then
there exist a cyclic field extension Lp/Fp of degree ¢ and pup € Lp such that

1) NLP/FP(:U’P) = A

2) ind(a ® Lp) < ind(«x)

3) a-(up) =0¢€ H*(Lp, u?)
4) Lp ® Fp,,/Fp,, is an unramified field extension
5) if N € F} and a ® B, ® Fp,, # 0, then ind(a @ (E,, ® Fp,,) ® (Lp @ Fp,,)) <
ind(a @ Ey, @ Fpp,)
6) if n2 is of type 5b, then Lp @ Fp,, ~ M,, ® Fp,,.

Proof. Suppose A\ & Fi. Let Lp = Fp(v/A) and pup = v/A. Then Np,/p, (up) = A
and by (6.2) 2) and 3) are satisfied. Since n; is of type 3 or 5, v, (\) is divisible by
¢ and hence 4) is satisfied. Since A\ € F}, the case 5) does not arise. Suppose that
12 is of type 5b. Since 2" has no special points, M,, ® Fp,, is a field. Since X is a
norm from M,, (9.1), by (2.6), we have Lp ® Fp,, >~ M,, @ Fp,,.

Suppose that A\ € Fj‘. Let Lp,, be as in (9.3) and pp,, = vVA. Write a ® F,, =
a1 ® (B, 01,7, ) as in (4.1). Then by (4.2), we have ind(e ® F;,;) = ind(«
E,)E, : F,]. Since n; is of type 3, ind(a) = ind(a ® F,,) and ma ® E,, # 0,
where v, (A\) = rif. In particular ¢ ® E,, # 0. By the choice of Lp,, asin (9.3),
we have either a ® E,, ® Fp,, =0 or ind(a ® E,, ® Lp,,) < ind(a ® E,, ® Fp,,).
Thus ind(a ® E,, ® Fp,,) < ind(a ® E,, ). We have ind(a ® Lp,,) < ind(a® E,, ®
Lp,)[Ey @ Lpy, : Lpy,] < ind(a ® Ep))[E,, : Fy,| = ind(«). Since Lp,, is a field
and COYeSLp,, /Fpmy, (a' (:U’P,m)) = (/\) =0, by (46)7 Q- (Mpym) =0¢ HB(LP,mnu’gz)'
Since £ has no special points, M,, ® Fp,, is a field. Let Lp,, = M,, ® Fp,, and
WP, = v \. Then NLp o /Fpmy (tpy,) = A and by (9.1), ind(a ® Lp,,) < ind(a) and

a- (ppy,) = 0. Then, by (6.4), there exist Lp and pp with required properties. [

Lemma 9.7. Let P € &, n; and 1y be codimension zero points of Xo of type 3, 4 or
6. Suppose my and 1y intersect at P. Then there exist a cyclic field extension Lp/Fp
of degree { and pup € Lp such that

1) Nup e () = A

2) ind(a ® Lp) < ind(«)

) o (up) =0€ H(Lp, ;%)

) Lp ® Fp,,/Fpy, is an unramified field extension,

) if m; is of type 3, A € Fif and a ® E,, ® Fp,, # 0, then ind(a ® (E,, ® Fp,,) ®
(Lp X FP,Th)) < md(a & ETh & FP,Th)

Proof. Suppose A € Ff. Let Lp = Fp(V/A) and pp = v'A. Then Ny, p,(up) = A
and by (6.2), 2) and 3) are satisfied. Since 7; are of type 3, 4 or 6, v, ()) is divisible
by ¢ and hence 4) is satisfied. Since A € Ff, 5) does not arise.
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Suppose that A € Fi'. If 5; is of type 3, then let Lp,, be asin (9.3) and pp,, = v/\.
Then, as in (9.6), Ni,/p.(p) = A, ind(a ® Lp,,) < ind(a) and a - (up) = 0 €
H3(Lp, u$?). Suppose that n; is of type 4 or 6. Let Lp,, /Fp,, be a cyclic unramified
field extension of degree ¢ and jp,, be as in (4.10).

Then, by (6.4), there exist Lp and pp with required properties. O

Proposition 9.8. Let P € &. Then there exist a cyclic field extension or split
extension Lp/Fp of degree { and pup € Lp such that

1) Nip i (1) = A

2) ind(a ® Lp) < ind(«)

3) a-(up) =0¢€ H*(Lp, u;,?)

Further, suppose n is a codimension zero point of Xy containing P.

4) If n is of type 1, then Lp = Fp(v/\) and pp = v/\.

5) Suppose n is of type 2 with a type 2 connection to a type 5 point n'. Let Q) be the
type 2 intersection of n and n'. If M,y @ Fg, is not a field, then Lp = [[ Fp and
pp = (61, ,6p) with 0; € Fp, v,(61) = v,,(A\) and v,(0;) =0 for i > 2.

