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Abstract. A classical result of Hasse states that the norm principle holds
for finite cyclic extensions of global fields, in other words local norms are
global norms. We investigate the norm principle for finite dimensional
commutative étale algebras over global fields; since such an algebra is a
product of separable extensions, this is often called the multinorm principle.
Under the assumption that the étale algebra contains a cyclic factor, we give
a necessary and sufficient condition for the Hasse principle to hold, in terms
of an explicitly constructed element of a a finite abelian group. This can
be seen as an explicit description of the Brauer-Manin obstruction to the
Hasse principle.
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0. Introduction

Let k be a global field, and L be a finite dimensional commutative étale
algebra over k. We say that the Hasse norm principle holds for L if the local-
global principle holds for the equation

(0.1) NL/k(t) = c

for all c ∈ k×; this terminology is inspired by Hasse’s result that the norm
principle holds in the case of cyclic extensions ([Ha31], [Ha32] §I (3.11) and
§II (15)). Over the years, the norm principle for separable field extensions
attracted a lot of attention; it is known not to hold in general, and many
positive results are also available, see for instance [PlR94], pages 308-309 for a
survey; for more recent results, see [BN16], [FLN], and the references therein.

It is natural to ask for Hasse principles in the case when L is a finite
dimensional commutative étale algebra, and not just a field extension. Since L
is by definition a product of separable extensions, the equation (0.1) is often
called a multinorm equation.

This more general problem was also studied extensively, in particular by
Hürlimann ([Hu84]), Colliot-Thélène and Sansuc (unpublished), Platonov and
Rapinchuk (see [PlR94], sections 6.3 and 9.3), Prasad and Rapinchuk ([PR10],
Section 4), Pollio and Rapinchuk ([PoR13]), Demarche and Wei ([DW14]),
Pollio ([Po14]). Multinorm equations also arise when dealing with classical
groups of type An (see for instance [PR10] Prop. 4.2).
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In spite of many interesting results, some quite simple cases were still open.
We illustrate this, as well as our results, by the following example:

Example. Assume that L is a product of n non-isomorphic quadratic field
extensions of k. If n = 1 or n = 2, then the Hasse principle holds for L - this is
clear for n = 1, and easy for n = 2 (for instance, it is a consequence of [Hu84],
Proposition 3.3). It is also well-known that it does not hold in general when
n = 3 (see for instance [CT 14]). In the present paper, we show that the Hasse
principle holds if n ≥ 4.

To obtain this result and others, let us assume that one of the factors of L
is a cyclic field extension of k. Under this hypothesis, we construct a finite
abelian group X(L) having the property that

X(L) = 0 ⇐⇒ the Hasse principle holds for L

(cf. Section 5). Assume now that X(L) 6= 0, and that c ∈ k× is such that
(0.1) has a solution locally everywhere. Then we construct a homomorphism

αc : X(L) → Q/Z

such that

(0.1) has a solution over k ⇐⇒ αc = 0

(see Sections 6 and 7, in particular Theorem 7.1).

These results can be summarized as follows : let IL be the idèle group of L.
Then sending c ∈ k× to αc gives rise to an isomorphism

k× ∩NL/k(IL)/NL/k(L
×) → X(L)∗

(where X(L)∗ is the dual of X(L), cf. Corollary 7.16).

We also give a necessary and sufficient condition for the Hasse principle to
hold when one of the factors is metacyclic (see Proposition 7.17).

The results are easy to use. To illustrate this, we consider the case where
L is a product of cyclic extensions; assume that L =

∏
i∈J

Ki, where Ki/k is a

cyclic extension of degree di. Let P be the set of prime numbers dividing
∏
i∈J

di.

For all p ∈ P and all i ∈ J , let Ki(p) be the largest subfield of Ki such that
[Ki(p) : k] is a power of p, and set L(p) =

∏
i∈J

Ki(p). Then we have

X(L) = ⊕
p∈P

X(L(p)),

(see Proposition 8.6).

For any cyclic field extension K/k of prime power degree, we denote by
Kprim the unique subfield of K of degree p over k. Set

L(p)prim =
∏

i∈J

Ki(p)prim.

Then we have
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X(L) = 0 ⇐⇒ ⊕
p∈P(L)

X(L(p)prim) = 0,

(cf Theorem 8.1), and

X(L(p)prim) ≃ (Z/pZ)mp(L),

where P(L) is a set of prime numbers (subset of P), and mp(L) is a positive
integer; both are determined explicitly (see Theorem 8.2).

The paper is structured as follows. Sections 1-4 contain some preliminary
results, including a new proof of a proposition of Hürlimann, [Hu84] Prop.
3.3. The group X(L) is defined in Section 5, and the homomorphism αc in
Section 6. In both sections, we start with the case where the étale algebra L
has a cyclic factor of prime power degree, which is the essential case. We also
show how one can reduce the exponent of the prime number, using the exact
sequence of Proposition 5.9 - this is then used in inductive arguments. The
main result is proved in Section 7 (see Theorem 7.1). Section 8 contains the
application of the above results to the special case where all the factors of the
étale algebra are cyclic.

Note that the results of this paper are related to the Brauer-Manin obstruc-
tion. Indeed, for c = 1, the equation (0.1) yields the so-called norm-one torus
defined by L/k (see 1.2 for details); we denote this torus by TL/k. When k
is an algebraic number field, then one can deduce from [San81] that the only
obstruction to the Hasse principle is the Brauer-Manin obstruction, and is
an element of the group X

2(k, T̂L/k)
∗. We show that X(L) ≃ X

2(k, T̂L/k)
(see Proposition 5.10), hence our results provide an explicit description of the
Brauer-Manin obstruction.

1. Notation, definitions and basic facts

1.1. Weil restriction

If f : R → R′ is a homomorphism of commutative rings such that R′ is a
projective R-module of finite type, and if W is an affine R′-scheme, then we
denote by RR′/RW the Weil restriction (see for instance [O 84], Appendice 2).

1.2. Etale algebras, tori and characters

Let k be a field, let ks be a separable closure of k and set Γk = Gal(ks/k). We
use standard notation in Galois cohomology; in particular, if M is a discrete
Γk-module and i is an integer ≥ 0, we set H i(k,M) = H i(Γk,M).

If L is a commutative étale k-algebra of finite rank, we denote by NL/k the

norm map, and set TL/k = R
(1)
L/k(Gm); then TL/k is the k-torus determined by

the exact sequence

(1.1) 1 // TL/k
// RL/k(Gm)

NL/k−−−→ Gm
// 1 .
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For a k-torus T , we denote by T̂ = Hom(T,Gm) its character group. If
K/k is a finite separable extension, set ΓK = Gal(ks/K). If moreover M is a

discrete ΓK-module, set IK/k(M) = IndΓk
ΓK

(M).

The following lemmas will be used several times in the sequel

Lemma 1.1. Let F/k be a separable extension of finite degree, and let L be
the product of n copies of F . Then we have

(i) TL/k ≃ RF/k(Gm)
n−1 × TF/k.

(ii) H1(k, T̂L/k) ≃ H1(k, T̂F/k).

Proof. The isomorphism (RF/k(Gm))
n → (RF/k(Gm))

n sending (b1, ..., bn)
to (b1, ..., bn−1, b1...bn−1bn) induces an isomorphism TL/k ≃ RF/k(Gm)

n−1 ×
TF/k. This proves (i). By (i), we have T̂L/k ≃ IF/k(Z)n−1 ⊕ T̂F/k; since
H1(k, IF/k(Z)) = 0, this implies (ii).

Lemma 1.2. Let K/k be a cyclic extension of degree d. Then we have

H1(k, T̂K/k) ≃ Z/dZ.

Proof. Let σ be a generator of Gal(K/k). Consider the exact sequence

1 → Gm → RK/k(Gm) → TK/k → 1,

where the map from RK/k(Gm) to TK/k sends x to x/σ(x), and its dual sequence

0 → T̂K/k → IK/k(Z) → Z → 0.

This exact sequence induces

IK/k(Z)Γk
ǫ−→ Z // H1(k, T̂K/k) // H1(k, IK/k(Z)) = 0 .

We have IK/k(Z)Γk ≃ Z, and the map ǫ is multiplication by d; hence

H1(k, T̂K/k) ≃ Z/dZ.

1.3. The multinorm problem

Let L be an étale k-algebra, and let c ∈ k∗. Let Xc be the affine k-variety
determined by the equation NL/k(t) = c. Then Xc is a torsor over the torus
TL/k defined in 1.2, hence defines a class [Xc] ∈ H1(k, TL/k); the variety Xc

has a k-point if and only if [Xc] = 0. Hence we have

c ∈ NL/k(L
×) ⇐⇒ Xc(k) 6= ∅ ⇐⇒ [Xc] = 0.
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2. A construction

Let k be a field, and let L be a commutative étale k-algebra of finite rank;
assume that L is not a field. We keep the notation of the previous section.
The aim of this section is to introduce a k-torus that will play a basic role in
the study of the cohomology of the torus TL/k, and of the multinorm problem.

Let us write L = K × K ′, where K and K ′ are étale k-algebras, and set
E = K ⊗k K

′.

The norm maps NK/k : K → k and NK ′/k : K ′ → k induce NE/K ′ : E → K
and NE/K : E → K ′. Let f : RE/k(Gm) → RL/k(Gm) be defined by f(x) =
(NE/K(x)

−1, NE/K ′(x)). The image of f is TL/k, and we consider the torus
SK,K ′ defined by the exact sequence

1 // SK,K ′
// RE/k(Gm)

f−→ TL/k
// 1 .

Note that SK,K ′ also fits in the exact sequence

(2.1) 1 // SK,K ′
// RK ′/k(TE/K ′)

NE/K−−−→ TK/k
// 1 .

where TE/K ′ is defined by the exact sequence

1 → TE/K ′ → RE/K ′(Gm)
NE/K′−→ Gm → 1.

3. Tate-Shafarevich groups

We keep the notation of the previous sections, and assume that k is a global
field. Let Ωk be the set of all places of k; if v ∈ Ωk, we denote by kv the
completion of k at v.

For any k-torus T , set X
i(k, T ) = Ker(H i(k, T ) → ∏

v∈Ωk

H i(kv, T )). If M is

a Γk-module, set X
i(k,M) = Ker(H i(k,M) → ∏

v∈Ωk

H i(kv,M)). Recall that

by Poitou-Tate duality, we have X
2(k, T̂ ) ≃ X

1(k, T )∗.

3.1. Hasse principle for the multinorm problem

Let L be an étale k-algebra, and let c ∈ k×. If Xc(kv) 6= ∅ for all v ∈ Ωk,
then we have [Xc] ∈ X

1(k, TL/k). In particular, the Hasse principle holds for

all c ∈ k× if and only if X1(k, TL/k) = 0.

We have the following relationship between the Tate-Shafarewich groups of
the torus TL/k, and the torus SK,K ′ defined in §2 :

Lemma 3.1. We have X
1(k, TL/k) ≃ X

2(k, SK,K ′).
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Proof. By the definition of the torus SK,K ′, we have the exact sequence

1 // SK,K ′
// RE/k(Gm)

f−→ TL/k
// 1 ,

giving rise to the cohomology exact sequence

0 → H1(k, TL/k) → H2(k, SK,K ′) → H2(k,RE/k(Gm)).

By the Brauer-Hasse-Noether Theorem, we have X
2(k,RE/k(Gm)) = 0,

hence X
1(k, TL/k) ≃ X

2(k, SK,K ′), as claimed.

We now compute the group X
2(k, T̂K/k) for a cyclic extension K/k - note

that by Poitou-Tate duality, this is equivalent to Hasse’s cyclic norm principle,
which is the following proposition :

Proposition 3.2. Let K/k be a cyclic extension. Then X
1(k, TK/k) = 0.

