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Abstract. For a field the condition is studied that any triple of (bilinear)
Pfister forms of a given dimension are linked. This is a strengthening of the
condition of linkage investigated by Elman and Lam, which asks the same
for pairs of Pfister forms. In characteristic different from two this condition
for triples of 2-fold Pfister forms is related to the Hasse number.
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1. Introduction

Milnor’s seminal article [9] on K-theory of fields had an enormous impact
on quadratic form theory. In a series of articles Elman and Lam explored the
correspondence between Pfister forms and symbols (canoncial generators) in
the K-theory modulo 2 of a field. The notion of linkage for Pfister forms was
introduced in [4]. With the definition from [4, Sect. 4] one can consider linkage
of a finite number of Pfister forms. However, the study of linkage has mostly
been limited to pairs of Pfister forms. Initially, this study was restricted to
fields of characteristic different from 2, where quadratic forms are characterised
by their associated (symmetric bilinear) polar forms.

When trying to extend notions and statements to cover the case of character-
istic 2, one has to choose between quadratic forms or symmetric bilinear forms.
In this article we work mainly in the setup of Milnor K-theory over a field of
arbitrary characteristic. We study linkage of symbols in the Milnor K-groups
modulo 2, or equivalently, of symmetric bilinear Pfister forms. In particular we
study the condition that a certain Milnor K-group modulo 2 has triple linkage,
i.e. that any three symbols have a common linkage. This condition turns out to
have stronger consequences than usual linkage, in particular on the vanishing
of higher K-groups. In the last section we focus on fields of characteristic dif-
ferent from 2 and relate the condition of triple linkage to quadratic forms and
the Hasse number ũ (the u-invariant if the field is nonreal).

For a recent study of triple linkage of quadratic Pfister forms covering fields
of characteristic 2 we refer the reader to [1].
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2. Symbols and Pfister forms

We refer to [3] for standard results used from quadratic form theory. Let
E be a field. By a form over E we mean a pair (V, b) of a finite-dimensional
E-vector space V and a non-degenerate symmetric bilinear form b on V . We
use an equality sign to indicate that two forms are isometric.

Let n always denote a nonnegative integer. Given a1, . . . , an ∈ E× we denote
the bilinear n-fold Pfister form 〈1,−a1〉⊗· · ·⊗〈1,−an〉 over E by 〈〈a1, . . . , an〉〉.
In the sequel we refer to bilinear Pfister forms simply as Pfister forms. Given
a Pfister form π, the orthogonal complement of the subform 〈1〉 in π is called
the pure part of π.

Theorem 2.1 (Elman-Lam). Let r ∈ N. Let ρ be an anisotropic r-fold Pfister
form over E and let ρ′ denote its pure part. Let π be a Pfister form over E
such that π ⊗ ρ is anisotropic and let c1 ∈ E× be such that −c1 is represented
by π ⊗ ρ′. Then there exist c2, . . . , cr ∈ E× such that π ⊗ ρ ≃ π ⊗ 〈〈c1, . . . , cr〉〉.

Proof: See [3, Proposition 6.15] or [4, Theorem 2.6]. �

We denote by knE the nth Milnor K-group of E modulo 2; this is the
abelian group generated by symbols {a1, . . . , an} with a1, . . . , an ∈ E× which
are subject to the defining relations that the map (E×)n −→ knE given by
(a1, . . . , an) 7→ {a1, . . . , an} is multilinear and further that {a1, . . . , an} = 0
whenever ai ∈ E×2 for some i 6 n or ai + ai+1 = 1 for some i < n. The direct
sum

⊕
n∈N knE is a graded ring with the multiplication induced by concatena-

tion of symbols.
We recall some results from [3] on the relation of symbols and Pfister forms,

which for fields of characteristic different from 2 go back to [4]. We begin with
the one-to-one correspondence between symbols and Pfister forms.

Theorem 2.2 (Elman-Lam). For a1 . . . , an, b1, . . . , bn ∈ E×, we have

{a1, . . . , an} = {b1, . . . , bn} if and only if 〈〈a1, . . . , an〉〉 = 〈〈b1, . . . , bn〉〉 .