6) Suppose n is of type 2 with a type 2 connection to a type 5 point n'. Let Q) be
the type 2 intersection of n and n'. If M,y @ Fg v is a field, then Lp = Fp(v/X) and
Hp = V.

7) Suppose n is of type 2 and there is no type 2 connection from n to any type 5
point. Then Lp = Fp(\[/X) and pp = V.

8) If n is of type 3, then Lp & Fp,/Fp, is an unramified field extension and fur-
ther if X € F3' and a @ E, ® Fp, # 0, then ind(a @ (E, ® Fp,) ® (Lp ® Fp,)) <
indla ® E, @ Fp,).

9) If n is of type 4, then Lp ® Fp,/Fp, is an unramified field extension.

10) If n is of type 5a, then Lp @ Fp,/Fp, is an unramified field extension.

11) If n is of type 5b, then Lp @ Fp, ~ M, ® Fp, and if Lp = [[Fp, then
pp = (01, ,0;p) with v,(6;) = v,,(\)/L.

12) If n is of type 6, then either Lp @ Fp,/Fp, is an unramified field extension or
Lp =11 Fp, with pp = (61,---,00) and v,(0;) = v,,(\) /L.

Proof. Let n; and 1y be two codimension zero points intersecting at P. By the choice
of 27, Xy is a union of regular curves with normal crossings and hence there are no
other codimension zero points of X passing through P.

Case 1. Suppose that either 7, or 1y, say 7y, is of type 1. Then v, (A) is coprime to
¢ and hence A € Fi'. Let Lp = Fp(v/A) and pup = v/X. Then, by (6.2), Lp and pp
satisfy 1), 2) and 3). By choice 4) is satisfied. Since 2" has no special points, 7 is
not of type 2 or 4. Thus 5), 6), 7) and 9) do not arise. Suppose 7, is of type 3, 5
or 6. Then v,,() is divisible by ¢ and hence Lp ® Fp,,/Fp,, is an unramified field
extension. Thus 8), 10) and 12) are satisfied. Suppose 7, is of type 5b. Since 2~ has
no special points and 7, is of type 1, M,, ® Fp,, is a field. Since A is a norm from
the extension M,,/F,, (9.1) and A & F5 by (2.6 ), M,, ® Fpy, ~ Fp, (V) and
hence 11) is satisfied.

Case II. Suppose neither n; nor 7, is of type 1. Suppose either 7; or 7, is of type
2, say m; is of type 2. Then v,, ()\) is coprime to ¢ and hence \ & F}¥.
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Suppose that 7; has type 2 connection to a codimension zero point 1’ of X, of
type 5. Let @ be the closed point on 1’ which is the type 2 intersection point of 7;
and 1. By the choice of 27, 1, is of type 2, 5 or 6. Note that if 7, is also of type 2,
then @ is also the point of type 2 intersection of 7, and n’. Thus if both 7; and 7
are of type 2, ' and @ do not depend on whether we start with n; or 7.

Suppose that M,y ® Fg,, is not a field. Let Lp = [[ Fp. Suppose n, is of type 2.
Then, let up = (A, 1,--+,1) € Lp = [ Fp. Suppose 1, is of type 5. Then by the
assumption on 2", e =7, Q@ = P. Thus M,, ® Fp,, = M,y ® F s is not a field and
hence 7, is of type 5b. Let p; € Fp be as in (9.4) and pup = (p1, -+, je). Suppose
7ny is of type 6. Let p; € Fp be as in (9.4) and up = (1, ,p¢) € Lp. Then, Lp
and pp satisfy 1) and 3). Since 7, is of type 2, ind(a ® F,,) < ind(«) and hence, by
(5.8), ind(a ® Fp) < ind(«) and 2) is satisfied. Since neither 7; nor 7, is of type 1,
the case 4) does not arise. By choice Lp satisfies 5). Since there is only one type 5
point with a type 2 connection to 7; or 7, the case 6) does not arise. Clearly the
case 7) does not arise. Since 7y is not of type 3, 4 or ba, the cases 8), 9) and 10) do
not arise. By choice of Lp and pup, 11) and 12) are satisfied.

Suppose M,y @ Fg,y is a field. Let Lp = Fp(v/A) and pup = V/A. Since A ¢ F},
by (6.2), Lp and pp satisfy 1), 2) and 3). As above the cases 4), 5), 7) and 8) do
not arise. By choice 6) is satisfied. Suppose 7 is of type 5. Then o = 7', Q@ = P
and v, () is divisible by ¢ and hence 9) is satisfied. Suppose 7 is of type 5b. Since
M,, ® Fp,, is a field, as in case I, M,, ® Fp,, ~ Lp® Fp,, and hence 10) is satisfied.
Since A\ ¢ F3' and if ny is of type 6, v, ()) is divisible by ¢, Lp ® Fp,,/Fp,, is an
unramified field extension and hence 11) is satisfied.

