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Towards Characterizing Equality in Correlation Inequalities 

RUDOLF AHLSWEDE AND LEVON H.  KHACHATRIAN 

i. INTRODUCTION 

For most of the basic inequalities in mathematics we know conditions which 
completely specify the cases of equality. Many combinatorial correlation inequalities 
are special cases of the AD-inequality, as explained in [3, 8, 10]. 

However, for this inequality it seems to be difficult to classify the cases of equality. 
Certainly this is even more difficult for the much more general inequalities of [3] and its 
relatives, which can be produced by the very same ideas of exploiting notions of 
expansiveness. In fact, the equality characterization problem for these general ine- 
qualities constitutes by itself a rich area in combinatorial extremal theory. Closer to 
home there are the equality characterization problems for inequalities, which are 
consequences of the AD-inequality. Aharoni and Holzman [1] completely settled this 
for the Marica-SchOnheim inequality. Another, though fairly special, still interesting 
case of AD could be handled by Beck [17]. 

It seems that the first study of this kind was made by Daykin, Kleitman and West 
[12], who investigated the inequality 

IAI IBI ~< ILl IA ̂ BI, (1.1) 

where the lattice L is a product of finite chains and 

A^B ={aAb:a EA, b E B}. 

If L is a lattice of subsets of a finite set, then this inequality follows immediately from 
an inequality known to combinatorialists as Kleitman's inequality [17] and known to 
probabilists and physicists as Harris's inequality [15]. The more general inequality (1.1) 
was proved by Anderson [8] and by Greene and Kleitman [14]. 

Actually, the product of chains is a distributive lattice and (1.1) extends to any 
distributive lattice, because as such it is a special case of FKG [13]. This was noticed by 
Seymour and Welsh [19].. 

FKG in turn is a simple consequence of AD (see [3]). Our renewed interest in 
correlation inequalities came with our introduction and study of cloud-antichains [5, 6] 
and the connection to inequality (1.1), which we established in [4]. 

The main contributions of the present paper are two equality characterization 
results. They both continue and complete the basic investigations of Daykin, KIeitman 
and West [12]: 

I. On pages 142-143 of [12] there is a detailed discussion about the difficulties in 
extending the results (Theorems 4 and 5) basic for equality characterization in (1.1) for 
lattices, which are products of chains of equal length k, to lattices, which are products 
of chains of varying lengths, say kl, k2 , . . . ,  k,. We overcome these difficulties and also 
obtain the desired equality characterizations in Theorems i and 2 (Section 3). Actually, 
the corresponding statement (Theorem 6 of [12]) for equal lengths chains contains a 
flaw (see Example 1 in Section 2). The statement holds, however, if k is a prime. 
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II. Hilton [16] proved that if A and B are subsets of a boolean algebra each not 
containing an element and its complement, and if no element of A is related to any 
element of B, then IA tO BI ~< ½ ILl. In [12] this was generalized to lattices with a polarity 
(Theorem 8). Amongst others, the authors called for solution of the equality problem. 
Our answer is Theorems 3 and 4 of Section 5. 

2. PREVIOUS RESULTS 

We repeat results of Daykin, Kleitman and West [12], which are described in the 
abstract of [12]. Except for a reference to these theorems in square brackets, we will 
literally repeat the main part of the abstract: 

'Let L be a lattice of divisors of an integer (isomorphically, a direct product of 
chains). We prove IAIIBI~<ILIIA N BI for any A, B c L where I'1 denotes 
cardinality and A n B = {a f3 b: a E A, b • B}. IA N BI attains its minimum for 
fixed IAI, Inl when A and B are ideals [Theorem 2]. l'l can be replaced by certain 
other weight functions [Theorem 3]. When the n chains are of equal size k, the 
elements may be viewed as n-digit k-ary numbers. Then for fixed IAI, IBI, IA fq BI 
is minimized when A and B are IZl and IBI smallest n-digit k-ary numbers written 
backwards and forwards, respectively [Theorem 4]. IA N BI for these sets is 
determined and bounded [Theorem 5]'. 