Proof: See [3, Theorem 6.20]. �

We denote by ΣE2 the subgroup of E× consisting of the non-zero sums of
squares in E. Recall that the field E is real if −1 /∈ ΣE2, nonreal otherwise.
For m ∈ N we denote by DE(m) the subset of ΣE2 consisting of the elements
that are sums of m squares in E.

Corollary 2.3. For a ∈ E× and the symbol τ = {−1, . . . ,−1} in knE the
following hold:

(a) a ∈ DE(2
n) if and only if τ · {a} = 0 in kn+1E.

(b) a ∈ DE(2
n−1) if and only if τ = {a, a2, . . . , an} for certain a2, . . . , an ∈ E×.

Proof: This follows from Theorem 2.1 and Theorem 2.2. �

Lemma 2.4. Let τ and τ ′ be symbols in knE and let a, a′ ∈ E× be such that
τ · {a} = τ ′ · {a′}. Then τ · {a} = τ · {c} = τ ′ · {c} = τ ′ · {a′} for some c ∈ E×.

Proof: This follows from [3, Corollary 6.16 and Theorem 6.20]. �
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3. Linkage

Assume in the sequel that n > 2. Given two symbols σ1, σ2 ∈ knE, the sum
σ1+σ2 ∈ knE is equal to a symbol if and only if there exists a symbol σ′ ∈ kn−1E
and b1, b2 ∈ E× such that σi = σ′ · {bi} for i = 1, 2 (see [4, Lemma 5.4]); in this
case we say that σ1 and σ2 are linked.

We say that knE is linked if any two symbols in knE are linked (which in
the terminology of [6] corresponds to saying that I

nE is linked.) Obviously, if
knE is linked, then so is kmE for any integer m > n.

The following statement was obtained in [6, Corollary 2.8 and Corollary 2.9].
For convenience of the reader we include a compact proof, whose first lines follow
[5, Sect. 3, Example 3]. The statement should be compared with Theorem 5.1.

Theorem 3.1 (Elman-Lam). Assume that knE is linked. Then we have that
ΣE2 = DE(2

n+1) and kn+2E = {−1, . . . ,−1} · k1E. In particular, if E is
nonreal then kn+2E = 0.

Proof: Consider an arbitrary symbol τ ∈ kn−2E and a1, a2, b1, b2 ∈ E×. Since
knE is linked and by Lemma 2.4, there exist c1, c2 ∈ E× and a symbol σ ∈
kn−1E such that τ · {ai, bi} = τ · {ai, ci} = σ · {ci} for i = 1, 2. It follows that
τ · {a1, c1, c2} = σ · {c1, c2} = τ · {a2, c1, c2}, whereby

τ · {a1, b1, a2, b2} = τ · {a1, c1, a2, c2} = τ · {a2, c1, a2, c2} = {−1, c1} · τ · {a2, b2} .

This argument shows that for any a1, . . . , an+2 ∈ E× there exists c ∈ E× such
that

{a1, . . . , an+2} = {a2, . . . , an+1,−1, c} .

Applying this rule n + 1 times, we conclude that every symbol in kn+2E is of
the form {−1, . . . ,−1, c} with c ∈ E×. Hence kn+2E = {−1, . . . ,−1} · k1E.

Moreover, if a1, . . . , an+2 ∈ E× are such that a2 ∈ DE(2), then {−1, a2} = 0
and we obtain from the above rule that {a1, . . . , an+2} = 0. Hence we have
{a} · kn+1E = 0 for any a ∈ DE(2).

Consider an element c ∈ DE(2
n+1 + 1). We write c = a+ b with a ∈ DE(2)

and b ∈ DE(2
n+1 − 1). In kn+1E we obtain that {−1, . . . ,−1} = {−b} · τ for a

symbol τ in knE, by Corollary 2.3. Since c − b = a we have {−b, c} = {a, bc}.
As {a} · kn+1E = 0 we obtain in kn+2E that

{−1, . . . ,−1, c} = {−b, c} · τ = {a, bc} · τ = 0 ,

which shows that c ∈ DE(2
n+1). This argument shows that ΣE2 = DE(2

n+1).
Assume finally that E is nonreal. If −1 ∈ E×2 then {−1} = {1} = 0 in k1E.

