
ON GENERIC QUADRATIC FORMS

NIKITA A. KARPENKO

Abstract. Based on Totaro’s computation of the Chow ring of classifying spaces for
orthogonal groups, we compute the Chow rings of all orthogonal Grassmannians associ-
ated with a generic quadratic form of any dimension. This closes the gap between the
known particular cases of the quadric and the highest orthogonal Grassmannian. We
also relate two different notions of generic quadratic forms.
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1. Introduction

Let k be a field of characteristic different from 2 and let F = k(t1, . . . , tn) be the field
of rational functions over k in variables t1, . . . , tn for some n ≥ 2. We call generic the
diagonal quadratic form q := 〈t1, . . . , tn〉 over F .

The Chow ring of the projective quadric given by q has been computed in [7, Corollary
2.2]. The Chow ring of the highest orthogonal Grassmannian of a generic quadratic form
has been computed in [13], but this was done for a different notion of generic, which
we call here standard generic. In the present paper we determine the Chow ring of all
orthogonal Grassmannians associated with the generic and the standard generic quadratic
forms. (The characteristic assumption is removed in the latter case.) We use computation
of the Chow ring of classifying spaces for orthogonal groups O(n) performed in [12] as
well as in [15] over the field of complex numbers and later in [11] over an arbitrary field
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of characteristic not 2. We actually need only a piece of this computation which is made
in [15] over arbitrary field (of arbitrary characteristic), see Section 5.
Note that the algebraic group O(n) over a field k is not connected if n is even or

char k 6= 2. In the remaining case (when n is odd and char k = 2) the algebraic group
O(n) is not smooth. In contrast, the special orthogonal group O+(n) is always smooth
and connected. But since O(n)-torsors correspond to all non-degenerate n-dimensional
quadratic forms while O+(n)-torsors correspond to quadratic forms of trivial discriminant,
it is more appropriate to work with O(n) for the question raised in this paper. On the
other hand, since orthogonal Grassmannians depend only on the similarity class of the
quadratic form in question and any odd-dimensional quadratic form is similar to that of
trivial discriminant, O(n) can be replaced by O+(n) for odd n.

2. Tautological Chern subring

In this section we consider an arbitrary non-degenerate quadratic form q : V → F
of an arbitrary dimension n ≥ 2 over an arbitrary field F . (Characteristic 2 is not ex-
cluded; non-degenerate quadratic forms are defined as in [4, §7.A].) In particular, V is
an n-dimensional F -vector space. We fix an integer 1 ≤ m ≤ n/2 and write X for the
orthogonal Grassmannian of isotropic m-planes (i.e., totally isotropic m-dimensional sub-
spaces) in V . Note that the variety X is smooth projective; it is geometrically connected
if and only if m 6= n/2.
Let T = TX be the tautological (rank-m) vector bundle on X : the fiber of T over

a point of X , given by an isotropic m-plane, is this very m-plane itself. We define the
tautological Chern subring CTX in the Chow ring CHX as the subring generated by the
Chern classes c1(T ), . . . , cm(T ) . The goal of this section is to determine the ring CTX
by providing a list of defining relations on its generators.
The variety X is a closed subvariety of the usual Grassmannian Γ of all m-planes in V .

The Chow ring CHΓ is known to be generated by the Chern classes of the tautological
(rank-m) vector bundle on Γ. Therefore the pull-back CHΓ → CHX with respect to the
closed imbedding X →֒ Γ provides an epimorphism CHΓ →→ CTX . Since a description
of the ring CHΓ by generators and relations is available (see [2, Lemma 1.2] or [5, Example
14.6.6]), we fulfill our goal if we describe the kernel of the epimorphism CHΓ →→ CTX
in terms of generators of CHΓ. For this, it is more convenient to use the generators
c1, . . . , cn−m ∈ CHΓ given by the Chern classes of −[T ] rather than of T = TΓ itself. By
[T ] here we mean the class of T in the Grothendieck ring K(Γ). The Chern classes of
−[T ] are the Segre classes of T , i.e. the components of the multiplicative inverse to the
total Chern class c(T ). The tautological vector bundle T is a subbundle of the trivial
(rank-n) vector bundle V and c1, . . . , cn−m are the Chern classes of the quotient V/T .
We define ci ∈ CHi(Γ) for every integer i by setting ci := ci(−[T ]) = ci(V/T ). Therefore
c0 = 1 and ci = 0 for i < 0 as well as for i > n−m.