Proof. We give a proof for the convenience of the reader. Let σ be a generator
of Gal(K/k). Consider the exact sequence

1 → Gm → RK/k(Gm) → TK/k → 1,

where the map from RK/k(Gm) to TK/k sends x to x/σ(x). This sequence gives
rise to an injection H1(k, TK/k) → H2(k,Gm). By the Brauer-Hasse-Noether

theorem, we have X
2(k,Gm) = 0, hence X

1(k, TK/k) = 0.

Corollary 3.3. Let K/k be a cyclic extension. Then X
2(k, T̂K/k) = 0.

This follows from the previous proposition, combined with Poitou-Tate
duality.

4. A result of Hürlimann

Using the above lemmas, we generalize a result of Hürlimann ([Hu84] Prop.
3.3).

Proposition 4.1. Let K/k be a cyclic extension of k, and let K ′/k be a
separable extension of finite degree. Let c ∈ k×. Then the local-global principle
holds for the multinorm equation NK/k(x)NK ′/k(y) = c.

Proof. Set L = K × K ′; the assertion is equivalent to the vanishing of
X

1(k, TL/k). By Lemma 3.1, we have X1(k, TL/k) ≃ X
2(k, SK,K ′). By Poitou-

Tate duality we have X
2(k, SK,K ′) ≃ X

1(k, ŜK,K ′)∗, hence it suffices to prove

that X
1(k, ŜK,K ′) = 0. Since K/k is a cyclic extension, the algebra E =

K ⊗k K
′ is isomorphic to a product of copies of F , where F/K ′ is some cyclic

field extension. Set d = [K : k] and f = [F : K ′].

Consider the dual sequence of (2.1) :

(4.1) 0 // T̂K/k
ι−→ IK ′/k(T̂E/K ′)

ρ−→ ŜK,K ′
// 0 ,
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and the sequence induced by (4.1)

(4.2) H1(k, T̂K/k)
ι1−→ H1(k, IK ′/k(T̂E/K ′))

ρ1−→ H1(k, ŜK,K ′)
δ−→ H2(k, T̂K/k).

We have H1(k, IK ′/k(T̂E/K ′)) ≃ H1(K ′, T̂E/K ′); lemmas 1.1 (ii) and 1.2 imply

that H1(K ′, T̂E/K ′) ≃ H1(K ′, T̂F/K ′) ≃ Z/fZ. The map ι1 is the natural
projection from Z/dZ → Z/fZ, therefore ι1 is surjective. This implies that

δ : H1(k, ŜK,K ′) → H2(k, T̂K/k) is injective; moreover, δ induces an injection

X
1(k, ŜK,K ′) → X

2(k, T̂K/k). Since K/k is a cyclic extension, we have

X
2(k, T̂K/k) = 0 by Lemma 3.3. The proposition then follows.

5. The group X(K,K ′)

We keep the notation of the previous sections : in particular, L = K ×K ′,
where K and K ′ are étale k-algebras, and E = K ⊗K ′. In addition, we now
assume that K/k is a cyclic extension. Under this hypothesis, we define a
finite abelian group X(K,K ′), and we show that X

1(k, TL/k) is isomorphic
to the dual of X(K,K ′).

Let K ′ =
∏

i∈I Ki, where the Ki/k are field extensions. Then we have
E =

∏
i∈I Ei, with Ei = K ⊗Ki.

5.1. The prime power degree case

Suppose that K is a cyclic extension of degree pe, where p is a prime number.
We start with some notation and definitions. For each i ∈ I, let Mi be a cyclic
extension of Ki such that Ei is isomorphic to a product of copies of Mi. Let
pei = [Mi : Ki]; without loss of generality, we assume that ei ≥ ei+1 for
1 ≤ i ≤ m− 1.

Let s and t be positive integers. For s ≥ t, let πs,t be the canonical projection
Z/psZ → Z/ptZ. For x ∈ Z/psZ and y ∈ Z/ptZ, we say that x dominates y
if s ≥ t and πs,t(x) = y; if this is the case, we write x � y. For x ∈ Z/psZ
and y ∈ Z/ptZ, let δ(x, y) be the greatest nonnegative integer d ≤ min{s, t}
such that πs,d(x) = πt,d(y). We have δ(x, y) = min{s, t} if and only if x � y
or y � x.

Let I = {1, ..., m}. For a = (a1, ..., am) ∈ ⊕
i∈I

Z/peiZ and n ∈ Z/pe1Z, let

In(a) be the set {i ∈ I| n � ai} and let I(a) = (I0(a), ..., Ipe1−1(a)).

Let E be the set of pe1-tuples (I0, ..., Ipe1−1), where I0, ..., Ipe1−1 are subsets
of I such that

⋃
0≤n≤pe1−1

In = I. Now we characterize the image of the map

I : ⊕
i∈I

Z/peiZ → E .

An element (I0, ..., Ipe1−1) ∈ E is said to be coherent if for all n1, n2 ∈ Z/pe1Z
we have:

(1) If i ∈ In1
∩ In2

, then πe1,ei(n1) = πe1,ei(n2).
(2) If i ∈ In1

and πe1,ei(n1) = πe1,ei(n2), then i ∈ In2
.
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Let E c be the subset of all coherent elements in E . For a ∈ ⊕
i∈I

Z/peiZ, it

is clear that I(a) is a coherent element. Conversely for a coherent element
(I0, ..., Ipe1−1) ∈ E c, we set ai = πe1,ei(n) for i ∈ In. Note that condition (1)
of the definition of a coherent element ensures that the ai’s are well-defined.
Hence a = (a1, ..., am) is a well-defined element in ⊕

i∈I
Z/peiZ; condition (2)

implies that I(a) = (I0, ..., Ipe1−1). This shows that I is a bijection between
⊕
i∈I

Z/peiZ and E c.

Given a positive integer 0 ≤ d ≤ e and i ∈ I, let Σd
i be the set of all

places v ∈ Ωk such that at each place w of Ki above v, the algebra K ⊗Kw
i is

isomorphic to a product of isomorphic field extensions of degree at most pd of
Kw

i . Let Σi = Σ0
i , in other words, Σi is the set of all places v ∈ Ωk where Ev

i

is isomorphic to a product of copies of Kv
i .

Let (I0, ..., Ipe1−1) ∈ E c. For n1 ∈ Z/pe1Z and i ∈ I, set δ(n1, i) =
δ(n1, πe1,ei(n2)), where n2 is an element in Z/pe1Z such that i ∈ In2

. Since
(I0, ..., Ipe1−1) is coherent, δ(n1, i) is independent of the choice of n2 and hence
is well-defined. Note that if we let a = (a1, ..., am) be the element in ⊕

i∈I
Z/peiZ

corresponding to (I0, ..., Ipe1−1), then δ(n1, i) = δ(n1, ai). For In $ I, define

(5.1) Ω(In) = ∩
i/∈In

Σ
δ(n,i)
i .

For In = I, we set Ω(In) = Ωk.

Set

G = Gk(K,K ′) = {(a1, ..., am) ∈ ⊕
i∈I

Z/peiZ|
⋃

n∈Z/pe1Z

Ω(In(a)) = Ωk}.

Lemma 5.1. The set G is a subgroup of ⊕
i∈I

Z/peiZ.

Proof. Let a = (a1, ..., am) and b = (b1, ..., bm) be elements of G. By the
definition of G, for each v ∈ Ωk, there exist some n, n′ ∈ Z/pe1Z such that
v ∈ Ω(In(a)) and v ∈ Ω(In′(b)). We claim that

v ∈ Ω(In+n′(a+ b)).

This is clear when In+n′(a+ b) = I. Suppose that In+n′(a+ b) 6= I. First note
that δ(n+n′, ai+bi) ≥ min{δ(n, ai), δ(n′, bi)} and that min{δ(n, ai), δ(n′, bi)} ≤
ei for all i ∈ I. Pick an arbitrary i /∈ In+n′(a + b). Without loss of general-
ity, we suppose that min{δ(n, ai), δ(n′, bi)} = δ(n, ai). If i /∈ In(a), we have

v ∈ Σ
δ(n,ai)
i ⊆ Σ

δ(n+n′,ai+bi)
i ; hence we have v ∈ Ω(In+n′(a+ b)).

If i ∈ In(a), then by definition δ(n, ai) = ei. We have δ(n, ai) ≤ δ(n′, bi)
by assumption, hence δ(n′, bi) ≥ ei. But δ(n′, bi) ≤ ei, therefore we have
δ(n′, bi) = ei, and hence i ∈ In′(b). This implies that i ∈ In+n′(a+ b), and this
is a contradiction. This completes the proof of the lemma.
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Let D be the subgroup of ⊕
i∈I

Z/peiZ generated by the diagonal element

(1, ..., 1), and note that D is contained in G. Set

Xk(K,K ′) = G/D.

Example 5.2. Assume that k = Q, and that L = Q(
√
a)×Q(

√
b)×Q(

√
ab),

where a, b are distinct square-free integers. Set K = Q(
√
a), K1 = Q(

√
b)

and K2 = Q
√
ab). Then with the above notation we have I = {1, 2}, and

E1 = E2 = Q(
√
a,
√
b), hence e = e1 = e2 = 1. This implies that either

X(K,K ′) = 0, or X(K,K ′) ≃ Z/2Z. Note that

there exists v ∈ Ωk such that Ev
1 is a field ⇐⇒ Σ1 ∪ Σ2 6= Ωk,

hence

X(K,K ′) = 0 ⇐⇒ there exists v ∈ Ωk such that Ev
1 is a field.

Set now a = 13, b = 17 : then there exists no v ∈ Ωk such that Ev
1 is a field,

therefore X(K,K ′) = Z/2Z. Note that it is well-known that the multinorm
principle fails in this case (see for instance [CT 14], Proposition 5.1).

Theorem 5.3. Suppose that K/k is a cyclic extension of degree pe, where p

is a prime number. Then X
1(k, ŜK,K ′) ≃ X(K,K ′).

Proof. Consider the dual sequence of (2.1),

(5.2) 0 // T̂K/k
ι−→ IK ′/k(T̂E/K ′)

ρ−→ ŜK,K ′
// 0 ,

and the exact sequence induced by (5.2),

(5.3) H1(k, T̂K/k)
ι1−→ H1(k, IK ′/k(T̂E/K ′))

ρ1−→ H1(k, ŜK,K ′) → H2(k, T̂K/k).

We have X
2(k, T̂K/k) = 0 by Corollary 3.3, therefore X

1(k, ŜK,K ′) is in the
image of ρ1.

Note that H1(k, IKi/k(T̂Ei/Ki
)) ≃ H1(Ki, T̂Ei/Ki

), and that by Lemma 1.1

(ii), we have H1(Ki, T̂Ei/Ki
) ≃ H1(Ki, T̂Mi/Ki

). Moreover, by Lemma 1.2, we

have H1(Ki, T̂Mi/Ki
) ≃ Z/peiZ.

In the following we identify H1(k, T̂K/k) to Z/peZ and H1(k, IKi/k(T̂Ei/Ki
))

to Z/peiZ for 1 ≤ i ≤ m. Under this identification, the map

ι1 : H1(k, T̂K/k) → H1(k, IK ′/k(T̂E/K ′)) = ⊕
i∈I

H1(k, IKi/k(T̂Ei/Ki
))

sends Z/peZ to ⊕
i∈I

Z/peiZ by the natural projections. Therefore we can rewrite

the exact sequence (5.3) as follows :

(5.4) Z/peZ ι1−→ ⊕
i∈I

Z/peiZ
ρ1−→ H1(k, ŜK,K ′) → H2(k, T̂K/k),

where ι1 is the natural projection from Z/peZ to Z/peiZ for each i. Note that
the image of ι1 is the subgroup D, and we have the exact sequence
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(5.5) 0 → (⊕
i∈I

Z/peiZ)/D
ρ1−→ H1(k, ŜK,K ′) → H2(k, T̂K/k).