If char(E) 6= 2 then E× = ΣE2 = DE(2
n+1). Hence in any case we obtain that

kn+2E = {−1, . . . ,−1} · k1E = 0. �

If E is nonreal and knE is linked where n > 2, then kn+2E vanishes by
Theorem 3.1, but we may have that kn+1E 6= 0, as the following well-known
example shows.

Example 3.2. For E = C((t1)) . . . ((tn+1)), knE is linked and kn+1E ≃ Z/2Z.
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4. The linkage pairing

We are going to investigate an operation on linked symbols. Let n > 2. To
any pair of linked symbols in knE we associate a symbol in kn+1E.

Proposition 4.1. Let σ1, σ2 ∈ knE be two linked symbols. There is a unique
symbol ρ ∈ kn+1E such that, for any symbol τ ∈ kn−1E and any a1, a2 ∈ E×

with σi = τ · {ai} for i = 1, 2, we have ρ = τ · {a1, a2}.

Proof: By the hypothesis there exist a symbol τ ∈ kn−1E and two elements
a1, a2 ∈ E× with σi = τ · {ai} for i = 1, 2. Suppose we have another symbol
τ ′ ∈ kn−1E and a′1, a

′
2 ∈ E× with σi = τ ′ · {a′

i
} for i = 1, 2. By Lemma 2.4

there exist c1, c2 ∈ E× such that τ · {ci} = σi = τ ′ · {ci} holds for i = 1, 2. We
obtain that τ · {a1, a2} = τ · {c1, c2} = τ ′ · {c1, c2} = τ ′ · {a′1, a

′
2}. �

Corollary 4.2. Let a, b, c ∈ E× and let τ be a symbol in kn−1E such that
τ · {−1, a} = 0. Assume that there exist a symbol ρ in knE and x, y, z ∈ E×

such that τ · {a, b} = ρ · {x}, τ · {a, c} = ρ · {y} and τ · {b, c} = ρ · {z}. Then
τ · {a, b, c} = 0.

Proof: By Proposition 4.1 we obtain that ρ · {x, z} = τ · {a, b, c} = ρ · {y, z},
whereby ρ · {xy, z} = 0. We have τ · {b,−bc} = τ · {b, c} = ρ · {z}. Since
τ · {−1, a} = 0 we further have τ · {a,−bc} = τ · {a, bc} = ρ · {xy}. We conclude
with Proposition 4.1 that τ · {a, b, c} = τ · {a, b,−bc} = ρ · {xy, z} = 0. �

Corollary 4.3. Assume that knE is linked. We obtain a surjective pairing

〈·, ·〉 : knE × knE −→ kn+1E

by letting 〈τ · {a1}, τ · {a2}〉 = τ · {a1, a2} for any symbol τ ∈ kn−1E and any
a1, a2 ∈ E×.

Proof: Let σ1, σ2 ∈ knE be given. As knE is linked, there exist a1, a2 ∈ E×

and a symbol τ ∈ kn−1E such that σi = τ · {ai} for i = 1, 2. By Proposition 4.1
the symbol ρ = τ · {a1, a2} ∈ kn+1E only depends on σ1 and σ2 but not on
the choice of τ and a1, a2 ∈ E×. Hence, the pairing is well-defined. As knE is
linked, so is kn+1E, and it follows that the pairing is surjective. �

If knE is linked then we call the pairing in Corollary 4.3 the linkage pairing
on knE.

Theorem 4.4. Assume that knE is linked. Then the following are equivalent:

(i) The linkage pairing on knE is bilinear.
(ii) ΣE2 = DE(2

n) and kn+1E = {−1, . . . ,−1} · k1E.
(iii) Either kn+1E = 0, or E is real and the rule c 7→ {−1, . . . ,−1, c} deter-

mines an isomorphism E×/ΣE2 −→ kn+1E.