We do not need Theorem 3. Whereas Theorems 2 and 4 are self-explanatory, we give 
the details of Theorem 5 for the orientation of the reader, even though we do not rely 
upon it. 

THEOREM 5 [12]. Suppose that L is a product  o f  n chains o f  size k, 0 <~ a <~ k", 
o <- ~ <~ k". Let ~k(n, a, [3) = min{lA N BI: IAI = a, IBI = [3} and e~(n, a, [3) = 
Izk(n, a, [3) -- o~[3[k ~. 1f pk  n-1 < ot <~ (p + 1)k "-1 and [3 =- r mod k, then: 

(i) tzk(n, a, [3)= txk (n -  1, a - p k ~ - l , [ - ~ - ' ~  

p > O ;  

(ii) ek(n, a, [3)= e k ( n -  l ,  a - -pk~-~ , [O-U~-] )  

- - ~  O ~ r ~ p ,  
+ 

l ( k - r ) ~ , ,  p < r < k .  

Furthermore, 

(iii) 

(iv) 

and, finally, 

(v) 

ek(n, k" - a, k" - [3) = e~(n, a, [3); 

~k(n, k" - a, k" - [3) = ~k(n, a, [3) + k" - a - [3; 

0 <~ ek(n, a, [3)<~ kn[4. 
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REMARK. 1. 
means to find necessary and sufficient conditions for 

ek(n, - , /3)  = 0. 

Theorem 6 of [12] asserts that (2.1) holds iff 
(i) k" I ot/3, k lot and k I/3, or  
(ii) trivially, ot or /3  is k ~ or 0. 
This is true if k is a prime. For composit  e k the conditions (i) and (ii) are necessary, but  
not sufficient. 

In the notation of  this theorem, equality characterization for (1.1) 

( Z l )  

EXAMPLE 1. Choose n =3 ,  k = 4  and ot =13 = 8. These numbers  satisfy (i). 
However ,  for all ideals A, B = L  with 1,41 = IBI = 8, inspection shows that IAABI > 1 = 
IAI IBI" 4 -3. We shall see that (i) has to be replaced by 
(i*) there are positive integers i, 11 and/31 such that 

ot = k l " oq and [3 = kn-l/31. 

3. EQUALITY CHARACTERIZATION IN IA ABI ~ IAI IBI L -1 

Let L = [kl] x • • • × [k,] be the lattice defined as direct product of  chains [ki] of  
length ki >/2 (i = 1 . . . .  , n). For  any 1 = [n] = {1, 2 , . . . ,  n}, we define the sublattice 

L ,  ~ I-[ [k,]. (3.1) 
i E l  

THEOREM 1 (equality characterization within ideals). For ideals A ,  B = L, equality 
in (1.1) holds iff: 
(a) A or B equals 0 or L; or 
(b) there exists an 1 = [n], 0 < III < n, such that 

A = L~ X A1 and B = B1 × L[nl\l. 

So, IAI = ~ , z  ki .  IAll and 181 = IL~[,]\~ ki" IBd, for  some ideals A1 c L[,]\I and B1 = Lt. 

THEOREM 2 (equality characterization for general sets in terms 
cardinalities). Equality in (1.1)/s  assumed for sets o f  cardinality a and/3  iff. 
(a) a o r  fl is 0 o r  l'ITffil ki; or 
(b) there exists an I c [n], 0 <l l I  < n, and there exist positive integers "1 and fll with 

ot=l-lk,' x, /3= 1-I k,./31. 
t ~ 1  iE[n]Xl  

of 

Note  that Theorem 2 is an immediate consequence of  Theorem 2 of  [12], mentioned 
in Section 2 and Theorem 1. We need here another well-known result, which is now 
also a child of A D  (see [3]). 

. CHEBYSHEV'S INEQUALITY. Suppose that we have the two decreasing sequences o f  
non-negative numbers 

ul>~u2>~ • • ">~Um>~O and x1>~x2 >~" • ">~Xm~O. 
Then, 

m m 

2 u, 21,  
i f f i l  l f f i l  i ~ 1  

(3.2) 
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Moreover, equality holds iff  at least one o f  the conditions ul = u2 . . . . .  u,, or 
xl  = x2 . . . .  xm holds. 