Let a = (a1, ..., am) ∈ ⊕
i∈I

Z/peiZ and [a] be its image in (⊕
i∈I

Z/peiZ)/D. We

claim that ρ1([a]) is in X
1(k, ŜK,K ′) if and only if a ∈ G.

We denote by av the image of a in
m
⊕
i=1

H1(kv, IKv
i /kv

(T̂Ev
i /K

v
i
)), and by Dv the

image of D in this sum.

By the exact sequence (5.5), we have ρ1([a]) ∈ X
1(k, ŜK,K ′) if and only if

av ∈ Dv for all places v ∈ Ωk. Therefore, it suffices to prove that a ∈ G if and
only if av ∈ Dv for all places v ∈ Ωk.

Suppose that a ∈ G, and let v ∈ Ωk. Then there exists n ∈ Z/pe1Z such that
v ∈ Ω(In(a)). If In(a) = I, then clearly a ∈ D ⊆ G. Suppose that In(a) 6= I.
This implies that for each i /∈ In(a) and for each place w of Ki above v, the
étale algebra Kw

i ⊗K is isomorphic to a product of field extensions of Kw
i of

degree at most δ(n, i). Let δi = δ(n, i) = δ(n, ai). Note that

H1(kv, IKv
i /k

(T̂Ev
i /K

v
i
)) = H1(Kv

i , T̂Ev
i /K

v
i
).

We have

H1(Kv
i , T̂Ev

i /K
v
i
) ≃ ⊕

w|v
H1(Kw

i , T̂Kw
i ⊗K/Kw

i
) ≃ ⊕

w|v
Z/pei,wZ,

where ei,w ≤ δi, and the localization map H1(Ki, T̂Ei/Ki
) → H1(Kv

i , T̂Ev
i /K

v
i
)

is the canonical projection πei,ei,w from Z/peiZ to each component Z/pei,wZ.
Since for all i /∈ In(a) we have ei,w ≤ δi, and πei,δi(ai) = πe1,δi(n), this implies
that av = (n, ..., n)v.

Suppose conversely that av ∈ Dv for all v ∈ Ωk and a /∈ G. Then a /∈ D,
and there exists a place v ∈ Ωk such that v 6∈ ∪

n∈Z/pe1Z
Ω(In(a)). Since av ∈ Dv,

there exists n′ ∈ Z/peZ such that av = (ι1(n′))v. Let n = πe,e1(n
′). As

v /∈ Ω(In(a)), there exists i /∈ In(a) and a place w of Ki above v such that
Kw

i ⊗K is isomorphic to a product of field extensions of degree ei,w > δi of Kw
i .

Then by the definition of δi = δ(n, ai),we have πei,ei,w(ai) 6= πe1,ei,w(n). Hence
the localization avi of the i-th coordinate of a is not equal to the localization
of the i-th coordinate of (n, ..., n), which is a contradiction. Our claim then

follows. Therefore, we have X
1(k, ŜK,K ′) ≃ X(K,K ′).

5.2. The group X(K/K0, K
′)

Let K0 be the unique subfield of K such that [K0 : k] = pe−1. The
proof of the main theorem in the prime power case uses induction on e, and
the comparison of the groups X(K,K ′) and X(K0, K

′). We first define a
homomorphism F : X(K0, K

′) → X(K,K ′), and then determine the cokernel
of F , denoted by X(K/K0, K

′).
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Note that if e = 1, then K0 = k, and hence X(K0, K
′) is trivial; in this

case, X(K/K0, K
′) is the group X(K,K ′) itself.

The homomorphism F : X(K0, K
′) → X(K,K ′).

Recall that we have K ′ =
∏
i∈I

Ki, that Ei = K ⊗ Ki, and that Ei is the

product of copies of a cyclic extension of degree pei of Ki. Set E0
i = K0 ⊗Ki.

Then E0
i also splits as a product of copies of a cyclic extension of Ki; let us

denote by pfi the degree of this extension.

Proposition 5.4. For all i ∈ I, we have fi ≤ ei. If moreover ei 6= 0, then
ei = fi + 1.

This is an immediate consequence of the following proposition :

Proposition 5.5. Let F/k be a field extension, and let K ⊗k F be a product
of cyclic field extensions of F of degree peF ; let K0 ⊗k F be a product of cyclic
field extensions of F of degree fF . Then we have

(i) fF ≤ eF ;

(ii) fF ≥ eF − 1;

(iii) If eF 6= 0, then eF = fF + 1.

Proof. If n is a positive integer, let us denote by Cn the cyclic group of order
n. Let us consider the homomorphisms

ΓF
ι→Γk

φK−→Cpe
π−→Cpe−1 → 1,

where ι is the inclusion of ΓF into Γk, the homomorphism φK : Γk → Cpe

corresponds to the cyclic extension K/k, and π : Cpe → Cpe−1 is the quotient
of Cpe by its unique subgroup of order p. Note that the image of φK ◦ ι is
the Galois group of the cyclic factors of K ⊗k F , and hence is of order peF ;
similarly, the image of π ◦ φK ◦ ι is the Galois group of the cyclic factors of
K0 ⊗k F , and hence is of order pfF . Therefore we have fF ≤ eF . Moreover, if
eF 6= 0, then the image of φK ◦ ι contains the unique subgroup of order p of
Cpe, and hence eF = fF + 1. This completes the proof of the proposition.

For all i ∈ I, let Fi : Z/pfiZ → Z/peiZ be the inclusion of the subgroup of
order pfi in the group Z/peiZ, and set FK/K0

= F = ⊕
i∈I

Fi.

Proposition 5.6. The map F : ⊕
i∈I

Z/pfiZ → ⊕
i∈I

Z/peiZ induces an injective

homomorphism F : X(K0, K
′) → X(K,K ′).

Proof. Let us recall some notation from 5.1, for K and K0 : For all i ∈ I
and for all positive integers d, we denote by Σ(K)di (respectively Σ(K0)

d
i ) the

set of all places v ∈ Ωk such that at each place w of Ki above v, the algebra
K ⊗Kw

i (respectively K0 ⊗Kw
i ) is isomorphic to a product copies of a cyclic

extension of degree at most pd of Kw
i . Recall that
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G = G(K,K ′) = {a ∈ ⊕
i∈I

Z/peiZ |
⋃

n∈Z/pe1Z

Ω(In(a)) = Ωk},

and that D is the diagonal subgroup of G. Similarly, set

G0 = G(K0, K
′) = {b ∈ ⊕

i∈I
Z/pfiZ |

⋃

n∈Z/pf1Z

Ω(In(b)) = Ωk},

and let D0, be the diagonal subgroup of G0. Then we have X(K,K ′) = G/D
and X(K0, K

′) = G0/D0.

Let b ∈ G0, and let us show that F (b) ∈ G. Let v ∈ Ωk. Then there

exists r ∈ Z/pf1Z such that v ∈ Σ(K0)
δ(r,i)
i for all i ∈ I such that i 6∈ Ir(b).

Note that for all positive integers δ, we have Σ(K0)
δ
i ⊂ Σ(K)δ+1

i . Set n =
F1(r) ∈ Z/pe1Z; then we have δ(n, Fi(bi)) = δ(r, bi) + 1. Hence we have

v ∈ Σ(K)
δ(r,bi)+1
i , and therefore F (b) ∈ G.

It is clear that F is injective.

Remark 5.7. For any subextension N/k of K/k, let FK/N : X(N,K ′) →
X(K,K ′) be the injective homomorphism obtained by successive applications
of Proposition 5.6.

The group X(K/K0, K
′).

As we will see, the cokernel of F is isomorphic to the group X(K/K0, K
′),

defined as follows :

For all i ∈ I, set ri = min{1, ei}. For all c ∈ ⊕
i∈I

Z/priZ and n ∈ Z/pZ, set

I1n(c) = {i ∈ I |n � c}. If I1n(c) 6= I, set Ω(I1n(c)) = ∩
i/∈I1n(c)

Σi; if In(c) = I, set

Ω(I1n(c)) = Ωk. Set

G(K/K0, K
′) = {c ∈ ⊕

i∈I
Z/priZ |

⋃

n∈Z/pr1Z

Ω(I1n(c)) = Ωk},

let D(K/K0, K
′) be the diagonal subgroup of G(K/K0, K

′), and set

X(K/K0, K
′) = G(K/K0, K

′)/D(K/K0, K
′).

Lemma 5.8. The projection π : ⊕
i∈I

Z/peiZ → ⊕
i∈I

Z/priZ induces a homomor-

phism π : X(K,K ′) → X(K/K0, K
′).

Proof. Let a ∈ G, and set a = π(a). Let us show that a ∈ G(K/K0, K
′). Let

v ∈ Ωk; then there exists s ∈ Z/pe1Z such that v ∈ Ω(Is(a)). Set n = πe1,1(s),
and let us prove that v ∈ Ω(I1n(a)). This is clear if I1n(a) = I. Suppose that
I1n(a) 6= I. If i ∈ I is such that i 6∈ I1n(a), then we have i 6∈ Is(a), and therefore

v ∈ Σ
δ(s,ai)
i . Since n = πe1,1(s) and i 6∈ I1n(a), we have δ(s, ai) = 0, and hence
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v ∈ Σi. Therefore we have a ∈ G(K/K0, K
′), as claimed, and this completes

the proof of the lemma.

Proposition 5.9. The sequence

0 → X(K0, K
′)

F−→ X(K,K ′)
π−→ X(K/K0, K

′) → 0

is exact.

Proof. It is clear that F is injective, and that π ◦ F = 0; it remains to check
that π is surjective, and that Ker(π) ⊂ Im(F ). Let us check the second
assertion first. Let a ∈ X(K,K ′) be such that π(a) = 0. Then there exists
b ∈ ⊕

i∈I
Z/pfiZ such that F (b) = a; let us check that b ∈ X(K0, K

′). Let

v ∈ Ωk. Then there exists n ∈ Z/peiZ such that v ∈ Ω(In(a)). If i ∈ In(a),
then we have πe1,ei(n) = ai. Since ai = Fi(bi), this implies that there exists
r ∈ Z/pf1Z such that n = F1(r). Let us show that v ∈ Ω(Ir(b)). For all i ∈ I
such that i 6∈ In(a), we have v ∈ Σ(K)

δ(n,ai)
i . Note that δ(n, ai) = δ(r, bi) + 1,

hence this implies that v ∈ Σ(K0)
δ(r,bi)
i . Therefore we have v ∈ Ω(Ir(b)),

as claimed, and this implies that b ∈ X(K0, K
′). Let us now prove that π

is surjective. Let a ∈ X(K/K0, K
′). For each n ∈ Z/pZ, let us fix a lifting

r(n) ∈ Z/pe1Z. If i ∈ I1n(a), set ai = πe1,ei(r(n)). Let us check that ai ∈ Z/peiZ
is well-defined. Suppose that n1, n2 ∈ Z/pZ are such that i ∈ I1n1

(a) ∩ I1n2
(a);

then we have π1,ri(n1) = π1,ri(n2). If n1 6= n2, then this implies that ri = 0,
hence ei = 0. We have πe1,ei(r(n1)) = πe1,ei(r(n2)) in this case, hence ai is
well-defined. Let us check that a ∈ X(K,K ′). Since a ∈ X(K/K0, K

′), we
have

⋃
n∈Z/pr1Z

Ω(I1n(a)) = Ωk. Let v ∈ Ωk; then there exists n ∈ Z/pZ such that

v ∈ Ω(I1n(a)). Let r = r(n); we claim that v ∈ Ω(Ir(a)). If I1n(a) = I, then we
have Ir(a) = I, and the claim is clear. Suppose that I1n(a) 6= I. If i 6∈ Ir(a),
then we have i 6∈ I1n(a) by construction, hence v ∈ Σi. Since Σi ⊂ Σi(K)δ(r,ai),
the claim follows. This completes the proof of the proposition.