Proof: As a consequence of the definition of the linkage pairing

〈·, ·〉 : knE × knE −→ kn+1E

we have for any ρ, ρ′ ∈ knE that 〈ρ, ρ′〉 = ρ · {d} for some d ∈ E×.
(i ⇒ ii) Consider an arbitrary symbol τ ∈ kn−2E and a, b, c ∈ E×. Set

σ1 = {a, b}, σ2 = {a, c}, σ3 = {b, c} and σ4 = {−ab, c}. We obtain that
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〈τ · σi, τ · σ1〉 = τ · {a, b, c} for i = 2, 3, 4. Assuming that the pairing is bilinear,
we get that

〈τ · (σ2 + σ3 + σ4), τ · σ1〉 = τ · {a, b, c} .

Since σ2 + σ3 + σ4 = {−1, c}, we conclude that

τ · {a, b, c} = 〈τ · {−1, c}, τ · {a, b}〉 = τ · {−1, c, d}

for some d ∈ E×. This argument shows that, for any c1, . . . , cn, cn+1 ∈ E×,
there exists d ∈ E× such that {c1, . . . , cn, cn+1} = {−1, c1, . . . , cn−1, d} in
kn+1E. Using this rule n times we obtain for any c1, . . . , cn, cn+1 ∈ E× that

{c1, . . . , cn+1} = {−1, . . . ,−1, c1, d} = {−1, . . . ,−1, d′}

for some d, d′ ∈ E×. This shows that kn+1E = {−1, . . . ,−1} · k1E and that
{a} · knE = 0 for any a ∈ DE(2

n−1).
Consider now an element c ∈ DE(2

n + 1). We choose a, b ∈ DE(2
n−1) such

that c− a− b is a square in E. Then we have {−a,−b, c} = 0 in k3E, whereby
{a,−b, c} = {−1,−b, c}. For the symbol ǫ = {−1, . . . ,−1} in kn−2E we obtain
that ǫ · {−1, b} = 0 and conclude that

ǫ · {−1,−1, c} = ǫ · {−1,−b, c} = ǫ · {a,−b, c} = 0 ,

for a ∈ DE(2
n−1). Hence {−1, . . . ,−1, c} = 0 in kn+1E, whereby c ∈ DE(2

n).
This shows that ΣE2 = DE(2

n).
(ii ⇒ iii) This implication is obvious.
(iii ⇒ i) Let ε = {−1, . . . ,−1} in kn−1E. For any symbol τ ∈ kn−1E and

any a, b ∈ E× we have τ · {a} · τ · {b} = ε · τ · {a, b} = ε · 〈τ · {a}, τ · {b}〉. Since
knE is linked, this means that

ρ · ρ′ = ε · 〈ρ, ρ′〉 in k2nE for any ρ, ρ′ ∈ knE .

Hence, the pairing knE × knE −→ k2nE, (ρ, ρ′) 7→ ε · 〈ρ, ρ′〉 is bilinear. On the
other hand, (iii) implies that kn+1E −→ k2nE, ξ 7→ ε · ξ is an isomorphism.
Therefore the pairing 〈·, ·〉 is bilinear. �

5. Triple linkage

Let n > 2. We say that knE has triple linkage if for any three symbols
σ1, σ2, σ3 ∈ knE there exist a symbol τ ∈ kn−1E and a1, a2, a3 ∈ E× such that
σi = τ · {ai} for i = 1, 2, 3. Note that this implies that knE is linked.

Theorem 5.1. Assume that knE has triple linkage. Then ΣE2 = DE(2
n) and

kn+1E = {−1, . . . ,−1} · k1E. In particular, if E is nonreal then kn+1E = 0.

Proof: Let 〈·, ·〉 : knE× knE −→ kn+1E be the linkage pairing. Consider three
symbols σ1, σ2, σ3 ∈ knE. By the hypothesis there exist a symbol τ ∈ kn−1E
and a1, a2, a3 ∈ E× such that σi = τ ·{ai} for i = 1, 2, 3. As σ1+σ2 = τ ·{a1a2}
we obtain that

〈σ1 + σ2, σ3〉 = τ · {a1a2, a3} = τ · {a1, a3}+ τ · {a2, a3} = 〈σ1, σ3〉+ 〈σ2, σ3〉 .

Hence the linkage pairing is bilinear and Theorem 4.4 yields the statement. �

Question 5.2. If knE has triple linkage, does then any finite number of symbols
in knE have a common linkage (by a symbol in kn−1E)?
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Triple linkage holds for knE if E is a Cn-field, in the terms of Tsen-Lang
Theory (see [11, Chap. 5]). This is a direct consequence of the next statement.
For n = 1 and |S| = 3 the statement corresponds to [13, Proposition 9].