Suppose that neither 7, nor 7, have a type 2 connection to a point of type 5. In
particular 7, is not of type 5. Then, let Lp = Fp(v/A) and up = v/A. Then, by
(6.2), Lp and pp satisfy 1), 2) and 3). Since neither 7, nor 7, is of type 1, the case
4) does not arise. Since neither 7; nor 7, has type 2 connection to a point of type 5,
5) and 6) do not arise. By the choice of Lp and pup, 7) is satisfied. If 7y is of type 4
or 6, v, () is divisible by ¢, 8), 9) and 12) are satisfied. Since neither 1, nor 7, is of
type 5, 10) and 11) do not arise.

Case I11. Suppose neither of n; is of type 1 or 2. Suppose that one of the 7;, say
1, is of type 3. Since 2" has no special points, 7, is not of type 4 and hence 7, is of
type 3, 5 or 6. If 75 is of type 5, let Lp and pup be as in (9.6). If n, is of type 3 or 6,
let Lp and pup be as in (9.7). Then, 1), 2), 3), 8), 9), 10), 11) and 12) are satisfied
and other cases do not arise.

Case IV. Suppose neither of n; is of type 1, 2 or 3. Suppose that one of the n;,
say 11, is of type 4. Since 2" has no special points, 7, is not of type 5. Hence 1) is
of type 4 or 6. Let Lp and pup be as in (9.7). Then Lp and pp have the required
properties.

Case V. Suppose neither of 7; is of type 1, 2, 3 or 4. Suppose that one of the 7, is
of type 5, say n; is of type 5. Then 7, is of type 5 or 6. Suppose that 7, is of type
5. Since 2" has no special points, M,, ® Fp,, are fields for i = 1,2. Let Lp and pp
be as in (9.2). Then Lp and pp have the required properties. Suppose that 7y is of
type 6. Suppose M,, ® Fp,, is a field. Let Lp,, = M, ® Fp,, and pu,, € M, with
Ny, /7y, (pny) = A (cf.; 9.1). Let Lp and pp be as in (6.5) with Lp ® Fp,, ~ Lp,,.
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Then Lp and pp have the required properties. Suppose that M, ® Fp,, is not a
field. Let Lp = [[ Fp and p; € Fp be as in (9.5) and pup = (p1,- -+, pe) € Lp. Then
Lp and pp have the required properties.

Case VI. Suppose neither of ; is of type 1, 2, 3, 4 or 5. Then, 1, and tpn, are of type
6. Let Lp and pp be asin (9.7). Then Lp and pp have the required properties. [

10. CHOICE OF L, AND p, AT CODIMENSION ZERO POINTS.

Let F,n=/(% o€ H*(F,ju,), A\ € F* with a # 0, a- (\) = 0 € H3(F, u®?), ',
Xo and & be as in (§7, §8 and §9). Assume that 2" has no special points and there
is no type 2 connection between a codimension zero point of X, of type 3 or 5 and
a codimension zero point of X, of type 3, 4 or 5. Further we assume that for every
closed point P of X, the residue field x(P) at P is a finite field. Let P be a closed
point P of Xy. Then there exists tp > d such that there is no primitive 0% root of
unity in x(P).

For a codimension zero point n of Xy, let &2, =nnN 2.

Proposition 10.1. Let n be a codimension zero point of Xy of type 1. For each
P e P,, let (Lp,pup) be chosen as in (9.8) and L, = F,(v'\) and p, = VX € L,.
Then

1) Np,/p,(1n) = A

2) a-(uy) =0€ H*(Ly, 1?)

3) ind(a ® L,) < ind(a)

4) for P € &,, there is an isomorphism ¢p,, : L, ® Fp, = Lp @ Fp, and

Opy(py @ 1) (up® 1)~ = 1.

Proof. By choice, we have Ni, /, (1t,) = A. Since 7 is of type 1, v,()) is coprime to
¢ and hence by (4.7), L, and p, satisfies 2) and 3). Let P € &,. Since 7 is of type
1, by the choice of Lp and up (cf. 9.8(4)), we have Lp = Fp(v/A) and pup = VA,
Hence L, and p, satisfy 4). O

Lemma 10.2. Let n be a codimension zero point of Xo. For each P € 22, let
Op € Fp with a- (0p) = 0 € H3(Fp,y, uS?). Suppose v,(0p) = 0 for all P € P,
Then there exists 0, € F,, such that

1) a-(0y) =0€ H*(F, p?)