Theorem 2.1. The kernel of the epimorphism CHΓ →→ CTX is generated by the ele-
ments

(2.2) c2i − 2ci−1ci+1 + 2ci−2ci+2 − · · ·+ (−1)i2c0c2i with i > n/2−m
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and cn−m. The abelian group CTX is free with a basis consisting of the images of the
products cα1

1 . . . c
αn−m−1

n−m−1 with α1 + · · ·+ αn−m−1 ≤ m and αi ≤ 1 for i > n/2−m.

Proof. Let us first check that the elements (2.2) lie in the kernel. The ith element is
mapped to the Chern class c2i(−[T ]− [T ∨]) ∈ CTX , where T = TX and T ∨ is the dual
vector bundle. The isomorphism V/T ⊥ = T ∨, where T ⊥ is the vector bundle given by
the orthogonal complement, shows that −[T ]− [T ∨] = −[T ] + [T ⊥] = [T ⊥/T ]. Since the
rank of the quotient T ⊥/T is n − 2m (cf. [4, Proposition 1.5]), its Chern classes vanish
in degrees > n− 2m.

In order to show that cn−m is in the kernel, we proceed similarly to [18, Proof of
Proposition 2.1]. One notice that the projective bundle P(T ) over X can be identified
with the variety of flags of totally isotropic subspaces in V of dimensions 1 and m. In
particular, besides of the projection π : P(T ) → X , we have a projection π1 : P(T ) → X1

to the projective quadric X1 (the orthogonal Grassmannian of 1-planes). Moreover, the
tautological line bundle on the projective bundle P(T ) is the pull-back π∗

1(T1) of the
tautological line bundle T1 on X1. It follows by [4, §58] or [5, Chapter 3] that ci(−[T ]) =
π∗(π1)

∗ci+m−1(−[T1]) for any i. Since dimX1 = n−2, the Chern class cn−1(−[T1]) vanishes
implying the vanishing of cn−m(−[T ]).

In order to show that the kernel is generated by the elements (2.2) and cn−m, we
construct additive generators of the quotient C of the ring CHΓ by the ideal generated
by the elements (2.2) and cn−m. We recall that the group CHΓ is free, a basis is given
by the products cα1

1 . . . c
αn−m

n−m with α1 + · · · + αn−m ≤ m. Using the additional relations
in C, we can eliminate squares of ci for i > n/2 − m. Indeed, in the quotient of C by
the subgroup generated by the products satisfying the additional condition, any element
is divisible by an arbitrary 2-power and therefore is 0 since C is finitely generated.

It follows that the group C is generated by the products cα1

1 . . . c
αn−m−1

n−m−1 satisfying the
additional condition αi ≤ 1 for i > n/2 −m. It turns out that these are free generators.
Moreover, they remain free when we map them to CTX and this finishes the proof of the
theorem.

Our products are free in CTX because their images in the Q-vector space Q ⊗ CH X̄
are free, where X̄ is X over an algebraic closure of F . For odd n this follows from [2,
Theorem 2.2(b) and formula (15)] (see Remark 2.3). For even n this follows from [2,
Theorem 3.2(b) and formula (40)]. �

Remark 2.3. The paper [2], applied in the above proof, actually deals with the singular
cohomology ring instead of the Chow ring. The link is explained by the following two
well-known facts: the variety X̄ is cellular and the ring CH X̄ does not depend on the
base field. If the base field is C, then the cycle map from CH X̄ to the corresponding
singular cohomology ring is an isomorphism, [5, Example 19.1.11(b)].