Proposition 5.3. Assume that there exists a finite system S of nonzero symbols
in knE that do not have a common linkage. Then there exists an anisotropic
system of |S| − 1 quadratic forms in |S| · 3 · 2n−2 variables over E.

Proof: Let m ∈ N be as large as possible such that there exist a1, . . . , am ∈ E×

for which the symbol {a1, . . . , am} factors every element of S. By the hypothesis
m 6 n − 2. We set π = 〈〈a1, . . . , am〉〉. Using Theorem 2.1 and the one-to-one
correspondence between Pfister forms and symbols, we choose for σ ∈ S an
(n − m)-fold Pfister form ρσ over E such that σ corresponds to the n-fold
Pfister form π⊗ ρσ over E and we denote by ρ′

σ
the pure part of ρσ. Note that

dim(π⊗ρ′
σ
) = 2n−2m for any σ ∈ S. By Theorem 2.1 and by the maximality of

m, there exists no element c ∈ E× such that −c is represented by all the forms
π ⊗ ρ′σ with σ ∈ S. We fix σ0 ∈ S and set S ′ = S r {σ0}. Considering each
of the forms π ⊗ ρ′σ for σ ∈ S with its own variables, we obtain an anisotropic
system of quadratic forms (π ⊗ ρ′σ0

− π ⊗ ρ′σ)σ∈S′ in |S| · (2n − 2m) variables
over E. If m < n− 2 we may substitute zero for some of these variables. So in
any case we obtain an anisotropic system of |S| − 1 quadratic forms over E in
exactly |S| · 3 · 2n−2 variables. �

Let ũ(E) denote the Hasse number of E, which is defined as the supremum in
N∪{∞} on the dimension of anisotropic totally indefinite quadratic forms over
E (cf. [11, Chap. 8, Sect. 3]). The study of this invariant was initiated in [7], the
notation was introduced in [2]. The definition of the Hasse number captures
one of several possibilities to study bounds on the dimension of anisotropic
quadratic forms in a meaningful way without restriction to nonreal fields. The
results below have their main interest in the case where E is nonreal, and in
this case ũ(E) is the usual u-invariant (cf. [11, Chap. 8] and [3, Chap. VI]).

Corollary 5.4. If ũ(E(t)) 6 2n+1 then knE has triple linkage.

Proof: Suppose first that E is real and ũ(E(t)) < ∞. It follows by [7, Theo-
rem I] that E is hereditarily euclidean. Hence knE ≃ Z/2Z, whereby knE has
triple linkage.

Assume now that E is nonreal and ũ(E(t)) 6 2n+1 < 9 · 2n−2. By the
Amer-Brumer Theorem [11, Chap. 9, Prop. 1.10], it follows that every pair of
quadratic forms in 9 · 2n−2 variables over E is isotropic. Hence knE has triple
linkage, by Proposition 5.3. �

The next example shows that the converse to the statement in Corollary 5.4
does not hold.

Example 5.5. Let E0 be a quadratically closed field of characteristic not 2
having a finite field extension of even degree. (One can for example take E0

as the quadratic closure of Q: any polynomial over Q having as Galois group
a dihedral group of order 2m for an odd positive integer m will have as split-
ting field over E0 an extension of order 2m. See also the discussion of finite
extensions of quadratically closed fields [8, Chapter VII, §7].) It follows from
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this choice of E0 that, ũ(E0) = 1 while ũ(F0) > 2 for some finite separable
extension F0/E0. Thus k1F0 6= 0. Consider the fields of iterated power series
in n variables

E = E0((u1)) . . . ((un)) and F = F0((u1)) · · · ((un)) .

We obtain that ũ(E) = 2n and kn+1F 6= 0. Since F/E is a finite separable
extension, F is the residue field of a discrete valuation on E(t). We conclude
that kn+2E(t) 6= 0. After translation to Pfister forms via [3, Theorem 6.20], the
Arason-Pfister Hauptsatz [3, Theorem 6.18] yields that ũ(E(t)) > 2n+2.