PROOF OF THEOREM 1. Clearly, condition (a), and also condi t ion (b), imply equality 
in (1.1). The issue is to prove that equality implies (a) or (b). 

Suppose then that A # ~b, B # ¢k and that  (the case n = 1 being trivial) n />  2. For  any 
r E [n] and i E [k~], define 

Ai = {a n ~ A: ar = i}, 

Clearly, 

and 

Therefore 

kr 
A = U A i ,  i=l 

Bi = {b n u B: br -- i}, 

k, 
B =  U B j  

i = 1  

(3.3) 

Ai N A j  = qb, B, N Bj = q~ for i ~ j .  

(3.4) 

(3.5) 

k, 

IA n BI = ~ IA, n B,I. (3.6) 
i = 1  

Now set A,  = {i} × A*, B, = i x B*, where A*, B* c L (o __a 1-Ij,,~ [kj], IA*I -- IA,I, IB*I = 
IB~I and IA~ n Bil = IA~ n n*l. Since A and B are ideals, also A*, B* (i = 1 . . . .  , k~) are 
ideals and 

A * = A ~ = . . . = A * , ;  B * = B ~ = . . . = B * .  (3.7) 

Therefore we have 

IA]I>~IA21>-".>-Ak,I, IBll ~- IB21 ~- ~ ~ ' " ~  In,,l. 

Since for ideals C and D always 

C A D  = C A D ,  

we conclude from (1.1) that, for i = 1 , . . . ,  k,, 

IA* n B*I t> IA*I IB*I = IAil IBil 
[Ii,,r kj IIi#r kj" 

Hence,  by (3.6) and the following definitions, 

k, 1 k, 
t A n  BI = ~ IA,.* n B*l ~ ~ ~  IA,I IB, I. 

,=I IIj#,  .= 

Under  the conditions (3.8) we can now apply Chebyshev's  inequali ty,  which yields 

IA n BI >-l-ij~r ~kr=l IAi[ ~,~L] In,l__ IAI IB[ 
kj kr ILl 

In the case IA N BI = IAI IBI/ILI, therefore,  necessarily 

IA* n B*I = IA,I IBil 
l-[j# r kj for i = 1, 2 . . . . .  k,  

and by the equality characterization in Chebysev's inequality 

lAd = IA21 . . . . .  IAk,I = IAI/kr or IBll = IB21 . . . . .  Ilk,I = IBI/k~ 

(3.8) 

(3.9) 

(3.10) 
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holds. Then define I = In] as the set of all positions for which IAll . . . . .  IAk, I (i e / ) .  
Clearly, then, IBal . . . . .  IBkjl (] e [n]\ / ) .  

If  now I = [n], then A = L, and if l = ~b, then B = L, and we are not  under  our 
supposition. 

Finally, if 0 < III < n, we conclude with (3.7) that A* = A* . . . . .  A ~  for r e X and 
that B* = B* . . . . .  B$, for r e [n]\ l .  

Therefore we must have 

A = Lx x A1 and B = B1 × L[,,]~, 

where A1 c Ltnl\ t and B1 = LI are ideals. [] 

4. AUXILIARY RESULTS FOR EOUAL1TY C H A R A ~ T I O N  FOR CLOUD-ANTICHAINS OF 
LENOTH 2 SATISFYINO A POLARrrY CONSTRAINT 

As indicated under II of the Introduction, we have obtained a second equality 
characterization in Theorem 2. We introduce first some notions from [4] and [12]. 

Let  L be  a distributive lattice. For a subset C of L let u (C)  and l(C) denote  the filter 
and the ideal generated by C; that is, 

u ( C )  = {c e L: :la e C, a <<- c}, (4.1) 

I(C) = {x e L: 3a  e C, a >I c}. (4.2) 

By a polarity cr of the lattice L (in the sense of [11]) is meant  an order,~reversing 
bijection, the square of  which is the identity: that is, a ~< b implies o'b ~< o'a and 
or(or(a)) = a. For example, complementation is a polarity. For  A c L we set or(A) = 
{ o ' a : a e A } .  I f a ~ b  and b ~ a  we write a ~ b .  If f o r A ,  B c L  and for all a e A ,  
b e B, we have a ~ b, then we write A ~ B. 