2) for P € 2, 050, € Fh,".

Proof. Let m, € F, be a parameter. Write a ® F,, = o/ + (E,, 0, m,) as in (4.1). Let
E(n) be the residue field of E,. Since a - (0p) = 0 € H*(Fp,, u5?) and v, (0p) = 0,
by (4.7), we have (E(n) ® x(n)p,00,0p) = 0 € H*(k(n)p, ptn), where 0p is the

image of 0p € k(n)p. Hence Op is a norm from E(n) ® k(n)p for all P € Z,.

For P € ‘@777 let 0p € E(??) X /1(77)1:» with NE(U)®H(77)P/I€(77)P(9P> = gp. By weak
approximation, there exists 6 € x(n) which is sufficiently close to Gp for all P € P,.
Let 0o = Nggy/wm) (@) € £(n). Then 6, is sufficiently close to fp for all P € £2,. In
particular, 0;10p € x(n)5". Let 6, € F, have image 6, in #(n)). Then (E,, 0, 6,) = 0
and hence, by (4.7), a - (6,) = 0. Since 0;'0p € r(n)5" and Fp, is a complete
discretely valuated field with residue field x(n)p, it follows that 6, Y9p e F ]‘;?;P. t
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Proposition 10.3. Let n be a codimension zero point of Xy of type 2. Suppose there
is a type 2 connection between n and a codimension zero point n' of Xy of type 5.
Let Q) be the point of type 2 intersection of n and n'. Suppose that M,y @ Fg s is not
a field. For each P € P, let up = (07,--- ,0F) € Lp = [[ Fp be as in (9.8). Let
L, =11F,. Then there exists yu, = (6{,--- ,0]) € L, such that

1) NL,,/F,](,Un> =A

2) - (jy) = 0 € HY(Ly, 1u?)

3) ind(a ® L,) < ind(a),

4) uptiy € (Ly @ Fp,)'" for all P € 2,

H3(Fp, u%?) for all P € 22,. By (10.2), there exists 6] € F, such that « - (6))
0 ¢ H3(Fn,un ) and (6F)~ 19;7 € Ff for all P € 2, Let 0] = \03---0])"
Then 67---6] = X and (6])7'07 € F]‘;?;P. Since a - (A) = 0 and a- (0)) = 0 €
H3(F,, p$?) for i > 2, we have a - (60;) = 0 € H*(F,, u¥*). Hence L, = [] F, and
pn = (07,---,6]) € L,. Since 1 is of type 2, ind(a ® F},) < ind(«) and hence L,), 1,
have the required properties. O

Proof. Let i > 2. By choice (cf. 9.8(5)), we have v,(#7) = 0 and a- (8]) =0 €
1

Proposition 10.4. Let n be a codimension zero point of Xo of type 2. For each
Pe P, let (Lp,up) be chosen as in (9.8). Suppose one of the following holds.
e There is a type 2 connection between 1 and codimension zero point ' of Xy of type
5 with Q the point of type 2 intersection of n and n' and M,y @ Fg .y is a field.
e There 1s no type 2 connection between n and any codimension zero point of X, of
type 5.
Let L, = F,(v/\) and j1,, = V/'A. Then

1) Np,/p,(1n) = A

2) - (uy) =0€ H*(Ly, p1,?)

3) ind(a ® L,) < ind(a)

4) for P € &, there is an isomorphism ¢p,, : L, ® Fp,, = Lp ® Fp, and

Gty ® 1) (pp ®1)7" = 1.

Proof. Since v, () is coprime to ¢, by (4.7), a - () = 0 € H*(L,, p£?) and ind(«

L,) < ind(a). Clearly Ni,/r,(tty) = A. By the choice of (Lp,pp) (cf. 9.8), for
P e £, we have Lp = Fp(\[/X) and pup = vA. Thus L, and p, have the required
properties. U

Lemma 10.5. Let n be a codimension zero point of Xq of type 3, 4 or ba. Let P € 7).
Suppose there exists Lp,/Fp, a degree { unramified field extension and pup, € Lp,
such that

Z) NLP,n/FP,n (/LPJ7> = A,

2) ind(a ® Lp,) < ind(a),

3) o (upy) =0 € H*(Lpy, 15?),

4) Ifn is of type 3, A € F}' and a® E,@Fp,, # 0, then ind(a®(E,®Fp,)®(Lp,)) <
indla ® E, @ Fp,).

Then ind(a ® (E, ® Fp,) ® (Lp,)) < ind(a)/[E, : F,].