5.3. The general case

Recall that K/k is a cyclic extension of degree d, and let P be the set of
prime numbers dividing d. For all p ∈ P, let K(p) be the largest subfield of
K such that [K(p) : k] is a power of p. Set

X(K,K ′) = ⊕
p∈P

X(K(p), K ′).

Proposition 5.10. We have X
1(k, ŜK,K ′) ≃ X(K,K ′).

Proof. By 5.3 we have X
1(k, ŜK(p),K ′) ≃ X(K(p), K ′), hence it suffices

to show that X
1(k, ŜK,K ′) ≃ ∏

p∈P

X
1(k, ŜK(p),K ′). For every p ∈ P, set

E(p) = K(p)⊗k K
′ and L(p) = K(p)×K ′. The inclusion K(p) → K induces

maps ǫp : TK(p)/k→TK/k, ǫp : TE(p)/K ′ → TE/K ′ and ǫp : SK(p),K ′ → SK,K ′.
We have the commutative diagram, coming from cohomology exact sequences
associated to the dual sequences of (2.1) :
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(5.6)

H1(k, T̂K/k)

⊕ǫ̂1p
��

ι1
// H1(k, IK ′/k(T̂E/K ′))

⊕ǫ̂1p
��

ρ1
// H1(k, ŜK,K ′)

⊕ǫ̂1p
��

// ...

⊕
p∈P

H1(k, T̂K(p)/k)
ι1

// ⊕
p∈P

H1(k, IK ′/k(T̂E(p)/K ′))
ρ1

// ⊕
p∈P

H1(k, ŜK(p),K ′) // ...

where the vertical maps are induced by the maps ǫp.

For all i ∈ I, let Mi be a cyclic extension of Ki such that Ei is isomorphic to a
product of copies of Mi, and let di = [Mi : Ki]. If p is a prime divisor of [K : k],
set Ei(p) = K(p) ⊗k Ki, and let Mi(p) be a cyclic extension of Ki such that
Ei(p) is isomorphic to a product of copies of Mi(p); set di(p) = [Mi(p) : Ki].
Note that di(p) is the highest power of p dividing di, and that di =

∏
p∈P

di(p).

Note that H1(k, IKi/k(T̂Ei/Ki
)) ≃ H1(Ki, T̂Ei/Ki

), and that by Lemma 1.1

(ii), we have H1(Ki, T̂Ei/Ki
) ≃ H1(Ki, T̂Mi/Ki

). Moreover, by Lemma 1.2, we

have H1(Ki, T̂Mi/Ki
) ≃ Z/diZ. Similarly, we have H1(k, IKi(p)/k(T̂Ei(p)/Ki

)) ≃
Z/di(p)Z. Note that the morphism

ǫ̂1(p) : H1(k, IKi/k(T̂Ei/Ki
)) ≃ Z/diZ → H1(k, IKi/k(T̂Ei(p)/Ki

)) ≃ Z/di(p)Z

is the canonical projection Z/diZ → Z/di(p)Z. Hence the morphism

⊕
p∈P

ǫ̂1(p) : ⊕
i∈I

H1(k, IKi/k(T̂Ei/Ki
)) → ⊕

p∈P
⊕
i∈I

H1(k, IKi/k(T̂Ei(p)/Ki
))

is an isomorphism. Similarly,

⊕
p∈P

ǫ̂1(p) : H1(k, T̂K/k) ≃ Z/dZ → ⊕
p∈P

H1(k, T̂K(p)/k) ≃ ⊕
p∈P

Z/diZ

is also an isomorphism. By Corollary 3.3, we have X
2(k, T̂K/k) = 0 and

X
2(k, T̂K(p)/k) = 0, hence X

1(k, ŜK,K ′) and X
1(k, ŜK(p),K ′) are in the image

of the maps ρ1. Since the localization map commutes with ⊕
p∈P

ǫ̂1(p), by diagram

chasing we see that ǫ̂1 : X1(k, ŜK,K ′) → ⊕
p∈P

X
1(k, ŜK(p),K ′) is an isomorphism.

This completes the proof of the proposition.

Note that the proposition, together with Lemma 3.1, implies that X(K,K ′)
does not depend on the decomposition of L as L = K ×K ′. We will also use
the notation X(L) = X(K,K ′), where L = K ×K ′ is any decomposition of
L with K/k a cyclic extension.

In summary, we proved

Corollary 5.11. We have X(L)∗ ≃ X
1(k, TL/k).
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Example 5.12. Let p and q be two distinct odd prime numbers, with p > q.
For all positive integers n, let ζn be a primitive nth root of unity. Let

L = Q(ζp2)×Q(ζpq)×Q(ζq2).

Since Q(ζp2) and Q(ζq2) are both cyclic, we can determine X(L) in two ways;
this shows that the order of X(L) divides p− 1, and that

X(L) = X(Q(ζp)×Q(ζpq)×Q(ζq2)).

But since Q(ζp) is a subfield of Q(ζpq), we have X(Q(ζp)×Q(ζpq)×Q(ζq2)) =
X(Q(ζp)×Q(ζq2)). Note that by Proposition 4.1 we have X(Q(ζp)×Q(ζq2)) =
0, hence we have

X(L) = 0.

6. The Brauer-Manin map

We keep the notation of the previous section : in particular, L = K ×K ′,
where K is a cyclic extension of k of degree d, K ′ is an étale k-algebra, and
E = K ⊗ K ′. We write K ′ =

∏
i∈I Ki, where the Ki/k are field extensions,

and E =
∏

i∈I Ei, with Ei = K⊗Ki. The group X(L) = X(K,K ′) is defined
in the previous section.

Let c ∈ k× and recall that Xc is the affine k-variety defined by the equation

NL/k(t) = c.

Assume that Xc(kv) 6= ∅ for all v ∈ Ωk. In the following, we define a
homomorphism αc : X(L) → Q/Z such that Xc(k) 6= ∅ if and only if αc = 0;
the map αc will be called the Brauer-Manin map associated to c.

6.1. Local points

We start with some preliminary results. We are assuming that
∏
Xc(kv) 6= ∅;

as we will see, this set contains elements satisfying certain finiteness conditions.

We first recall the notion of cyclic algebra. Let us choose a generator g of the
cyclic group Gal(K/k), and let φ : Γk → Z/dZ be given by the composition of
the isomorphism Gal(K/k) → Z/dZ sending g to 1 with the surjection Γk →
Gal(K/k). Let us consider the exact sequence 0 → Z ×d−→Z → Z/dZ → 0,
and let δ : H1(k,Z/dZ) → H2(k,Z) be the connecting homomorphism of the
associated cohomology exact sequence. If c ∈ k×, let us denote by (c) the
corresponding element of H0(k,Gm). The cup product δ(φ).(c) is an element
of H2(k,Gm), and via the identification H2(k,Gm) ≃ Br(k) it is mapped to
the class of the cyclic algebra defined by K and c (see for instance [GS06],
Proposition 4.7.3). We denote this cyclic algebra by (K, c).

The first observation is the following:

Lemma 6.1. Suppose that Ei is isomorphic to a product of copies of a field
Mi, and set [Mi : Ki] = di. Then for any x ∈ K×

i , the order of the cyclic
algebra (K,NKi/k(x)) divides di. In particular, if di = 1, then for any x ∈ k×,
the algebra (K,NKi/k(x)) splits.
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Proof. Given x ∈ K×
i , consider the cyclic algebra (Mi, x) = δ(φ|Ki

).(x), where
φ|Ki : ΓKi

→ Z/dZ is the restriction of φ to ΓKi
. Let r be the order of (Mi, x)

in Br(Ki). Since Mi is of degree di over Ki, we have r|di. By the projection
formula ([GS06] Prop. 3.4.10), the corestriction of (Mi, x) is (K,NKi/k(x)).
Therefore the order of (K,NKi/k(x)) divides di.

Let x = (xv) ∈ ∏
v∈Ωk

Xc(kv), and let us write xv = (xv
0, x

v
1, . . . , x

v
m), with

xv
0 ∈ Kv and xv

i ∈ Kv
i for i ∈ I. Let us consider the invariant map inv :

Br(kv) → Q/Z and set bvi (x) = bvi (x
v
i ) = inv(Kv, NKv

i /kv
(xv

i )) ∈ 1
di
Z/Z ⊂ Q/Z.

Note that if di is odd, then bvi (x) = 0 for all infinite places v ∈ Ωk.

We say that x = (xv
i ) ∈

∏
v∈Ωk

Xc(kv) is a local point of Xc if for each i ∈ I,

we have bvi (x) = 0 for almost all v ∈ Ωk. The following lemma implies the
existence of local points whenever

∏
v∈Ωk

Xc(kv) 6= ∅.

Lemma 6.2. Assume that
∏

v∈Ωk

Xc(kv) 6= ∅. Then there exists

x = (xv
i ) ∈

∏

v∈Ωk

Xc(kv)

such that bvi (x) = 0 for almost all v ∈ Ωk, and for all i ∈ I.

Proof. For each v ∈ Ωk such that (K, c)v is split, there exists xv
0 ∈ Kv such

that NKv/kv(x
v
0) = c. Then x = (xv

0, 1, ..., 1) is a kv-point of Xc, and bvi (x) = 0
for all i ∈ I. Since (K, c)v is split for almost all places v ∈ Ωk, the lemma
follows.

We now prove some properties of local points which will be used later.

Lemma 6.3. Let x = (xv
i ) ∈

∏
v∈Ωk

Xc(kv) be a local point of Xc. Then we have

∑

v∈Ωk

∑

i∈I

bvi (x) = 0.

Proof. Let us write xv = (xv
0, x

v
1, . . . , x

v
m), with xv

0 ∈ Kv and xv
i ∈ Kv

i for
i ∈ I. For all i ∈ I, set yvi = NLv

i /kv
(xv

i ). Set yv0 = NKv/kv(x
v
0), and note that

yv0
∏
i∈I

yvi = c. We have

∑
i∈I

bvi (x) =
∑
i∈I

inv(Kv, yvi ) = inv(Kv,
∏
i∈I

yvi ) = inv(Kv, c/yv0) = inv(Kv, c).

Since c ∈ k×, the Brauer-Hasse-Noether Theorem implies that
∑
v∈Ωk

inv(Kv, c) =

0. Hence we have
∑

v∈Ωk

∑
i∈I

bvi (x) = 0, as claimed.

Lemma 6.4. Let x = (xv
i ) be a local point of Xc, and set bvi = bvi (x) =

inv(Kv, NKv
i /kv

(xv
i )). For all i ∈ I, let x̃v

i ∈ Kv
i and set

b̃vi = inv(Kv, NKv
i /kv

(x̃v
i )).
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Suppose that for all i ∈ I we have b̃vi = 0 for almost all v ∈ Ωk, and that∑
i∈I

bvi =
∑
i∈I

b̃vi . Then for all v ∈ Ωk, there exists x̃v
0 ∈ Kv such that x̃ = (x̃v

i ) is

a local point of Xc.

Proof. Let ỹvi = NKv
i /kv

(x̃v
i ) and yvi = NKv

i /kv
(xv

i ). Since
∑
i∈I

bvi =
∑
i∈I

b̃vi , the

algebras (Kv,
∏
i∈I

yvi ) and (Kv,
∏
i∈I

ỹvi ) are isomorphic, hence there exists some

z ∈ Kv such that (
∏
i∈I

yvi )(
∏
i∈I

ỹvi )
−1 = NKv/kv(z). Therefore (xv

0z, x̃
v
1, ..., x̃

v
m) is a

kv-point of Xc.

Lemma 6.5. Let x = (xv
i ) be a local point of Xc, and set bvi = bvi (x) =

inv(Kv, NKv
i /kv

(xv
i )). Suppose that for all i ∈ I, we have

∑
v∈Ωk

bvi = 0. Then Xc

has a k-point.