Let  us consider a problem studied in [12], which generalizes the problem considered 
by Hilton [16] and which is mentioned under II in the Introduction. 

For  A, B c L we write A ::*:: B, if 

A ~ B (4.3) 
and if 

a e A implies or(a) ~ A and b e B implies cr(b) ~ B. (4.4) 

We  also speak of a polar image free cloud-antiehain. 
Theorem 8 of [12] says that A ~ B implies 

IAI + IBI ~< ~r ~< ½ ILl, (4.5) 

when 7r is the number  of  non-trivial orbits of  ~r (i.e. unordered pairs {e, ere} with 
e ~ o'(e)). 

It was asked in [12]: 'Which A, B achieve the maximum a?'.  
Here  we completely answer this question, when L is a direct product  of  chains of  

arbitrary lengths and polarity is complementation. 
At  first we present auxiliary results, which are true for any distributive lattice and 

any polarity or. 
Suppose that for A, B = L, A : * :  B and 

IAI + Inl -- ~r. (.4.6) 

Let  (A*, B*) be  any pair of bisaturated extensions of (A, B)  with respect to (4.3); that 
is, A ~ A * ,  B ~ B*, A* ~ B* and A*, B* are maximal, obviously, A* and B* are both 
convex. Note that the pair (it*, B*) is not uniquely defined. 
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However, we can write 

A* = A U or(Ax) U D~, B* = B U tr(Bx) U D2, 

where DI U Dz c D = {a ~ L: o-(a) = a}, (A1 U B1) n D = O and AI c A, B1 c B, since 
if, say, a ~ o-(A~) and o ' ( a ) ~ A ,  we could take sets A'  = A  U{a}, B for which (4.3), 
(4.4) hold and IA'I + IBI = zr + 1, in contradiction to (4.5). 

So A* and B* can be represented as 

A*=AxUo'(A1)UAzUCUD1, B*=B~Uo'(Bx)UBzUo'(C)UD2, 

where o'(A 2 U B2) n (A* u B*) = ~.  
Since (A*, B*) satisfies (4.3) and is bisaturated, necessarily 

E = I(A*)\A* = l (B*)\B* = l(A*) n l(B*) 

and 

F = u(A*) \A* = u(B*) \B*  = u(A*) n u(B*) 

(see also [4]). 
Clearly, no element of E is greater than an element from L\E ,  because E is an ideal, 

and no element of F is smaller than an element from L\F,  because F is a filter. 
Formally, 

E n (u(A*) U u(B*)) = ~ and F n (l(A*) u l(B*)) = 0 .  

E and F are unions of the following sets: 

where 

E = R U/93 U o'(A~) U cr(B~) and F = o'(R) U D4 U o'(A~) U o'(B1), 

LEMMA 1. 

A~ ::k= o-(A~), A~ ~ o'(B1), 

(A* U B*)\  (A~ U B~) ::k: D3 and 

A~ ~ o'(B~), B~ ~ a(B~), 

(A* U B*)\(A~ U B~) ~ D4. 

PROOF. Suppose that there exists an a E A~ and an al ~ o-(A~) for which a > al or 
a < a l .  a > a l  is impossible, because a E A ~ c A *  and al E or(A~)cF. Also, a < a l  or, 
equivalently, o-(a) > o-(al), is impossible, because cr(a) ~ o'(A~) c E and o'(aa) e A~ c 
A*. Hence A~ ~ cr(A~). One proves the other relations similarly. [] 

We have 

-- ICI + IAI[ + Imzl + 1811 + In2l + IR[, D = Da U D 2 U D 3 U 04  
and 

ILl -- 2x + IOl. 