Proof. Write a ® F,, = o' + (E,, 0y, m,) as in (4.1). Then, by (4.2), ind(a ® F,) =
ind(o/ ® E,)[E, : F,)] = ind(a ® E,)[E, : F,]. Let t = [E, : F,] and  be the image
of o in H*(k(n), i)
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Suppose 7 is of type 4. Then ind(a ® F,)) < ind(«) and hence ind(a ® E,) =
ind(a ® F))/t < ind(a)/t. We have ind(a ® (E, ® Fp,) ® (Lp,)) < ind(a ® E,) <
ind(«)/t.

Suppose that 1 is of type 5a. Then « is unramified at n and hence £, = F;, and
t = 1. The lemma is clear if « ® Fp, = 0. Suppose a ® Fp, # 0. Then 8 # 0.
Since Lp,, is a an unramified field extension, the residue field Lp(n) of Lp,, is a field
extension of k(n)p of degree . Since k(n)p is a local field and ind(p) is divisible by
¢, ind(8 ® Lp(n)) < ind(F) ([3, p. 131]). In particular ind(av ® Lp,,) < ind(a).

Suppose that 7 is of type 3. Then ra ® E, # 0 and hence o/ ® £, = a ® E,, # 0.
In particular ind(ov ® F)) > t and S ® E(n) # 0. If a ® E, ® Fp,, = 0, then
ind(a ® (E, ® Fpy) @ (Lpy)) = 1 < ind(«)/t. Suppose that a ® E, ® Fp, # 0.
Suppose A € F3’. Then, by the choice of Lp,, ind(a @ (E, @ Fp,) ® (Lp,)) <
ind(o ® E, ® Fp,) < ind(a ® E,) = ind(a)/t. Suppose A & Fi'. Then X\ & Fp',.
Since Lp, is a field extension of degree ¢ and X is a norm from Lp,, by (2.6),
Lp, =~ Fp,(v/)\). Since 7 is of type 3, v,(\) = rf and \ = O,m)¢ with 6, € F, a unit

at 1. Let 0, be the image of 6, in x(n). Then 0, & k()% and Lp(n) = x(n)p(1/0,).

Since « - (A) = 0, by (4.7), rla’ = (E,, 0,,0,) and hence {3 = (E(n), 00,0,). Thus,
by (3.3), ind(8 ® E(n)p ® Lp(n)) < ind(f ® E(n)). Thus

ind(a ® (E, ® Fpy) ® (Lpy)) = ind(a’ ® (E; ® Fpy) ® (Lpy))
= ind(8® E(n)p ® Lp(n))
< ind(f® E(n)) =ind(a/ ® E,)
= ind(a® E,) = ind(«a)/t.

U

Proposition 10.6. Let n be a codimension zero point of Xy of type 3, 4 or 5a. For
each P € 2, let (Lp, pup) be chosen as in (9.8). Then there exist a field extension
L,/F, of degree { and yu, € L, such that

1) NL,,/F,](,Un> =A

2) - (jy) = 0 € HY(Ly, 1u?)

3) ind(a ® L,) < ind(a)

4) for P € &, there is an isomorphism ¢p,, : L, ® Fp, = Lp ® Fp, and

Gpaity @ 1) (up 1)1 € (Lp @ Fp,)©".

Proof. Write a ® F,, = o + (E,,0,,7,) as in (4.1). By (4.7), rla’ = (E,,0,,6,).
Let (3 be the image of o/ in H*(k(n), u,) and E(n) the residue field of E,. Then
rlB = (E(n),o00,00) € H*(k(n), pin), where o is the automorphism of F(n) induced
by o, and 6 is the image of 6, in k(7).

Let S be a finite set of places of k(n) containing the places given by closed points
of &, and places v of k(1) with 8 ® k(n), # 0. For each v € S, we now give a cyclic
field extension L, /k(n), of degree ¢ and p, € L, satisfying the conditions of (3.1)
with Ey = E(n) and d = ind(«)/t.

Let v € S. Then v is given by a closed point P of . If P € &, let Lp,, = Lp®Fp,,
and pip, = up ® 1 € Lp,. Suppose P ¢ 2. Suppose that A & F3’. Then \ ¢ Fj;{7

Let Lp, = Fp,n(\Z/X) and pip, = V/\. Suppose that A € Fif. If ) is of type 3, then let