Proof. By the Brauer-Hasse-Noether Theorem, for every i ∈ I there exists
a central simple algebra Ai such that inv(Ai) = bvi for all v ∈ Ωk. Set
yvi = NKv

i /kv
(xv

i ). Since (Kv, yvi ) splits over Kv for all v, the algebra Ai also
splits over K. Hence there exists ỹi ∈ k such that Ai is Brauer equivalent to
(K, ỹi) (see [GS06] Cor. 4.7.6). Since (K,

∏
i∈I

ỹi)v ≃ (Kv,
∏
i∈I

yvi ) ≃ (K, c)v, the

Brauer-Hasse-Noether Theorem implies that (K,
∏
i∈I

ỹi) ≃ (K, c), and hence
∏
i∈I

ỹi = cNK/k(w) for some w ∈ K×. Moreover, we claim that the element ỹi

belongs to the group NK/k(K
×)NKi/k(K

×
i ). To see this, we note that

(K, ỹi)v = (K, yvi ) = (K,NKv
i /kv

(xv
i )).

Hence we have ỹi ∈ NK/k(JK)NKi/k(Ji) where Ji is the idèle group of Ki,
for all i ∈ I, and JK is the idèle group of K. By Proposition 4.1, we
have ỹi = NK/k(wi)NKi/k(zi) for some wi ∈ K× and zi ∈ K×

i . Therefore∏
i∈I

ỹi =
∏
i∈I

NK/k(wi)NKi/k(zi) = cNK/k(w) and (w−1
∏
i∈I

wi, z1, ..., zm) is a k-

point of Xc. This completes the proof of the lemma.

6.2. Brauer-Manin map - the prime power degree case

Now suppose that K is a cyclic extension of degree d = pe, where p is a
prime. Let x = (xv

i ) ∈
∏

v∈Ωk

Xc(kv) be a local point of Xc. Let Mi be a cyclic

extension of Ki such that the algebra Ei is isomorphic to a product of copies
of Mi; then the degree of Mi is pei for some 0 ≤ ei ≤ e. Without loss of
generality, we assume that (e1, ..., em) is a decreasing sequence. Let us define

αc : X(K,K ′) → Q/Z

by αc(a1, ..., am) =
∑

v∈Ωk

∑
i∈I

aib
v
i (x), where (a1, ..., am) ∈ G ⊆ ⊕

i∈I
Z/peiZ. Note

that by Lemma 6.1, we have bvi (x) ∈ 1
pei

Z/Z. Hence aib
v
i (x) is well-defined.

Moreover, by Lemma 6.3, the map αc vanishes on the subgroup D of G; hence,
the map αc : X(K,K ′) → Q/Z is well-defined.
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Proposition 6.6. The map αc : X(K,K ′) → Q/Z is independent of the
choice of the local point x = (xv

i ).

Proof. We use the notation of section 5.1. Let a ∈ G and I(a) =
(I0, ...., Ipe1−1). If a ∈ D, then by Lemma 6.3, we have αc(a) = 0. In the
following, we assume that a /∈ D.

By the definition of G, we have Ω(I0) ∪ ... ∪ Ω(Ipe1−1) = Ωk. Given a place
v ∈ Ωk, there exists n(v) ∈ Z/pe1Z such that v ∈ Ω(In(v)). Set δi = δ(n(v), ai)
and let Kv

i =
∏
w|v

Kw
i , where Kw

i are field extensions of kv. Then for all i /∈ In(v),

the algebra Ev
i is isomorphic to a products of field extensions of Kw

i of degree
at most pδi . Set bvi = bvi (x); by Lemma 6.1, we have bvi ∈ 1

pδi
Z/Z. By the

definition of δi, we have πei,δi(ai) = πe1,δi(n(v)). Hence for i /∈ In(v), we have

aib
v
i = πei,δi(ai)b

v
i = πe1,δi(n(v))b

v
i = n(v)bvi .

Hence for all v ∈ Ωk, we have∑
i∈I

aib
v
i = n(v)

∑
i∈I

bvi = n(v)inv(K, c)v,

which is again independent of the xv
i ’s. Therefore, the map αc is independent

of the choice of the local point, and the proposition is proved.

The map αc : X(K,K ′) → Q/Z will be called the Brauer-Manin map for
Xc.

Let K0 be the unique subfield of K such that [K0 : k] = pe−1, and set L0 =
K0 ×K ′. If c ∈ k×, let X0

c be the affine k-variety determined by NL0/k(t) = c.
If X0

c (kv) 6= ∅ for all v ∈ Ωk, we denote by α0
c : X(K0, K

′) → Q/Z the
corresponding Brauer-Manin map.

If ti ∈ Kv
i , set

bvi (K, ti) = inv(Kv, NKv
i /kv

(ti)), and bvi (K0, ti) = inv(Kv
0 , NKv

i /kv
(ti)).

Recall that a local point of Xc is x = (xv
i ) ∈

∏
v∈Ωk

Xc(kv) such that for each

i ∈ I, we have bvi (K, xv
i ) = 0 for almost all v ∈ Ωk.

Lemma 6.7. Assume that Xc(kv) 6= ∅ for all v ∈ Ωk. Then we have

(i) X0
c (kv) 6= ∅ for all v ∈ Ωk.

(ii) αc ◦ F = α0
c .

Proof. If xv ∈ Xc(kv), then NLv/Lv
0
(xv) ∈ X0

c (kv). This proves (i). Let
us check (ii). Let x = (xv

i ) be a local point of Xc. Note that bvi (K0, x
v
i ) =

pbvi (K, xv
i ). Let a ∈ X(K0, K

′). Then we have

αc(F (a)) =
∑

v∈Ωk

∑

i∈I

ai(pb
v
i (K, xv

i )) =
∑

v∈Ωk

∑

i∈I

aib
v
i (K0, x

v
i ) = α0

c(a).

This completes the proof of the lemma.
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6.3. Brauer-Manin map - the general case

Recall that K/k is a cyclic extension of degree d, and that L = K × K ′,
where K ′ is an étale k-algebra. We keep the notation of 5.3, in particular, P
is the set of prime divisors of d. For all p ∈ P, we denote by K(p) the largest
subfield of K of degree a power of p, and we set L(p) = K(p) × K ′. For all
c ∈ k× and p ∈ P, we let Xc(p) be the TL(p)/k-torsor defined by

NL(p)/k(x) = c.

Let x = (xv
i ) ∈

∏
v∈Ωk

Xc(kv) be a local point of Xc, and let us write x = (xv
0, x

′v)

with xv
0 ∈ Kv and x′v ∈ K ′v. Then (NKv/K(p)v(x

v
0), x

′v) is a local point of
Xc(p).

Let α(p) be the Brauer-Manin map of Xc(p), as defined above. By Propo-
sition 6.6 the map α(p) is independent of the choice of the local point. Recall
that X(K,K ′) = ⊕

p∈P
X(K(p), K ′), and let us define αc : X(K,K ′) → Q/Z

by αc = ⊕
p∈P

αc(p). Hence αc is also independent of the choice of the local point.

We call αc the Brauer-Manin map for Xc.

7. Necessary and sufficient condition

We keep the notation of the previous sections. The main theorem is the
following:

Theorem 7.1. The affine k-variety Xc has a k-point if and only if Xc has a
kv-point at each place v ∈ Ωk and αc is the zero map.

7.1. The prime power degree case

We suppose that K is cyclic of degree pe, where p is a prime number and
e ≥ 1. The proof of Theorem 7.1 uses induction on e. We start with some
preliminary results.

Recall that Ei = K ⊗k Ki.

Lemma 7.2. Suppose that K is a cyclic extension of degree pe, where p is a
prime and e ≥ 1. Let v ∈ Ωk and i ∈ I be such that Ev

i is not isomorphic to
a product of copies of Kv

i . Then for all b ∈ 1
p
Z/Z ⊆ Q/Z, there exists x ∈ Kv

i

such that inv(Kv, NKv
i /kv

(x)) = b.

Proof. Suppose that Kv is isomorphic to a product of copies of a field
extension M of kv, and set [M : kv] = pf . Since by hypothesis Ev

i is not
isomorphic to a product of copies of Kv

i , we have f ≥ 1. Assume that
Kv

i ≃ ∏
j∈J

Mi,j , where Mi,j is a field extension of kv for all j ∈ J .

It suffices to prove that 1
p
Z/Z ⊆ inv(M,NMi,j/kv(M

×
i,j)) for some j ∈ J ;

hence we may assume that Kv is a field extension of kv of degree pe with
e ≥ 1, and that Kv

i is a field.
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Let Br(Kv/kv) be the subgroup of the Brauer group of kv split by Kv; this
group is isomorphic to Z/peZ ≃ k×

v /N((Kv)×).

For all i ∈ I, let Mi be a field such that Ev
i = K ⊗k Kv

i is a product of
copies of Mi, and set [Mi : K

v
i ] = pei; the hypothesis implies that ei ≥ 1. The

corestriction map Br(Kv
i ) → Br(kv) is an injection and restricts to an injection

of Br(Mi/K
v
i ) into Br(Kv/kv), the image being the unique subgroup of order

pei of the cyclic group of order pe. By the projection formula ([GS06] Prop.
3.4.10), the image consists of cyclic algebras of the type (Kv, NKv

i /kv
(z)) with

z an element of Kv
i . Hence 1

p
Z/Z ⊆ 1

pei
Z/Z = inv(Kv, NKv

i /kv
(Kv

i )
×). This

completes the proof of the lemma.

Let K0 be the unique subfield of K such that [K0 : k] = pe−1.

Recall that we have K ′ =
∏
i∈I

Ki, that Ei = K ⊗ Ki, and that Ei is the

product of copies of a cyclic extension of degree ei of Ki. Set E0
i = K0 ⊗Ki.

Then E0
i also splits as a product of copies of a cyclic extension of Ki; let us

denote by fi the degree of this extension. Recall that for all i ∈ I, we have
fi ≤ ei. If moreover ei 6= 0, then ei = fi +1 (cf. lemma 5.4). For all i ∈ I, the
map Fi : Z/pfiZ → Z/peiZ is the inclusion of the unique subgroup of order pfi

in the group Z/peiZ, and we set F = ⊕
i∈I

Fi.

The map F : ⊕
i∈I

Z/pfiZ → ⊕
i∈I

Z/peiZ induces a homomorphism F :

X(K0, K
′) → X(K,K ′). Recall that the cokernel of F is isomorphic to

the group X(K/K0, K
′), defined in section 5.

For all i ∈ I, set ri = min{1, ei}. For all c ∈ ⊕
i∈I

Z/priZ and n ∈ Z/pZ, set

I1n(c) = {i ∈ I |n � c}. If I1n(c) 6= I, set Ω(I1n(c)) = ∩
i/∈I1n(c)

Σi; if In(c) = I, set

Ω(I1n(c)) = Ωk. Set

G(K/K0, K
′) = {c ∈ ⊕

i∈I
Z/priZ |

⋃

n∈Z/pr1Z

Ω(In(c)) = Ωk},

let D(K/K0, K
′) be the diagonal subgroup of G(K/K0, K

′), and recall that

X(K/K0, K
′) = G(K/K0, K

′)/D(K/K0, K
′).

Recall that the projection π : ⊕
i∈I

Z/peiZ → ⊕
i∈I

Z/priZ induces a homomor-

phism F : X(K,K ′) → X(K/K0, K
′) (cf. lemma 5.8)

Set L0 = K0 ×K ′. If c ∈ k×, let X0
c be the affine k-variety determined by

NL0/k(t) = c. If X0
c (kv) 6= ∅ for all v ∈ Ωk, we denote by α0

c : X(K0, K
′) →

Q/Z the corresponding Brauer-Manin map.

If ti ∈ Kv
i , set bvi (K, ti) = inv(Kv, NKv

i /kv
(ti)), and bvi (K0, ti) = inv(Kv

0 , NKv
i /kv

(ti)).