From assumption (4.6) we have zr = IAI + IBI = [All + IA21 + 2 ICI + IB11 + IBzl and hence 

IRI = ICI. (4.7) 

We now consider l(C) n l(o-C). In Theorem 8 of [12] it is shown that 

I(C) n l(trC) = R, (4.8) 

and so I t (C)  n l(o-C)l ~< tRI = C, by (4.7). 

R c L \ D ,  D s c D ,  D a c D ,  A~UA~=A2,  

A~ n A~ = (~, B~ U B~ = B2, B~ N B~ = 0 
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Also (see [12, Lemma 2]) it has been proved that 

ICI ~< II(C)l" II(o'C)l <~ It(C) n l(o-C)l, 
ILl 

which, together with (4.7) and (4.8), gives us 

I/(C)I" II(¢rC)l 
IRI = ICI = = II(C) n l(trC)l 

ILl 
and 

l(C) n l(¢rC) = n. 

(4.9) 

(4.10) 

LEMMA 2. Suppose that (4.6) holds. 

(i) I( C) = C tO A a~ tO cr(B~) tO 

(ii) 

Then: 

R, II(C)I = 2 ICI + IA~I + IB~[, 

l(o-C) = ~(C) tO ¢r(m~) tO B~ tO R, II(o'C)l = 2 ICI + IA~I + IB~l. 

(Im~,l + IB~[)(IA~I + IB~l) -- 2 .  ICl" IAxl + 2 .  ICl" Inal + ICI 

× (1911 + IO21 + 1931 + IDol). 

PROOF. (i) Let us introduce T = C U A~ U o'(B~), S = ~(C)  to ¢r(A~) to B~ and show 
that T=+:S. Since A*::+:B* and o-(A*)::+::~r(B*), we have C=,~:o'(C), C::~::B~, 
C::+: o'(A~), A~ ~ cr(C), A~ ::+: B~ x, o-(B~) ::k:: o'(C) and cr(B~) ~ o'(A~). Also, 
according to Lemma 1, A~ ~ o-(Al) and o'(B~) ::+: B~. Hence T::~: S. 

We now consider l(T) and I(S). Clearly, l(C) =_ l(T) and l(¢r(C)) ~ I(S). 
Let l (T)= Tto W1 and l (S )=Sto  W2 for some 1411, W2cL.  Let us prove that 

W1 U W2 c R. For this it is sufficient to show that 

( I ( S ) U I ( T ) ) A ( L \ ( T t o S t o R ) ) = O ,  since T=+::S. 

One has 

L \ ( T  U S U R) = F UAx U o'(A1) U B~ U o'(B1) UA~ U B ] U  D~ U 19l U D3. 

Since T n F = O, here l(T) O F = 0.  
Suppose that a E A~ U ¢r(Ax) and a ~ l(T) = I(C) U I(A~) U l(o(B~)). Then a 

l(C) U l(o'(B])), because (A1 U or(A1)) :J¢:: C U cr(B2). If a ~ l(A~), then there exists an 
aa ~ A~ and an a < al with o'(a) > o-(al). This is impossible, because or(a) ~ Aa U 
or(A1) c A *  and o-(al) E o'(A~) c F. Hence,  I(T) n (A1U o-(Aa)) = O. Similarly, I(T) O 
(Ba U o'(B~)) = O. 

Suppose that a ~ A~ and a E I(T) = I(C) U I(A~) tO l(o'(B~)). This means that there 
exists an a l e  C UA~ U o-(B~) for which a <ax or (equivalently) or(a) > cr(al), which is 
impossible, because o-(a) ~ o-(A~) = E and or(a1) ~ ~(C) tO ¢r(A~) U B~ c L \E .  
Therefore we have l (T )AA~ = O and, similarly, l ( T ) n  B~ = 0.  

Suppose that a E D1 and a ~ l(T). This means that there exists an al ~ C U A~ U 
o-(B~) for which a < ax. Clearly, al ~t C tO o'(B~), because D1 ~ (C tO o-(C) U B2 tO 
o(B2)). If al e A~ and a <aa ,  then o ' ( a )>  o'(ax), which is impossible, because 
t r ( a ) = a  ~ D 1 c A *  and o'(al) ~ t r (A~)cF .  Therefore I(T)ADa = O  and, similarly, 
l(T) n Dz = 0 ,  I(T) O 193 = 0.  