Remark 2.4. In the case of the highest orthogonal Grassmannian, the ring CH X̄ has
been described in [17] (see also [4, Proposition 86.16 and Theorem 86.12]).

Remark 2.5. Theorem 2.1 shows that the ring CTX only depends on the integers n and
m.
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Remark 2.6. For odd n, the ring CTX can be identified with the full Chow ring CHY of
the variety of isotropicm-planes in an n−1-dimensional vector space endowed with a non-
degenerate alternating bilinear form: there is an isomorphism CHY → CTX mapping
the Segre classes of the tautological vector bundle on Y to the Segre classes of TX . (See
[2, Theorem 1.2] for a description of the ring CHY by generators and relations.) This
funny observation in the case of the highest orthogonal Grassmannian turned out to be
very useful in [16]. We do not use it here.

Our next and ultimate goal is to show that CTX = CHX in the case of generic q.
First we need clearness in what is generic. We start with the notion of

3. The standard generic quadratic form

For a field k (of any characteristic) and an integer n ≥ 2, the standard generic n-
dimensional quadratic form is defined as follows.
We consider the orthogonal group O(n) over k and its tautological imbedding into the

general linear group GL(n). The generic fiber of the quotient map

GL(n) → GL(n)/O(n)

is an O(n)-torsor over the function field F := k(GL(n)/O(n)). It determines an n-
dimensional quadratic form over F (via the identification of [3, Chapitre III, §5, 2.1]; for
the case of smooth O(n) see also [10, (29.28)]) which we call the standard generic one.
In order to describe it explicitly, we use the well-known interpretation of the quotient

variety GL(n)/O(n) as the variety Q of non-degenerate quadratic forms on the vector
space V := kn. The variety of all quadratic forms on V is an affine space (of dimension
n(n+1)/2) and Q is its open subvariety. The group GL(n) acts on Q in the evident way,
O(n) is the stabilizer of a split quadratic form q0, and the quotient variety GL(n)/O(n)
is identified with Q this way.
For any field extension L/k, an L-point of Q is a non-degenerate quadratic form q on

the L-vector space VL; the fiber of the quotient map GL(n) → Q over this point is an
O(n)-torsor E over L, and q is the quadratic form corresponding to E. In particular,
the quadratic form given by the generic fiber of GL(n) → Q is defined over the field of
rational functions F = k(tij)1≤i≤j≤n (tij are indeterminates, F/k is purely transcendental
of the transcendence degree n(n+ 1)/2) by the formula

(x1, . . . , xn) 7→
∑

1≤i≤j≤n

tijxixj .

4. Chow rings of classifying spaces

Let F be a field (of arbitrary characteristic) and let G be an affine algebraic group over
F , not necessarily smooth. The Chow ring CHG of the classifying space of G, introduced
in [15], is the G-equivariant Chow ring CHG(SpecF ). This is a graded ring, the grading
is given by codimension of cycles.
The ring CHG if cofunctorial in G: a homomorphism G′ → G of affine algebraic groups

produces a homomorphism of graded rings CHG → CHG′ (see [11, §2]).

If G is a split torus, the homomorphism of graded rings S(Ĝ) → CHG is an isomorphism,

where Ĝ is the character lattice of G, S(Ĝ) is the symmetric Z-algebra, and a character
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χ ∈ Ĝ = S1(Ĝ), viewed as a G-equivariant line bundle over SpecF , is mapped to its first
equivariant Chern class in CH1

G.

Proposition 4.1. Let G′ be a closed normal subgroup of G such that the quotient T :=
G/G′ is a split torus. Then the restriction homomorphism CHG → CHG′ is surjective and
its kernel is generated by some elements in CH1

G. More precisely, the kernel is generated
by the image of the (additive) homomorphism

T̂ = S1(T̂ ) = CH1
T → CH1

G

induced by the quotient homomorphism G → T .