Note that {u1, . . . , un} is the only nonzero symbol in knE. In particular knE
has triple linkage. Finally, knF does not have triple linkage, for kn+1F 6= 0.

The following reformulates and enhances [7, Theorem G]. The notation I
nE

refers to the nth power of the fundamental ideal IE in the Witt ring (of sym-
metric bilinear forms) of E; recall that InE is additively generated by the classes
of the n-fold Pfister forms over E.

Theorem 5.6 (Elman-Lam-Prestel). Assume that char(E) 6= 2. The following
are equivalent:

(i) ũ(E) 6 4.
(ii) E is linked and I

3E is torsion-free.
(iii) E is linked and the linkage pairing k2E × k2E −→ k3E is bilinear.
(iv) ΣE2 = DE(4) and k3E = {−1,−1} · k1E.
(v) k2E is linked and either k3E = 0, or E is real and c 7→ {−1,−1, c} defines

an isomorphism E×/ΣE2 −→ k3E.

Proof: Conditions (iii) − (v) are equivalent by Theorem 4.4. The equivalence
of (i) and (ii) is shown in [7, Theorem G] and in [2, Theorem 4.7]. By [6,
Corollary 2.9] (ii) implies that I

3E = 4 · IE. Therefore the equivalence of (ii)
and (iv) follows using Theorem 2.2. �

Corollary 5.7. Assume that char(E) 6= 2 and that k2E has triple linkage. Then
ũ(E) 6 4.

Proof: This follows from Theorem 5.1 together with Theorem 5.6. �

In the case where E is nonreal, one can show the converse of Corollary 5.7
by using the following statement, which is a direct consequence of a deep result
of Peyre [10, Proposition 6.1] combined with an observation by Sivatski [13,
Corollary 11].

Proposition 5.8 (Peyre-Sivatski). Assume that char(E) 6= 2. Let H be a
subgroup of k2E with |H| 6 8. Assume that every element of H is a symbol
and that I3E = 0. Then there exists a ∈ E× such that for every σ ∈ H one has
σ = {a, bσ} for some bσ ∈ E×.

Proof: By the hypothesis every σ ∈ H corresponds to an E-quaternion alge-
bra. Let σ1, σ2, σ3 ∈ k2E be three symbols that generate H and let Q1, Q2, Q3

denote the corresponding quaternion algebras. Since I
3E = 0 we have that

H3(E,Z/Q(2)) = 0. It follows by [10, Proposition 6.1] that there exists a field
extension F/E with [F : E] = 2m for an odd integer m and such that (Qi)F is
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split for i = 1, 2, 3. Then, by [13, Corollary 11], Q1, Q2, Q3 have a common slot
a ∈ E×. It follows that any σ ∈ H is of the form σ = {a, bσ} with bσ ∈ E×. �

In [13] Sivatski seems to be unaware that he provides a proof of Proposi-
tion 5.8. In [13, Corollary 12] he comes to a closely related conclusion, but
at the end of his article he asks whether fields of cohomological 2-dimension 2
satisfy the conclusion stated in Proposition 5.8. This was pointed out to the
author of the present article by Adam Chapman and David Leep.

Corollary 5.9. Assume that E is nonreal with char(E) 6= 2. Then ũ(E) 6 4
if and only if k2E has triple linkage.

Proof: One implication is Corollary 5.7, the converse follows from Proposi-
tion 5.8. �

The hypothesis in Proposition 5.8 on E can be weakened. Instead of assuming
I
3E = 0, which requires E to be nonreal, it is sufficient to assume that I

3E is
torsion-free and that E has the so-called ED-property about field orderings
introduced in [12]. This can be proven by using algebras with involutions and
skew-hermitian forms over quaternion algebras. In this way Proposition 5.8
is recovered with a different proof, which in particular is independent of the
algebraic geometry behind Peyre’s result [10, Proposition 6.1].

Since ũ(E) < ∞ implies that E satisfies the ED -property, the generalisa-
tion carries over to Corollary 5.9 and makes the condition that E is nonreal
superfluous: If char(E) 6= 2, then ũ(E) 6 4 if and only if k2E has triple linkage.

The author is planning to give details on this argument in a future article.
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