Lp,/Fp, be a cyclic unramified field extension of degree £ as in (9.3) and uup,, = V/\.
If n is of type 4 or 5a, then let Lp,/Fp, be a cyclic unramified field extension of

degree £ as in (4.10) and pp, = V.
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Since Lp,/Fp, is an unramified field extension of degree ¢, the residue field Lp(n)
is a degree /¢ field extension of x(n)p. Let L, = Lp(n). We have v,(\) = r¢ for
some integer r and \ = 9,7737;( for some parameter 7, at n and 0, € F, a unit at 7.
Further , is a parameter in Lp,. Since Ny, /r, (py) = A, ppy = 0p,m) for some
0p, € Lp ® Fp, which is a unit at . Let x, be the image of p,, in L, = Lp(n).
Then Np,/ue, () = bp. Since the corestriction map H?(L,, p,) — H*(k(n), ftn)
is injective, 78 ® L, = (Ey ® L,,00 ® 1,11,). Let t = [E, : F,]. By (10.5), we
have ind(a ® (E, ® Fp,) ® Lp,) < ind(«a)/t. Since a ® E,, = o/ ® E,, we have
ind(e/ ® (E, @ Fp,) ® Lp,) < ind(«)/¢¢. Since ind(8 @ FEy® L,) = ind(c/ @ (E, ®
Fp,) ® (Lp® Fpy)), ind(8® Ey® L,) < ind(a)/t.

Since k(n) is a global-field, by (3.1), there exist a field extension Ly/k(n) of degree
¢ and pg € Lo such that

1) Nio(po) = bo

2) T’B X LQ = (E(’I]) X LQ, o9 X 1, /,LQ)

3) ind(8 ® E(n) ® Ly) < ind(a)/t

4) Ly @ k(n)p =~ Lp(n) for all P € &,

5) 1o is close to Op for all P € 2,

Then, by (4.8), there exist a field extension L, /F, of degree ¢ and p € L, such that
e residue field of L, is Lo,

e /1, a unit in the valuation ring of L,),

® /L= [ip,

® Np,/r, (1) =0y,

o o (umy) € H*(Ly, p?) is unramified.

Since L, is a complete discretely valued field with residue field Ly a global field,
H}\(Ly, p?) = 0 ([27, p. 85]) and hence a- (py) = 0. Since L,/ F), is unramified and
a® Ly = '@ Ly+ (Ey® Ly, 0, my), ind(a @ Ly) < ind(e/ @ By @ Ly)[Ey @ Ly : L] =
ind(8 ® E(n) ® Lo)t < ind(a) . Thus L, and p, = pm, € L, have the required
properties. U

Proposition 10.7. Let 1) be a codimension zero point of Xy of type 5b. Let (E,, 0,)
be the residue of o at n and M, be the unique subfield of E, with M,/F, a cyclic
extension of degree {. For each P € &, let Lp and pup be as in (9.8). Then there
exists j1, € M, such that

1) NM??/Fn(MT]) = A

2) a- () =0€ H My, pi?)

3) ind(a® M,) < ind(a)

4) for P € &,, there is an isomorphism ¢p,, : M, ® Fp, — Lp ® Fp, and

Z2tP

Spa(ty @ 1)(np @ 1) € (Lp ® Fpy)
Proof. Let E(n) and M (n) be the residue fields of £, and M, at 7. Since 7 is of type
5b, M(n) is the unique subfield of E(n) with M (n)/k(n) a cyclic field extension of
degree (. Let m, be a parameter at 7). Since 7 is of type 5, v, (A) =7f and X = Gnﬂjf
for some 6, € F a unit at 7. Let 6, be the image of 6, in x(n). Let P € &,. Suppose
M, ® Fp,, is a field. Since Ny, oy, /rp, (Hp) = A = 9,7737;‘], we have pp = ppm, with
pwp € My ® Fp, a unit at n and Nuy,erp, /Fp, (Wp) = 0y Suppose M, @ Fp, is
not a field. Then, by the choice of pup (cf. 9.8(10)), we have up = ppm,, where
Wp = (01,---.,0;) € M, ® Fp,y =[] Fp, with each 0, € Fp, is a unit at 1. Let
W p be the image of 1/ in the residue field M(n) @ k(n)p of M, @ Fp,, at . Write
a®F, =d +(E,, 0, m,) asin (4.1). Let 3 be the image of o/ in H*(k(n), ). Since
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a-(A) =0, by (4.7), 7’66 (E(n),0,0,). Since a - (up) =0 in_H3(Mn ® Fpy, p?),
once again by (4.7), rf ® k(n)p = (E( ) ® M(n) ® k(n)p, oy, W' p). Since k(n) is a
global field, by (3.6), there exists p;, € M(n) such that
1) Nt ) /s( n)(ﬂn) 0

2) rB @ M(n) = (E(U) ® M(n), 09, 1)
3) W'p is close to i, for all P € &7,
Since M, is complete, there exists /jn € M, such that Ny, /r, (/;;7) = 0, and the image
of ,uN;? in M(n) is p,. Let p, = pym. Since M, /F, is of degree /, ind(a ® M,) <

"’
ind(o ® F})) (cf. 8.1 ). Thus p, has the required properties. O

Proposition 10.8. Let n be a codimension zero point of Xo of type 6. For each
Pe 2, let Lp and pp be as in (9.8). Then there exist a field extension L,/F, of
degree £ and p, € L, such that