Recall that a local point of Xc is x = (xv
i ) ∈

∏
v∈Ωk

Xc(kv) such that for each

i ∈ I, we have bvi (K, xv
i ) = 0 for almost all v ∈ Ωk.
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Lemma 7.3. Let x = (xv
i ) be a local point of Xc, and let z = (zi) be a global

point of X0
c . Then for all v ∈ Ωk, we have

p
∑

i∈I

bvi (K, xv
i ) = p

∑

i∈I

bvi (K, zi).

Proof. Since x is a local point of Xc, we have
∑
i∈I

bvi (K, xv
i ) = inv(Kv, c) for all

v ∈ Ωk. Similarly, we have
∑
i∈I

bvi (K0, zi) = inv(Kv
0 , c) for all v ∈ Ωk. Note that

inv(Kv
0 , c) = p inv(Kv, c), and inv(Kv

0 , zi) = p inv(Kv, zi) for all i ∈ I. Hence
we have

p
∑

i∈I

bvi (K, xv
i ) = p inv(Kv, c) = inv(Kv

0 , c) =
∑

i∈I

bvi (K0, zi) = p
∑

i∈I

bvi (K, zi),

as claimed.

Lemma 7.4. Let x = (xv
i ) be a local point of Xc, and assume that X0

c (k) 6= ∅.
Then there exist x̃v

i ∈ Kv
i such that

(i) For each i ∈ I, we have bvi (K, x̃v
i ) = 0 for almost all v ∈ Ωk.

(ii) For all i ∈ I, we have
∑

v∈Ωk

bvi (K, x̃v
i ) ∈ 1

p
Z/Z.

(iii) For all v ∈ Ωk, we have

∑

i∈I

bvi (K, xv
i ) =

∑

i∈I

bvi (K, x̃v
i ).

Proof. Let z = (zi) be a global point of X0
c . Set bvi = bvi (K, xv

i ) and hv
i =

bvi (K, zi). By Lemma 7.3, we have p
∑
i∈I

bvi = p
∑
i∈I

hv
i . Since bvi = 0 and hv

i = 0 for

almost all v ∈ Ωk, for almost places v ∈ Ωk we have
∑
i∈I

hv
i =

∑
i∈I

bvi . Suppose that

v ∈ Ωk is such that
∑
i∈I

hv
i 6= ∑

i∈I

bvi . Then there exists i ∈ I such that v /∈ Σi.

Since p
∑
i∈I

bvi = p
∑
i∈I

hv
i in Q/Z, we know that

∑
i∈I

bvi −
∑
i∈I

hv
i ∈ 1

p
Z/Z. By Lemma

7.2, there exists x̃v
i ∈ Kv

i such that inv(Kv, NKv
i /kv

(x̃v
i )) = hv

i −
∑
i∈I

(hv
i − bvi ).

Set h̃v
i = inv(Kv, NKv

i /kv
(x̃v

i )); for all j 6= i, let x̃v
j = zj , h̃

v
j = hv

j = bvj (K, zj).

Then we have
∑
i∈I

h̃v
i =

∑
i∈I

bvi ; this proves (iii).

Since h̃v
i = hv

i for almost all v ∈ Ωk, (i) holds. As z = (zi) is a global
point of X0

c , we have
∑

v∈Ωk

bvi (K0, zi) = 0, hence
∑

v∈Ωk

hv
i ∈ 1

p
Z/Z; moreover,

hv
i − h̃v

i ∈ 1
p
Z/Z for all i ∈ I and all v ∈ Ωk. Therefore we have

∑
v∈Ωk

h̃v
i ∈ 1

p
Z/Z,

and this proves (ii).
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Lemma 7.5. Assume that Xc(kv) 6= ∅ for all v ∈ Ωk, and that X0
c (k) 6= ∅.

Then there exists a local point x̃ = (x̃v
i ) of Xc such that for all i ∈ I, we have

∑

v∈Ωk

bvi (K, x̃v
i ) ∈

1

p
Z/Z.

Proof. Let x = (xv
i ) be a local point of Xc. By Lemma 7.4, there exist x̃v

i ∈ Kv
i

such that bvi (K, x̃v
i ) = 0 for almost all v ∈ Ωk, that

∑
i∈I

bvi (K, xv
i ) =

∑
i∈I

bvi (K, x̃v
i ),

and that for all i ∈ I, we have
∑

v∈Ωk

bvi (K, x̃v
i ) ∈ 1

p
Z/Z. By Lemma 6.4, for

all v ∈ Ωk, there exists x̃v
0 ∈ (Kv)× such that (x̃v

0, x̃
v
1, ..., x̃

v
m) ∈ Xc(kv). This

completes the proof of the lemma.

Recall that if Xc(kv) 6= ∅ for all v ∈ Ωk, and that for all c ∈ k×, we have
a homomorpism αc : X(K,K ′) → Q/Z. We now show that αc induces a
homomorphism αc : X(K/K0, K

′) → Q/Z such that αc ◦ π = αc.

Lemma 7.6. Assume that Xc(kv) 6= ∅ for all v ∈ Ωk, and let c ∈ k×, and that
X0

c (k) 6= ∅. Then there exists a homomorphism αc : X(K/K0, K
′) → Q/Z

such that αc ◦ π = αc.

Proof. Let x = (xv
i ) be a local point of Xc, and set bvi = inv(Kv, NKv

i /kv
(xv

i ))

for all i ∈ I and all v ∈ Ωk. By lemma 7.5, we may assume that
∑

v∈Ωk

bvi ∈ 1
p
Z/Z

for all i ∈ I. Let a = (a1, ..., am) ∈ G and a = π(a) = (a1, ..., am) ∈
G(K/K0, K

′). We have

αc(a1, ..., am) =
∑

i∈I

ai(
∑

v∈Ωk

bvi ) =
∑

i∈I

ai(
∑

v∈Ωk

bvi ).

Hence αc induces a homomorphism αc : X(K/K0, K
′) → Q/Z, as claimed.

The group X(K/K0, K
′) and partitions

We now need more information about the group X(K/K0, K
′). This will

be useful in the inductive step, as well as in dealing with the case e = 1, in
other words, in the case where K/k is of prime degree.

Lemma 7.7. The set G(K/K0, K
′) is in bijective correspondence with the

partitions (J0, ..., Jp−1) of the set {i ∈ I | ri = 1} such that ∪
n∈Z/pZ

Ω(Jn) = Ωk.

Proof. Recall that we have ri = 0 or 1. Set I ′ = {i ∈ I | ri = 1}. Let
a ∈ G(K/K0, K

′), and set I1(a) ∩ I ′ = (I01 (a) ∩ I ′, ..., I1p−1(a) ∩ I ′); note

that I1(a) ∩ I ′ is a partition of I ′. Hence the set G(K/K0, K
′) is then

in bijective correspondence with the partitions (J0, ..., Jp−1) of I ′ such that
∪

n∈Z/pZ
Ω(Jn) = Ωk, as claimed.

In the sequel, we identify G(K/K0, K
′) with the set of these partitions. We

also note a consequence for the case where K is of degree p, in other words, if
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e = 1. If K/k is of prime degree, then either Ei is a field extension of Ki, or
Ei is a product of copies of Ki. Let J be the subset of I such that Ei is a field
extension of Ki if i ∈ J , and that Ei is a product of copies of Ki if i 6∈ J .

Lemma 7.8. Assume that K/k is a degree p extension. Then G(K,K ′) is
in bijective correspondence with the partitions (J0, ..., Jp−1) of J such that
∪

n∈Z/pZ
Ω(Jn) = Ωk.

Proof. Since e = 1, we have K0 = k and G(K/K0, K
′) = G(K,K ′). Hence

the lemma follows from Lemma 7.7.

Let Kprim be the unique subfield of K of degree p over k.

Proposition 7.9. The group X(K/K0, K
′) is a subgroup of X(Kprim, K

′).

Proof. J be the subset of i ∈ I such that Kprim ⊗k Ki is a field extension.
Then G(Kprim, K

′) is in bijection with the set of partitions (I0, . . . , Ip−1) of
J such that ∪

n∈Z/pZ
ΩKprim

(In) = Ωk, where ΩKprim
(In) = ∩i 6∈InΣi(Kprim) (see

Lemma 7.8).

Note that J = {i ∈ I | ri = 1}. Hence by Lemma 7.7, the set G(K/K0, K
′) is

in bijection with the set of partitions (I0, . . . , Ip−1) of J such that ∪
n∈Z/pZ

ΩK(In) =

Ωk, where ΩK(In) = ∩i 6∈InΣi(K).

Note that Σi(Kprim) ⊂ Σi(K) for all i ∈ I. Hence G(K/K0, K
′) ⊂

G(Kprim, K
′), and this implies that X(K/K0, K

′) is a subgroup of X(Kprim, K
′).

Proposition 7.10. If X(Kprim, K
′) = 0, then X(K,K ′) = 0.

Proof. By Proposition 7.9, we have X(K/K0, K
′) = 0; hence Proposition

5.9 implies that X(K,K ′) = X(K0, K
′). Repeating this argument, we see

that X(K,K ′) = X(Kprim, K
′). But X(Kprim, K

′) = 0 by hypothesis, hence
X(K,K ′) = 0, as claimed.

The following lemma will be useful in the sequel.

Lemma 7.11. Let (I0, . . . , Ip−1) ∈ G(K/K0, K
′), and let r, r′ be two distinct

elements of Z/pZ. Set Jr = Ir, Jr′ = ∪
n 6=r

In, and Jn = ∅ if n 6= r, r′. Then

(J0, . . . , Jp−1) ∈ G(K/K0, K
′). If moreover (I0, . . . , Ip−1) 6∈ D(K/K0, K

′) and
Ir 6= ∅, then (J0, . . . , Jp−1) 6∈ D(K/K0, K

′).

Proof. Let us show that Ω(Jr) ∪ Ω(Jr′) = Ωk. Let v ∈ Ωk be such that
v 6∈ Ω(Jr). Since we have ∪

n∈Z/pZ
Ω(In) = Ωk, there exists n(v) ∈ Z/pZ with

n(v) 6= r such that v ∈ Ω(In(v)). Since n(v) 6= r, we have Ω(In(v)) ⊂ ∩
i∈Ir

Σi =

Ω(Jn′). Therefore we have Ω(Jr) ∪ Ω(Jr′) = Ωk, and hence (J0, . . . , Jp−1) ∈
G(K/K0, K

′).

Let us prove the second statement. If (J0, . . . , Jp−1) ∈ D(K/K0), then either
Jr = I ′ or Jr′ = I ′; we have Ir = I ′ in the first case, hence (I0, . . . , Ip−1) ∈
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D(K/K0, K
′), and Ir = ∅ in the second case. This completes the proof of the

lemma.

Lemma 7.12. Let x = (xv
i ) be a local point of Xc, and set bvi = bvi (K, xv

i ).
Assume that αc = 0, and that X0

c (k) 6= ∅. Let (I0, . . . , Ip−1) ∈ G(K/K0, K
′).

Then we have
∑
i∈In

∑
v∈Ωk

bvi = 0 for all n ∈ Z/pZ.

Proof. Let n ∈ Z/pZ. The statement is trivial if In is empty, and it follows
from Lemma 6.3 if In = I ′. Assume that In is not empty, and In 6= I ′. Let
n′ ∈ Z/pZ such that n′ 6= n, and set Jn = In, Jn′ = ∪

r 6=n
Ir, and Jr = ∅ if

r 6= n, n′. Then by Lemma 7.11, we have (J0, . . . , Jp−1) ∈ G(K/K0, K
′). Since

X0
c (k) 6= ∅, by Lemma 7.6 there exists a homomorphism αc : X(K/K0, K

′) →
Q/Z such that αc ◦ π = αc. By hypothesis αc is the zero map, hence we have
αc = 0. Therefore we have

∑

r∈Z/pZ

∑

i∈Jr

∑

v∈Ωk

rbvi =
∑

i∈Jn

∑

v∈Ωk

nbvi +
∑

i∈Jn′

∑

v∈Ωk

n′bvi = 0.