Proof. For any integer i, let us consider a generically free G-representation V possessing
an open G-equivariant subset U ⊂ V such that codimV (V \ U) ≥ i and there are a G-
torsor U → U/G and a G′-torsor U → U/G′. By definition of CHG (and similarly for
G′ in place of G), we have a ring homomorphism CHG → CH(U/G) which is bijective in
codimensions < i. Moreover, the diagram

CHG −−−→ CHG′y
y

CH(U/G) −−−→ CH(U/G′)

commutes, where the bottom map is the pull-back homomorphism with respect to the
T -torsor U/G′ → U/G. Therefore, in order to prove surjectivity of CHG → CHG′ is
suffices to prove surjectivity of CH(U/G) → CH(U/G′). Moreover, to get the description
of the kernel for CHG → CHG′ it suffices to prove the similar description for the kernel of
CH(U/G) → CH(U/G′), where the homomorphism T̂ → CH1(U/G) is the composition

T̂ → CH1
G → CH1(U/G).

Let us first consider the case of T = Gm. Let L be the line bundle ((U/G′) × A1)/T
over U/G. Then U/G′ is an open subvariety in L and its complement is the zero section.
By the homotopy invariance and the localization property of Chow groups ([4, Theorem
57.13 and Proposition 57.9]) we have an exact sequence

CH(U/G) → CH(U/G) → CH(U/G′) → 0,

where the first map is the multiplication by the first Chern class of L. This finishes the
proof for T = Gm.

In the general case, we induct on the rank of T . We decompose T as Gm × T1 and
define an intermediate subgroup G1 with G′ ⊂ G1 ⊂ G as the kernel of the composition
G → T → T1. The quotient G/G1 is then T1 and the quotient G1/G

′ is Gm. The
homomorphism CHG → CHG′ decomposes in the composition CHG → CHG1

→ CHG′ .
The surjectivity statement follows because both maps in the composition are surjective
by induction. It remains to determine the kernel.

Let x ∈ CHG be an element vanishing in CHG′, then the image of x in CHG1
is the

product yx1 for some x1 ∈ CHG1
, where y ∈ CH1

G1
is the image of a character of Gm.

Extending the character to T , we get an element y′ ∈ CHG lying in the image of T̂ → CH1
G

and mapped to y. Using the surjectivity of CHG → CHG1
, we find an element x′

1 ∈ CHG

mapped to x1. The difference x−y′x′
1 is then in the kernel of CHG → CHG1

and therefore,
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by induction, lies in the ideal generated by the image of T̂ . It follows that x itself lies in
the ideal. �

Corollary 4.2. In the situation of Proposition 4.1, if the ring CHG′ is generated by Chern
classes, then the ring CHG is also generated by Chern classes.

Proof. By [6, Lemma 5.4], for any i ≥ 0 and any x ∈ CHi
G there exists an element

x′ ∈ CHi
G, lying in the Chern subring, such that the difference x − x′ vanishes in CHG′.

By Proposition 4.1, x− x′ belongs to the ideal in CHG generated by CH1
G so that we can

proceed by induction on i. �

Example 4.3. Taking for G a split reductive algebraic group and for G′ ⊂ G the semisim-
ple group given by the commutator subgroup of G, we are in the situation of Proposition
4.1: G/G′ is a split torus. Therefore Proposition 4.1 describes the relation between the
Chow ring of the classifying space of a split reductive group G and that of its semisimple
part G′. In particular, by Corollary 4.2, if CHG′ is generated by Chern classes, then CHG

is also generated by Chern classes. This has been proved (by a different method) in [6,
Proposition 5.5] in the case of special (split reductive) G, where special means that every
G-torsor any field extension of the base field is trivial.

5. Chow rings of classifying spaces for orthogonal groups

The following proposition is a (slightly modified) particular case of [15, Proposition
14.2]. We provide a proof because it is shorter than that of the original statement.

Proposition 5.1. For any algebraic group G (over any field) and any imbedding of G
into a special algebraic group H, the homomorphism CHH → CHG is surjective provided
that the Chow groups of the quotient H/G over any field extension of the base field are
trivial in positive codimensions.