Thus l(T) O ( L \ ( T  U S tO R))  = O and hence W~ = R. Similarly, it can be proved tlaat 
l(S) O ( L \ ( T  tO S U R))  = O and W2 = R. Therefore we have 

I (T)  n I(S) = R. 
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However, since I(C)=__ I(T) and l(~r(C))~_ I(S), from (4.10) we conclude that  

I(T) n I(S) = R. 

Now we apply (4.9) and obtain 

II(C)l" I/(o'C)l < II(T)I" I1(S)1 
ICI--IRI-- 

ILl ILl 
~< II(T) O I(S)I 

= I I ( C )  n l ( o - ( C ) ) l  = IRI = ICI. 

Therefore II(C)I = II(T)I, II(o'(C)l = [I(S)I and since I (C)~I (T)  and l(cr(C))c_l(S), 
necessarily 

I(C) = I(T) = C O A~ U ~(B~) U R, 

and 
1(o'(C)) = I(S) = or(C) U ~r(Al) U B~ U R, 

This proves (i). 
(ii) follows from (4.9) and (i) after simplification. 

(i) 

(ii) 

II(C)l = 2 ICl + IA~} + In~l 

II(crC)l = 2 ICl + IA~I + [B~I. 

Suppose that (4.6) holds. Then: 

IA~I" IB~I---ICl" 1941, IA~I" In~l = ICl" 1931, 

IZ~l" Im~l -- 2 .  ICl" IAll + ICl" IOal, 

In~l" In~l = 2- ICl"  Inal + ICl" IOzl, 

II(A*) n I(B*)I --ICI + 1931 + IA~I + [nll =!I(A*)I" II(B*)I 
ILl 

LEMMA 3. 

P3 = c u A~, t', = C U ~(B~), 

Q3 = or(C) u or(A1), Q4 = or(C) u B~. 

PROOF. We consider the sets 

P I = C U A ~  P2=CUA~,  

Q~ = o-(C) u B~, Q2 = o(C) u B~, 

[] 

It can be verified (using A* ::+:: B* and Lemma 1) that Pi::~: Qi (i = 1, 2, 3, 4). 
We are interested in II(Pi) n l(Qi)l and lu(Pi) n u(Qi)l, for i = 1, 2, 3, 4. Since P1 c A *  

and Q1 = B*, we have 

1(P1) n I(QI) = E = cr(A~) U o'(B~) u 1)3 u R 
and 

u(e~) o u(Ox) = F -- cr(A 1) U o'(B~) U D4 U or(R). 

According to Lemma 1, P1 z9¢:: u(Ao) O/93 and Qx ~ cr(Bo) U/)3. Therefore  

II(Px) n I(Qa)I = c and lu(P0 o u(Qa)l ~< IA~,I + IB~I + I/)41 + ICI. (4.11) 

Similarly, 

II(e2) n 1(02)1 ~< Im~l + IB~I + IOal + ICI and 

We also verify that 

I (P3)AI(Qa)=AIUcr(A1)Oo(A~)UA~OD1UR and u(P3)nu(O3)=o-(R) 

lu(P2) n u(Qz)l = ICI. (4.12) 
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o r  

II(P3) N I(Q3)I ~< 2 .  [Axl + [All + [Ax, I + IDxl + ICI 

= 2 IAll + [A21 + IDxl + ICl 

Furthermore 

1(/)4) f'l I(Q4) = R and 

o r  

It(P4) N l (a4) l  = ICI and 

and lu(P3) n u(Q3)l - ICI. (4.13) 

u(P4) rl u(Q4) c B113 o'(Bx) LI B~ t.J o'(B~) t.J D2 

lu(P4) n u(Q4)l ~< 2 IBal + IB21 + 1/921 + ICI. 
(4.14) 

Now, since L is a distributive lattice, we ran apply the A D  inequality and obtain 

IP~I- IQ, I ~< IP, v Q,I"  IP~ ̂  Q,I ~< lu(Pt) n u(Q,) l  • II(P3 n I(Q,)I for  i = 1, 2, 3, 4. 