1) NLn/Fn(,un) =A

2) a- (py) =0¢€ HB(LnaN%&)

3) ind(a ® L,) < ind(a)

4) for P € &,, there is an isomorphism ¢p,, : M, ® Fp, — Lp ® Fp, and

¢P,n(ﬂn ®1)(pp ® 1)_ €(Lp® FP,n)EQtP'

Proof. Let P € &,. Suppose Lp @ Fp, is a field. Let Lp(n), Op € Lp(n), 6y €
k(n) and B be as in the proof of (10.6). Then, as in the proof of (10.6), we have
Nipoy/mie (0p) = 0o and ind(8 ® Ey ® Lp(n)) < ind(a)/[E, : F,]. As in the proof
of (10.7), we have r3® Lp(n) = (Ey ® Lp(n),00®1,0p).

If Lp/Fp is not a field, by choice (cf. 9.8(11)), we have up = (017, -+, 0¢my).
Since a - (up) = 0 in H*(Lp,puf) = []1H*(Fp, ), we have a - (7)) = 0 €
H?(Fp, pg?). Thus, by (4.7), we have r ® k(n)p = (Eo, 00 ® 1,0;) for all i. Since
Lp(n) = [Tx(n)p and Op = (0,,---,0,), we have r3 ® Lp(n) = (Ey ® Lp(n), 00 @
1, ep .

As)in the proof of (10.6), we construct L, and p, with the required properties. [

Lemma 10.9. Let n be a codimension one point of Xy and P a closed point on 7.
Suppose there exist 0, € F, such that a - (0,) =0 € H3(F,, u$*). Then there exists
Op € Fp such that - (0p) =0 € H3(Fp, u%?), v,(0p) = v,(6,) and 6,0, € Fj;’g;tp.

Proof. Let m be a prime representing n at P. Since 7 is regular on 2, there exists a
prime  at P such that the maximal ideal at P is generated by 7 and 6. Since Fp,,
is a complete discrete valued field with 7 as a parameter, 8, = wn® for some w € F,
unit at 1. Since the residue field x(n)p of Fp, is a complete discrete valued field
with & as a parameter, we have W = ud for some u € Fp unit at P. Let p = ud"r.
Then clearly v,(0,) = v,(0p) and 0,'0, € F ff;P Since « - (Ap) is unramified at P
except possibly at 7 and § and « - (0p) = a - (up) = 0 € H*(Fp,, u$?), by (5.5),
a-(0p) =0¢e H3(Fp, u2?). O

11. THE MAIN THEOREM

Theorem 11.1. Let K be a local field with residue field k and F' the function field
of a curve over K. Let D be a central simple algebra over F' of exponent n, « its
class in H*(F, j1,,), and X\ € F*. If a- (\) = 0 and n is coprime to char(k), then \
s a reduced norm from D*.
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Proof. As in the proof of (4.12), we assume that n = (¢ for prime ¢ with ¢ #char(k)
and F contains a primitive /*' root of unity. We prove the theorem by induction on
ind(D).

Suppose that ind(D) = 1.Then D is a matrix algebra and hence every element of
F' is a reduced norm. Assume that ind(D) > 1.

Without loss of generality we assume that K is algebraically closed in F. Let X
be a smooth projective geometrically integral curve over K with K(X) = F. Let R
be the ring of integers in K and & its residue field. Let 2" be a regular proper model
of F' over R such that the union of ramy («), supps (A) and the special fibre Xy of
& is a union of regular curves with normal crossings. By (8.6), we assume that 2~
has no special points, and there is no type 2 connection between a codimension zero
point of Xy of type 3, or 5 and codimension zero point of X, of type 3, 4 or 5.

Let & be the set of nodal points of Xj. For each P € &, let Lp and up be as in
(9.8). Let 1 be a codimension zero point of Xy and &2, = &Z Nn. Let L, and p, be
as in 10.1, 10.3, 10.4, 10.6, 10.7 or 10.8 depending on the type of . Then L, /F, is
an extension of degree ¢ and p, € L, such that
1) NLn/Fn(Mﬂ) =A
2) a- () =0€ H*(Ly, 13?)