Proof. As usual, we replace the homomorphism in question by the pull-back homomor-
phism CH(U/H) → CH(U/G) with respect to the morphism U/G → U/H , where U is
an open subvariety in an H-representation, an H-torsor over U/H , and a G-torsor over
U/G. Since H is special, every H-torsor is Zariski-locally trivial, [1]. It follows that the
fiber of U/G → U/H over any point x ∈ U/H is isomorphic to the quotient variety H/G
with scalars extended to the residue field of x and therefore has trivial Chow groups in
positive codimensions. The statement follows from the spectral sequence of [14, Corollary
8.2] computing the K-cohomology groups of the total space of the fibration U/G → U/H
in terms of the K-cohomology groups of the base and of the fibers. �

We get the following statement for arbitrary base field of arbitrary characteristic:

Corollary 5.2. The homomorphism CHGL(n) → CHO(n), given by the tautological imbed-
ding O(n) →֒ GL(n), is surjective.

Proof. As explained in Section 3, the quotient variety GL(n)/O(n) is identified with the
variety Q of n-dimensional non-degenerate quadratic forms. Since Q is an open subvariety
in the affine space of all n-dimensional quadratic forms, we have CH>0(Q) = 0 by the
homotopy invariance and the localization property of Chow groups. �
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6. Main Theorem and its consequences

In this section, k is a field (of any characteristic), n is an integer ≥ 2, F is the function
field k(GL(n)/O(n)), E is the standard generic O(n)-torsor given by the generic fiber of
GL(n) → GL(n)/O(n), and q is the corresponding standard generic quadratic form.

For m with 1 ≤ m ≤ n/2, let X be the mth orthogonal Grassmannian of q. We would
like to determine the ring CHX . The main result is expressed in terms of the tautological
(rank-m) vector bundle on X . Its proof will be given in the next section.

Theorem 6.1. The ring CHX is generated by the Chern classes of the tautological vector
bundle.

Theorem 6.1 claims that CHX = CTX and the ring CTX has been computed in
Section 2.

Before proving Theorem 6.1, let us list some consequences. Let Y be any (partial) flag
variety of totally isotropic subspaces in q. Let us consider the standard graded epimor-
phism CH Y → GK(Y ) onto the graded ring associated with the topological filtration
(i.e., the filtration by codimension of support) on the Grothendieck ring K(Y ).

Corollary 6.2. The abelian group CHY is free and, in particular, torsion-free. The ring
epimorphism CHY → GK(Y ) is an isomorphism. The topological filtration on K(Y )
coincides with the gamma filtration.

Proof. The variety Y is the variety of flags of totally isotropic subspaces in q of some
dimensions m1 < · · · < md. Let X be the orthogonal Grassmannian of m-planes with
m = md. The projection Y → X is a partial flag variety of subspaces in the tautological
vector bundle on X . Therefore, it suffices to prove Corollary 6.2 for X instead of Y .

We have: CHX = CTX (Theorem 6.1) and CTX is torsion-free (Theorem 2.1).
The kernel of the epimorphism is contained in the torsion subgroup. Since CHX is

torsion-free, the epimorphism is an isomorphism.
Since the Chow ring CHX is generated by Chern classes, the topological filtration on

K(X) coincides with the gamma filtration. �

7. Proof of Main Theorem

We continue to work over a field k of arbitrary characteristic. We realize the orthogonal
group O(n) as the automorphism group of the following split quadratic form q0 on the
k-vector space V := kn:

kn ∋ (x1, . . . , xn/2, yn/2, . . . , y1) 7→ x1y1 + x2y2 + · · ·+ xn/2yn/2

if n is even and

kn ∋ (x1, . . . , x(n−1)/2, z, y(n−1)/2, . . . , y1) 7→ x1y1 + x2y2 + · · ·+ x(n−1)/2y(n−1)/2 + z2

if n is odd.
Instead of the mth orthogonal Grassmannian X (for some m with 1 ≤ m ≤ n/2), we

consider the variety Y of flags of totally isotropic subspaces in q0 of dimensions 1, . . . , m.
The group O(n) acts on Y and the variety Y is the quotient O(n)/P , where P is the
stabilizer of the rational point of Y given by the standard flag V1 ⊂ · · · ⊂ Vm with Vi

being the span of the first i vectors in the standard basis of V .
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Note that any orthogonal transformation stabilizing this flag also stabilizes the orthog-
onal complements

V ⊥
m = Vn−m ⊂ · · · ⊂ V ⊥

1 = Vn−1.