By Lemma 6.3 we have
∑
i∈I′

∑
v∈Ωk

bvi = 0, hence (n − n′)
∑
i∈Jn

∑
v∈Ωk

bvi = 0. Recall

that n′ 6= n by hypothesis, therefore we have
∑
i∈Jn

∑
v∈Ωk

bvi = 0; since Jn = In, we

have
∑
i∈In

∑
v∈Ωk

bvi = 0, as claimed.

Lemma 7.13. Let x = (xv
i ) be a local point of Xc. Assume that αc = 0, and

that X0
c (k) 6= ∅. Let (I0, . . . , Ip−1) ∈ G(K/K0, K

′), and let n ∈ Z/pZ. Then
there exists a local point x̃ = (x̃v

i ) of Xc such that x̃v
i = xv

i if i 6∈ In, and that∑
v∈Ωk

bvi (K, x̃) = 0 for all i ∈ In.

Proof. We prove this by induction on the cardinality of In. If |In| = 0 then
the claim is trivial; if |In| = 1, then it follows from lemma 7.12, since we have∑
v∈Ωk

bvi (x) = 0 for all i ∈ In. Suppose that the claim is true for |In| < h. For

|In| = h, suppose that there are nonempty disjoint subsets I0n and I1n of In
satisfying I0n ∪ I1n = In and ( ∩

i∈I0n

Σi)∪ ( ∩
i∈I1n

Σi) = Ωk. Then consider the element

(J0, ...Jp−1) where Jr = Ir if r 6= n, n + 1, Jn = I0n and Jn+1 = I1n ∪ In+1.
Note that Ω(Ir) = Ω(Jr) if r 6= n, n + 1 and that Ω(In+1) ⊂ Ω(Jn+1). Let
us prove that (J0, ...Jp−1) represents an element of X(K,K ′); for this, we
have to check that Ω(J0) ∪ · · · ∪ Ω(Jp−1) = Ωk. Since Ω(Ir) ⊂ Ω(Jr) if
r 6= n and Ω(I0) ∪ · · · ∪ Ω(Ip−1) = Ωk, it suffices to check that if v ∈ Ω(In),
then v ∈ Ω(J0) ∪ · · · ∪ Ω(Jp−1). If v ∈ ∩

i∈I1n

Σi, then we have v ∈ Ω(Jn).

Otherwise, we have v ∈ ∩
i∈I0n

Σi because ( ∩
i∈I0n

Σi)∪ ( ∩
i∈I1n

Σi) = Ωk. Hence we have

v ∈ ( ∩
i/∈In∪In+1

Σi) ∩ ( ∩
i∈I0n

Σi) = Ω(Jn+1). Therefore (J0, ...Jp−1) represents an

element of X(K,K ′). Since |Jn| < h, we can apply the induction hypothesis,
and hence there exists a local point x̃ = (x̃v

i ) such that x̃v
i = xv

i if i 6∈ Jn = I1n,
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and that
∑
v∈Ω

bvi (K, x̃) = 0 for all i ∈ Jn = I1n. The same argument with I0n

instead of I1n gives the desired result.

Assume now that In does not have any non-trivial subpartitions, in other
words, that there are no nonempty disjoint subsets I0n and I1n of In satisfying
I0n ∪ I1n = In and ( ∩

i∈I0n

Σi) ∪ ( ∩
i∈I1n

Σi) = Ωk. Let us consider the graph with

vertex set In, and edge set E = {(i, j)|Σi ∪ Σj 6= Ωk}; since In has no non-
trivial subpartitions, this graph is connected. Set bvi = b(K, xv

i )
v
i , and for all

i ∈ In, set di =
∑

v∈Ωk

bvi . Let us fix an ordering of In, say In = {i0, ..., it}. Since

the graph is connected, there exists a loop-free path between i0 and i1. Along
this path, for any two adjacent vertices i, j, there exists v ∈ Ωk such that
v 6∈ Σi ∪ Σj . By Lemma 7.5 we may assume that bvi ∈ 1

p
Z/Z for all i ∈ In.

Applying Lemma 7.2, by modifying xv
i and xv

j we can modify bvi to bvi −di0 and
bvj to bvj + di0. Note that this modification does not change

∑
i∈I

bvi . Therefore by

Lemma 6.4, after changing also xv
0 if necessary, the modified (xv

i ) is still a local
point of Xc. After these modifications, we have

∑
v∈Ωk

bvi0 = 0,
∑
v∈Ωk

bvi1 = di1 +di0,

and all the other di’s remain unchanged. We repeat this process along a loop-
free path from i1 to i2, and we modify each adjacent pair along the path from
i1 to i2 by di0 + di1 and so on. At the end, we modify each adjacent pair along

the path from it−1 to it by
t−1∑
r=0

dir . After this process, we have
∑

v∈Ωk

bvir = 0 for

r = 0, ..., t − 1 and
∑
v∈Ωk

bvit = dit +
t−1∑
r=0

dir . However, by Lemma 7.12, we know

that
t∑

r=0

dir = 0; hence, we have
∑
v∈Ωk

bvit = 0. Moreover, only finitely many bvi ’s

are modified, so bvi = 0 for almost all v; the lemma then follows.

Proposition 7.14. Let x = (xv
i ) be a local point of Xc. Assume that αc = 0,

and that X0
c (k) 6= ∅. Then there exists a local point x̃ = (x̃v

i ) of Xc such that
for all i ∈ I, we have ∑

v∈Ωk

bi(K, x̃v
i ) = 0.

Proof. This follows from Lemma 7.13.

Proof of Theorem 7.1 for K of prime power degree.

It is clear that if Xc has a k-point, then Xc has a kv-point for all v ∈ Ωk

and αc = 0. Conversely, suppose that Xc has a kv-point for all v ∈ Ωk and
that αc = 0. Let us show that the variety Xc has a k-point. We show our
claim by induction on the exponent e. Suppose that e = 1. Then K0 = k,
and X0

c (k) 6= ∅. By Proposition 7.14, there exists a local point x = (xv
i ) of

Xc such that for all i ∈ I, we have
∑

v∈Ωk

bi(x
v
i ) = 0. Lemma 6.5 implies that

Xc(k) 6= ∅. Assume now that e > 1. Since Xc has a kv-point for all v ∈ Ωk,
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the variety X0
c also has a kv-point for all v ∈ Ωk. As αc is the zero map, by

Lemma 6.7 the Brauer-Manin map α0
c for X0

c is also the zero map. Therefore
X0

c has a k-point by induction hypothesis. By Proposition 7.14, there exists
a local point x = (xv

i ) of Xc such that for all i ∈ I, we have
∑
v∈Ωk

bi(x
v
i ) = 0.

Lemma 6.5 implies that Xc(k) 6= ∅.

7.2. The general case

Recall that K/k is a cyclic extension of degree d, and that L = K × K ′,
where K ′ is an arbitrary étale k-algebra. We keep the notation of 5.3, in
particular, P is the set of prime divisors of d. For all p ∈ P, we denote by
K(p) the largest subfield of K of order a power of p, and L(p) = K(p)×K ′.
For all c ∈ k× and p ∈ P, the affine k-variety defined by

NL(p)/k(x) = c.

is denoted by Xc(p). We denote by αc(p) be the Brauer-Manin map of Xc(p).
Recall that X(K,K ′) = ⊕

p∈P
X(K(p), K ′), and that αc : X(K,K ′) → Q/Z is

given by αc = ⊕
p∈P

αc(p).

Lemma 7.15. Let c ∈ k×. Then Xc has a k-point if and only if Xc(p) has a
k-point for all p ∈ P.

Proof. Let z ∈ Xc(k) be a k-point of Xc, and let us write z = (x, y) with
x ∈ K and y ∈ K ′. Then (NK/K(p)(x), y) is a k-point of Xc(p) for all p ∈ P.
Conversely, suppose that for all p ∈ P, the k-variety Xc(p) has a k-point
(xp, yp) ∈ K(p)×K ′. For all p ∈ P, set

rp =
∏

q∈P,q 6=p

[K(q) : k],

and let sp ∈ Z such that
∑
p∈P

rpsp = 1. Set x =
∏
p∈P

x
sp
p , and y =

∏
p∈P

y
rpsp
p . Then

(x, y) is a k-point of Xc.

Proof of Theorem 7.1. Suppose that Xc has a k-point. Then by lemma
7.15, Xc(p) has a k-point for all p ∈ P. This implies that αc(p) = 0 for all
p ∈ P, and hence αc = 0. Conversely, suppose that Xc has a kv-point for all
v ∈ Ωk and that αc = 0. Then Xc(p) has a kv-point for all v ∈ Ωk. Since
αc = 0, we have αc(p) = 0 for all p ∈ P. But K(p) is a cyclic extension of
prime power degree, hence this implies that Xc(p) has a k-point for all p ∈ P.
Therefore Xc has a k-point by Lemma 7.15.

Corollary 7.16. Let IL be the idèle group of L. Then sending c ∈ k× to αc

gives rise to an isomorphism

(k× ∩NL/k(IL))/NL/k(L
×) → X(L)∗.
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Proof. It is clear from the definition of αc that sending c ∈ k× to αc is
a homomorphism; Theorem 7.1 implies that this homomorphism is injective.
That it is an isomorphism follows from the fact that X(L)∗ ≃ X

1(k, TL/k)
(see Corollary 5.11).

Metacyclic extensions

In the following we apply the main theorem to the case where K is a meta-
cyclic extension of k (recall that a metacyclic extension is a Galois extension
such that all the Sylow subgroups of its Galois group are cyclic). As before,
let Xc be the k-variety defined by the equation (0.1). Assume that K/k is a

metacyclic extension of degree q =
s∏

j=1

p
ej
j , where pj ’s are distinct primes. Let

qj = p
ej
j and rj = q/qj. For 1 ≤ j ≤ s, let Gj be a pj-Sylow subgroup of

Gal(K/k) and let Fj be the subfield of K fixed by Gj . Note that [Fj : k] = rj .
Let Xj

c be Xc ⊗k Fj . Then the injection k → Fj induces a natural injection of
Xc(k) to Xc(Fj) = Xj

c (Fj).

Suppose that Xc has a kv-point for all v ∈ Ωk. Then Xj
c has a Fj,w-point

for all w ∈ ΩFj
. Since K is a cyclic extension of Fj, we can define the Brauer-

Manin map αj for Xj
c . The necessary and sufficient condition for the Hasse

principle for Xc to hold is the following :

Proposition 7.17. Assume that K is a metacyclic extension. Then Xc has a
k-point if and only if Xc has a kv-point for all v ∈ Ωk and αj = 0 for 1 ≤ j ≤ s.

Proof. Assume that Xc has a kv-point for all v ∈ Ωk, and that αj = 0 for
1 ≤ j ≤ s. Then the variety Xj

c has a Fj,w-point for all w ∈ ΩFj
. Since αj = 0

for all 1 ≤ j ≤ s, by Theorem 7.1 the variety Xj
c has a Fj-point. Let (xj,i) be a

Fj-point of Xj
c , where xj,i ∈ (Fj⊗kKi)

×. Let bj ∈ Z such that
s∑

j=1

bjrj = 1, and

set zi =
s∏

j=1

NFj⊗Ki/Ki
(xj,i)

bj ; then (zi) is a point of Xc. The other direction is

trivial.

8. Products of cyclic extensions

In this section, we suppose that L is a product of cyclic extensions, and we
denote by X(L) the obstruction group. In the following, we give a simple
criterion for the vanishing of X(L); in other words, an easy way to decide
whether the Hasse principle holds for L.