3) ind(a ® L,) < ind(a)
4) for P € &, there is an isomorphism ¢p,, : L, ® Fp, = Lp ® Fp, and
Gp(1y @ 1)(np @ 1) € (Lp ® Fpy) "

Let P € 2 be a closed point with P ¢ . Then there is a unique codimension
zero point 7 of Xy with P € n. We give a choice of a cyclic or split extension Lp/Fp
of degree ¢ and pp € L} such that
1) NLP/FP(:“P) =\

2) ind(a ® Lp) < ind(a),
3) Q- (:U’P) =0¢ Hg(LP>:U’§2)’
4) there is an isomorphism ¢p,, : L, ® Fp,, = Lp ® Fp, and

Gty ® 1) (np © 1) € (Lp © Fp,p)"

Suppose that 7 is of type 1. Then, by the choice of L, and p, ( 10.1), Lp = Fp(v/X)
and z1p = v/A have the required properties.

Suppose that n is of type 2. Suppose that there is a type 2 connection to a
codimension zero point 1’ of Xy of type 5. Let @ be the point of type 2 intersection
n and 7n’. Suppose that M, ® Fg,s not a field. Then, by choice (cf. 10.3), we have
L,=11F, and p, = (b4, ,6;). Since a- () = 0, we have - (6;) = 0. For each 4,
2 < i </, by (10.9), there exists 0" € Fp such that o - (0F) = 0 € H3(Fp, u?) and
07107 € FiL'". Let 07 = A(05--0F)"'. Then Lp = [[ Fp and up = (67, ,67)
have the required properties. Suppose that M, ® Fy ,/ is a field or there is no type
2 connection from 7 to any point of type 5. Then, by the choice (10.4), we have
L, = F,(V)\) and p,, = V/A. Hence Lp = Fp(v/A\) and pp = v/A € Lp have the
required properties.

Suppose that 71 is not of type 1 or 2. Then, by choice L,/F), is an unramified field
extension of degree ¢ or the split extension of degree ¢. Let Ap be the completion of
the local ring at P and 7 a prime in Ap defining n at P. Since P ¢ & and ramy («)
is union of regular curves with normal crossings, there exists a prime § € Ap such
that « is unramified on Ap except possibly at 7 and §. Further, A = wr"é® for some
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unit u € Ap. Since 7 is not of type 1 or 2, vp(A) = r is divisible by ¢. Thus, by (6.5),
there exist a cyclic extension Lp/Fp and pp € Lp such that

1) LP (X)F}D’?7 ~ L77 ®Fp’n,

2) ind(a ® Lp) < ind(a),

3) Q- (:U’P) =0¢ Hg(LP>:U’§2)’

4) there is an isomorphism ¢p,, : L, ® Fp,, = Lp ® Fp, and

Gty ® 1) (np © 1) € (Lp © Fp,) "

Thus for every x € Xj, we have chosen an extension L, /F, of degree ¢ and u, € L,
such that
1) Ni,/r, (pa) = A
2) a () =0 € H*(Ly, pi?)

3) ind(a ® L,) < ind(«)

4) for any branch (P,n), there is an isomorphism ¢p,, : L, ® Fp, — Lp ® Fp, and
Gty @ V)(p @ 1)1 € (Lp @ Fp,y)©". Further if P is a closed point of X, then
Lp/Fp is cyclic or the split extension.

Let (P,7) be a branch. Since x(P) has no /2% primitive root of unity and x(n)p is
a complete discretely valued field with residue field x(P), #(n)p has no £2# primitive
root of unity. Since Fp,, is a complete discretely valued field with residue field x(n)p,
Fp,, has no (2% primitive root of unity. Since ¢p,, (11, @1)(up®1)~' € (Lp® Fp,, )"
and tp > d, by (2.8), for a generator o of Gal(Lp ® Fp,/Fp,), there exists Op, €
Lp ® Fp,, such that ¢p,(u, @ 1)(up @ 1)~ = Qgﬁa(ﬁpm)gd.

By (7.5), there exist extensions L/F of degree ¢, N/F of degree coprime to ¢, and
1€ L ® N such that
° NL®N/F(,U) = X and
ea-(n)=0€ H}L® N, u?)

e ind(a ® L) < ind(a).

Since L ® N is also a function field of a curve over a p-adic field, by induction
hypotheses, p is a reduced norm from D ® L ® N and hence A = Npgn/n(p) is a
reduced norm from D. Since Ny/p(A) = ANV ANFT s g norm from D.  Since
[N : F] is coprime to ¢, A is a reduced norm from D. O

Corollary 11.2. Let K be a local field with residue field x and F' the function field
of a curve over K. Let ) be the set of divisorial discrete valuations of F'. Let D be
a central simple algebra over F of index coprime to char(k) and X\ € F. If X is a
reduced norm from D ® F,, for all v € Q, then X is a reduced norm from D.

Proof. Since A is a reduced norm from F, for all v € Qp, a - (\) =0 in H3(F,, u®?)
for all v € Q. Thus, by ([16, Proposition 5.2]), a - (A\) = 0 in H?*(F, u$?) and by
(11.1), X is a reduced norm from D. O
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