Let F be the variety of flags of all subspaces in V of dimensions 1, . . . , m, n−m, . . . , n−1.
The group GL(n) acts on F and F = GL(n)/S, where S is the stabilizer of the standard
flag V1 ⊂ · · · ⊂ Vm ⊂ Vn−m ⊂ · · · ⊂ Vn−1.
Let E be the standard generic O(n)-torsor given by the generic fiber of GL(n) →

GL(n)/O(n). Let E be the corresponding GL(n)-torsor obtained vie the imbedding
O(n) →֒ GL(n). We have a commutative square

CHS −−−→ CH(E/S)y
y

CHP −−−→ CH(E/P )

with surjective horizontal mappings (cf. [8, Lemma 2.1]). The subgroup S ′ := Gm
m ×

GL(n − 2m) × Gm
m ⊂ S is a Levi subgroup of S, its intersection with P ⊂ S is P ′ :=

Gm
m × O(n− 2m). The imbedding P ′ →֒ S ′ is the product of the map Gm

m →֒ Gm
m × Gm

m ,
x 7→ (x, x−1) and the tautological imbedding O(n− 2m) →֒ GL(n− 2m).
We claim that the homomorphism CHS → CHP is surjective. Having the claim, we

conclude that the pull-back homomorphism CH(E/S) → CH(E/P ) = CH Y from the
above commutative square is surjective too. Since the group GL(n) is special, the GL(n)-
torsor E is trivial implying that E/S = F . We get a surjection CHF →→ CHY implying
that the ring CH Y is generated by the Chern classes of the m tautological vector bundles
on Y (given by the components of the flags). It follows (see [9, Lemma 4.3]) that CHX =
CTX .
We finish by proving the claim. In the commutative square

CHS −−−→ CHGL(n−2m)y
y

CHP −−−→ CHO(n−2m)

the horizontal maps are epimorphisms by Proposition 4.1. The map on the right is an
epimorphism by Corollary 5.2. We can now prove the surjectivity of the map on the left
in every codimension i ≥ 0 using induction on i.
For i = 0 there is nothing to prove. For i = 1, we have a commutative diagram

̂Gm
m ×Gm

m −−−→ CH1
S

onto
−−−→ CH1

GL(n−2m)yonto

y
yonto

Ĝm
m −−−→ CH1

P
onto

−−−→ CH1
O(n−2m)

with a surjection on the left. Since the lower row is exact (by Proposition 4.1),1 the
statement for i = 1 follows.

1The upper row is also exact but we don’t care.
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For i ≥ 2, it suffices to show that any element x ∈ CHi
P , vanishing in the group

CHO(n−2m), is in the image of CHS. Since x = y1x1 + · · · + yrxr for some r ≥ 0, some

y1, . . . , yr ∈ CH1
P , and some x1, . . . , xr ∈ CHi−1

P by Proposition 4.1, we are done.

8. The generic quadratic form in characteristic 6= 2

For a field k of characteristic not 2 and an integer n ≥ 2, we already defined in the
introduction the generic n-dimensional quadratic form as the form qg := 〈t1, . . . , tn〉 over
the field of rational functions Fg := k(t1, . . . , tn). Now we are going to compare qg with the
standard generic quadratic form q (of Section 3) defined over the field F := k(tij)1≤i≤j≤n.

Proposition 8.1. The field Fg can be k-identified with a subfield in F the way that the
field extension F/Fg is purely transcendental and the generic quadratic form qg with the
scalars extended to the field F becomes isomorphic to the standard generic form q.

Corollary 8.2. Theorem 6.1 as well as Corollary 6.2 hold for the generic quadratic form
in place of the standard generic one.