Assume that L =
∏
i∈J

Ki, where Ki/k is a cyclic extension of degree di. Let

P be the set of prime numbers dividing
∏
i∈J

di. For all p ∈ P and all i ∈ J , let

Ki(p) be the largest subfield of Ki such that [Ki(p) : k] is a power of p, and
set L(p) =

∏
i∈J

Ki(p).
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For any cyclic field extension K/k of prime power degree, we denote by
Kprim the unique subfield of K of degree p over k. Set L(p)prim =

∏
i∈J

Ki(p)prim.

The aim of this section is to prove the following two results :

Theorem 8.1.

X(L) = 0 ⇐⇒ ⊕
p∈P(L)

X(L(p)prim) = 0,

where P(L) is a set of prime numbers, subset of P.

The set P(L) is determined in Theorem 8.3, see below.

Theorem 8.2.

X(L(p)prim) ≃ (Z/pZ)mp(L),

where mp(L) is a positive integer.

The value of mp(L) is given in Theorem 8.3.

We start with the proof of Theorem 8.2, which amounts to treating the case
where L is a product of cyclic extensions of prime degree.

Theorem 8.3. Let p be a prime number, and assume that L is a product of
n non-isomorphic cyclic extensions of degree p. Then we have

(a) If n ≤ 2, then X(L) = 0.

(b) If 3 ≤ n ≤ p + 1, then either X(L) = 0, or X(L) ≃ (Z/pZ)n−2.

(c) If n ≥ p+ 2, then X(L) = 0.

Note that Theorem 8.3 implies immediately Theorem 8.2, and gives the
value of the integer mp(L).

In order to prove Theorem 8.3, we need to come back to the definition of
X(L) = X(K,K ′) in the case where K is cyclic of prime degree, and give a
description of this group in terms of partitions.

We keep the notation of 5.1, with e = 1. In particular, p is a prime number,
and L = K ×K ′, where K is a cyclic extension of k of degree p. Recall that
Ei = K ⊗ Ki, and note that Ei is either a cyclic field extension of Ki or a
product of p copies of Ki. Let J be the subset of i ∈ I such that Ei/Ki is a
field extension, and let r = |J |.

Recall that Σi is the set of v ∈ Ωk such that Ev
i is the product of p copies

of Kv
i . For all J ′ ⊂ J with J ′ 6= J , set Ω(J ′) = ∩

i 6∈J ′

Σi, and let Ω(J) = Ωk.

By lemma 7.8, the group G(K,K ′) is in bijection with the set of partitions
(J0, . . . , Jp−1) of J such that ∪

n∈Z/pZ
Ω(Jn) = Ωk. We identify G(K,K ′) with

the set of these partitions. Note that under this identification, D(K,K ′)
corresponds to the partitions where one of the subsets is J , and all the others
are empty; these will be called the trivial partitions of J .

For all n ∈ Z/pZ and all a ∈ (Z/pZ)r, set Jn(a) = {i ∈ J | ai = n}. Then
lemma 7.8 can be reformulated as follows :



HASSE PRINCIPLES FOR MULTINORM EQUATIONS 29

Lemma 8.4. G(K,K ′) is in bijection with the set

{a ∈ (Z/pZ)r | ∪
n∈Z/pZ

Ω(Jn(a)) = Ωk}.

Proof of Theorem 8.3

Note first that (a) follows from Proposition 4.1. From now on, we assume
that n ≥ 3. Theorem 8.3, as well as a precise condition for when X(L) = 0
in case (b), is a consequence of Proposition 8.5 below.

For any positive integer d, a finite separable extension F of k is said to have
local degrees ≤ d if for all places v ∈ Ωk, the étale algebra F ⊗k kv is a product
of field extensions of kv with degrees ≤ d.

Proposition 8.5. Let p be a prime number, and assume that L is a product
of distinct field extensions of degree p of k, at least one of which is cyclic.

Then X(L) 6= 0 ⇐⇒ the factors of L are distinct subfields of a field
extension F/k of degree p2, and all the local degrees of F are ≤ p.

Moreover, if X(L) 6= 0, and if L is a product of n distinct degree p field
extensions of k, then X(L) ≃ (Z/pZ)n−2.

Proof. Let K be a cyclic factor of L, and let us write L = K×K ′, where K ′ is
a product of field extensions of degree p of k. Suppose that X(L) 6= 0. Then
there exists a partition (I0, I1) of J such that Ω(I0) ∪ Ω(I1) = Ωk. Indeed,
let (J0, . . . , Jp−1) be a non-trivial partition of J such that ∪

r∈Z/pZ
Ω(Ji) = Ωk.

Without loss of generality, we can assume that J0 is not empty. Set I0 = J0,
and let I1 = ∪

i 6=0
Ji; then we have Ω(I0) = Ω(J0), and Ω(Jr) ⊂ Ω(I1) for all

r 6= 0. Therefore Ω(I0) ∪ Ω(I1) = Ωk, as claimed. Let Ki and Kj be two
distinct factors of K ′, and let KiKj be the composite of Ki and Kj. For all
v ∈ Σi, we have

K ⊗k (KiKj)
v ≃ K ⊗k K

v
i ⊗Kv

i
(KiKj)

v,

and, since v ∈ Σi, this is isomorphic to the product of p copies of (KiKj)
v.

Let i ∈ I0 and j ∈ I1. As we have Ω(I0) ∪ Ω(I1) = Ωk, the tensor product
K ⊗k (KiKj)

v is isomorphic to the product of p copies of (KiKj)
v for all

v ∈ Ωk. This implies that K is a subfield of KiKj. Recall that K is cyclic,
and that Ki, Kj are not isomorphic; hence we have K ⊗k Ki ≃ KKi ⊂ KiKj .
The degree of KiKj is at most p2, hence we have KKi = KiKj = KKj , and
Ki ⊗k Kj ≃ KiKj is of degree p2 over k.

Let i ∈ I0, and set F = KKi; we just saw that F is independent of the
choice of i, and that F = KiKj for all j ∈ I1. This shows that Ki is a subfield
of F for all i ∈ J . Since (I0, I1) represents a non-trivial element of X(L),
for all v ∈ Ωk there exists i ∈ J such that F v ≃ K ⊗k K

v
i is isomorphic to a

product of p copies of Kv
i . Therefore all the local degrees of F are ≤ p.
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Conversely, let F be a separable extension of degree p2 of k such that all
the factors of L are distinct subfields of F . It suffices to prove that all non-
trivial partitions (J0, . . . , Jp−1) of J satisfy ∪

r∈Z/pZ
Ω(Ji) = Ωk. Suppose that

this is not the case. Let (J0, . . . , Jp−1) be a non-trivial partition of J with
∪

r∈Z/pZ
Ω(Ji) 6= Ωk. Let v ∈ Ωk with v 6∈ ∪

r∈Z/pZ
Ω(Ji). Since v 6∈ Ω(J0), there

exists i 6∈ J0 such that iv 6∈ Σi. Let r ∈ Z/pZ such that i ∈ Jr; since v 6∈ Ω(Jr),
there exists j 6∈ Jr such that v 6∈ Σj .

Since the degree p extensions K, Ki and Kj are distinct subfields of F , we
have F ≃ K ⊗Ki ≃ K ⊗Kj . Note that [Kv : kv] = p, because v 6∈ Σi. Let us
write Kv

i as a product of separable extensions of kv. If one of the factors Ms

of Kv
i is such that 1 < [Ms : kv] < p, then Ms and Kv are linearly disjoint,

and this contradicts the assumption that all the local degrees of F are ≤ p.
Hence Kv

i is either a degree p field extension of kv, or a product of p copies
of kv. However, if Kv

i and Kv are both fields, then Ev
i is a field extension of

degree p2 of kv. Since F v ≃ Ev
i , this contradicts the hypothesis that all the

local degrees of F are ≤ p. Therefore Kv
i is a product of p copies of kv, and

hence F v ≃ Ev
i is a product of p copies of Kv.

Set d = [KiKj : k]. Since v 6∈ Σj , the same argument shows that Kv
j is a

product of p copies of kv, hence (KiKj)
v is a product of d copies of kv. Note

that (KiKj)
v is a subalgebra of F v, and that F v is a product of p copies of

Kv; hence we have d ≤ p. As Ki and Kj are distinct subfields of KiKj, we
have d = rp for some integer r > 1, and this leads to a contradiction.

Hence for all non-trivial partitions (J0, . . . , Jp−1) of J we have ∪
r∈Z/pZ

Ω(Ji) =

Ωk. This shows that X(K,K ′) = X(L) ≃ (Z/pZ)n−2.

Proof of Theorem 8.1

Assume now that L is a product of n cyclic extensions, L = K1 × · · · ×Kn,
where Ki/k is a cyclic extension of degree di, and let J = {1, . . . , n}. Note
that X(L) = X(Ki, K

′
i) for any i ∈ J , where L = Ki ×K ′

i. This will be used
repeatedly in the sequel.

Let P be the set of prime numbers dividing d1 . . . dn. For all p ∈ P and all
i ∈ J , let Ki(p) be the largest subfield of Ki such that [Ki(p) : k] is a power
of p, and set L(p) = K1(p)× · · · ×Kn(p).

Proposition 8.6. We have

X(L) = ⊕
p∈P(L)

X(L(p)).

Proof. This follows from Proposition 5.10, and from the fact that L is a
product of cyclic extensions.

Lemma 8.7. Let p be a prime number, and let Ki/k, i ∈ J , be cyclic exten-
sions of degree a power of p of k. For all i ∈ J , let Ni/k be a subextension of
Ki/k. Then X(

∏
i∈J

Ni) injects into X(
∏
i∈J

Ki).
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Proof. This follows from Proposition 5.6, and Remark 5.7 following this
proposition.

Proof of Theorem 8.1 Assume that X(L) = 0. By Lemma 8.7 and
Proposition 8.6, the group X(Lprim) injects into X(L), hence this implies
that X(Lprim) = 0. Conversely, suppose that X(Lprim) = 0. By Proposition
8.6, we may assume that L is a product of extensions of degree a power of
a prime p. Let us write L = K × K ′, for some cyclic field extension K/k;
then Lprim = Kprim × K ′

prim. Since X(Lprim) = 0, by Proposition 7.10 we
have X(K,K ′

prim) = 0. Permuting K with one of the other cyclic factors and
repeating the same procedure, we obtain X(L) = 0.

Example 8.8. Let p be a prime number, and let F/k be an extension with
Galois group Cp × Cp, where Cp denotes the cyclic group of order p. Let
K1, . . . , Kp+1 be the distinct subfields of degree p of F . Set L = K1×· · ·×Kp+1.
Then by Proposition 8.5, we have X(L) = 0 or X(L) = (Z/pZ)p−1. Moreover,
we have

X(L) = 0 ⇐⇒ there exists v ∈ Ωk such that F v is a field.

• Assume first that there exists v ∈ Ωk such that F v is a field. Then X(L) = 0,
hence for all c ∈ k×, we have Xc(k) 6= ∅. In other words, we have

NL/k(L
×) = k×

in this case.

• Assume now that all the local degrees of F are ≤ p. Then by Proposition
8.5 we have X(L) = (Z/pZ)p−1.

Let Ωi be the set of v ∈ Ωk such that Kv
i is split. Note that we have

Ω1 ∪ · · · ∪ Ωp+1 = Ωk. This implies that Xc(kv) 6= ∅ for all v ∈ Ωk and for all
c ∈ k×.

Set K = Kp+1. For all c ∈ k× and for all v ∈ Ωk, let us denote by
[K, c]v ∈ Z/pZ the image of inv(K, c)v by the isomorphism 1

p
Z/Z ≃ pZ/Z.

Then the map

f : k×/NL/k(L
×) → (Z/pZ)p−1

given by

c 7→ (
∑

Ω1

[K, c]v, . . . ,
∑

Ωp−1

[K, c]v),

is an isomorphism.

When p = 2, we recover a well-known result of Serre and Tate, see [CF 67],
Exercise 5.2, page 360; see also [CT 14], Proposition 5.1.
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