Proof. In case of a purely transcendental field extension, the change of field homomor-
phism for Chow rings is an isomorphism. �

Proof of Proposition 8.1. Let us apply the standard orthogonalization procedure to the
standard basis e1, . . . , en of F n, where the orthogonality refers to the symmetric bilinear
form associated with q. This means that we construct an orthogonal basis e′1, . . . , e

′
n by

taking for e′i the sum of ei and a linear combination of e1, . . . , ei−1, where the coefficients of
the linear combination are determined by the condition that e′i is orthogonal to e1, . . . , ei−1.
The procedure works for q because its restriction to the span of e1, . . . , ei is non-degenerate
for every i.

Then ti := q(e′i) equals tii+ a rational function in t11, . . . , ti−1i−1 and trs with 1 ≤ r <
s ≤ n. It follows that the elements trs (1 ≤ r < s ≤ n) and t1, . . . , tn all together generate
the field F over k and therefore – since their number is the transcendence degree – are
algebraically independent over k. In particular, t1, . . . , tn are algebraically independent
so that the field Fg is identified with the subfield k(t1, . . . , tn) ⊂ F . This identification
has the required properties. �

9. The generic quadratic form in characteristic 2

In characteristic 2 (actually, in arbitrary characteristic), any non-degenerate quadratic
form, depending on the parity of n, is isomorphic to the form [a1, a2]⊥ . . . [an−1, an] or to
the form [a1, a2]⊥ . . . [an−2, an−1⊥〈an〉, where a1, . . . , an are constants from the base field
and an 6= 0 in the case of odd n. The notation [a1, a2] stands for the 2-dimensional form
(x1, x2) 7→ a1x

2
1 + x1x2 + a2x

2
2. So, the generic n-dimensional quadratic form qg will be

defined as the form [t1, t2]⊥ . . . [tn−1, tn] or [t1, t2]⊥ . . . [tn−2, tn−1]⊥〈tn〉 over the rational
functions field Fg := k(t1, . . . , tn).

Proposition 9.1. Proposition 8.1 and Corollary 8.2 hold in characteristic 2 as well.

Proof. We only need to identify the field Fg with a subfield in F = k(tij)1≤i≤j≤n the way
that the field extension F/Fg is purely transcendental and the generic quadratic form qg
with the scalars extended to the field F becomes isomorphic to the standard generic q.
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Starting with the standard basis e1, . . . , en of the vector space F n, we construct a new
basis e′1, . . . , e

′
n as follows. For every odd i, the vector e′i is ei+ a linear combination of

e1, . . . , ei−1 and if i < n then the vector e′i+1 is ei+1+ a linear combination of e1, . . . , ei−1,
where the coefficients of the linear combinations are determined by the condition that
the new vectors are orthogonal to each of e1, . . . , ei−2. Additionally, for every even i, we
divide the vector e′i by the non-zero scalar (e′i−1, e

′
i).

With respect to the new basis, the standard generic quadratic form q has the shape
[t1, t2]⊥ . . . [tn−1, tn] or [t1, t2]⊥ . . . [tn−2, tn−1]⊥〈tn〉, where ti := q(e′i). For odd i, ti equals
tii+ a rational function in t11, . . . , ti−1i−1 and trs with 1 ≤ r < s ≤ n. For even i, ti equals
tii/fi+ a rational function in t11, . . . , ti−2i−2 and trs with 1 ≤ r < s ≤ n, where fi is also
a rational function in t11, . . . , ti−1i−1 and trs with 1 ≤ r < s ≤ n.
It follows that the elements trs (1 ≤ r < s ≤ n) and t1, . . . , tn all together generate

the field F over k and therefore are algebraically independent over k. In particular,
t1, . . . , tn are algebraically independent so that the field Fg is identified with the subfield
k(t1, . . . , tn) ⊂ F . This identification has the required properties. �
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[1] Séminaire C. Chevalley; 2e année: 1958. Anneaux de Chow et applications. Secrétariat
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