From (4.11)-)4.14) we have that 

1,41,1" In,~l ~< ICl" 1941, IAgl" Inll ~ ICI" ID31, 

[All" IA~I ~< 2 ICl" [All + If[" IDal, IB~I" IC~l ~< 2 IcI .  IBll + IC[" 1921. 

Now (i) follows from (4.15) and (ii) in Lemma 2. (ii) follows from 
simplification. 

(4.15) 

(i) after 
[] 

REMARK. 2. Let  US define s*(L) as the smallest real number  s* ~ueh that 
IMI" INI ~< S* IM N NI for all ideals M, N c L with M ~ N, N~; M. From (ii) in Lemma 
3 we draw a simple conclusion. 

COROLLARY. Assume that s* < ILl. Then (4.6) holds iff [AI" Inl = 0, i.e. one o f  A,  B 
is 0 ,  and the other consists of  ~r non-trivial orbits. 

EXAMPLE 2. Let L be any lattice for which (1.1) holds. We consider a new lattice 
L '  = L U {g}, where element ~ is defined to satisfy ~ ~> u for all u • L. Clearly, L' is a 
lattice for which IMI" INI <~ IL'[" IM f3 NI for all ideals M, N = L', but s* < IL'I. 

We present our last important auxiliary result. 

I.~MMA 4. Suppose that (4.6) holds, 0 < [,41 ~< IBI and ISI ~ 1. Then 

A* =A.  

PROOF. Let IDI = 0 or, equivalently, D1 =/92 = D3 =/94 = 0. We apply Lemma 3: 

IA~,l • IB~l -- 0, [All" IB~I = 0, [A~I- [A~[ = 2 ICI- Mxl, 

IB~l" [B~l -- 2 ICl" IBal. 

Suppose that [All # 0. Then [All # 0, [A~l ~ 0 (since always C # 0 ,  ff 1,41 > 0). Hence  
IB,~l = IB~l = IBll -- 0, wh ich  contradicts IAI <~ IBl. Therefore,  ff IDI = 0, then [All = 0 
and hence A* = A. 

Now let IDI = 1. There are four possibilities: 
(i) Suppose first that D1 = 1 and D2 =/93 =/94 = 0. Then Lemma 3 gives 

[A~,l- leVI = o, JAil. IB~l = 0, [All" Ia~l = 2 ICI. Iaxl + ICl > 0, 

Ieil" IB~l -- 2 ICl. levi. 
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We have [Z~l ~ 0, IA~I ~ 0 and hence IB~I -- In~l -- [n~l -- 0, which contradicts  IAI ~< In[. 
Therefore  this case is impossible. 
(ii) Next,  suppose that D~ = 0. /92 = 1 and/93 =/34 = 0. then  we have  

IA~[" IB~I = 0, [A~[. In~l = 0, IA~[" IA~I = 2 ICI" JAil, 

In~l" In~l = 2 ICl" Inll + If[ > 0. 

Hence  ]B~I ~ 0 and IBm[ ~ 0 imply that IA~I 
(iii) Now suppose that 

Then  we have 

Im~l" IB~I = 0, 

= [A~[ = IAll = 0 and A* = A. 

D1 = 0 2  = 0, D3 = 1, D1 = O. 

(iv) In the case IA11~0 

IA~I" In~l -- ICI > 0, IZ~l" IAa~l = 2 ICI" IAll, 

IB~I" In~l = 2 ICl" IB~I. 

necessarily IA~I~0 and [B~I = IBll = 0 .  F r o m  IA~I" IA~I = 
2 ICl" IAll > 0 and ]A~I" IB~I = ICl > 0 we conclude that  IB~I = 1Al1/2 IA~I < IA~[ and 
hence Inl = ICI + IB~I < If[ + IAll < IAI, which is a contradict ion.  

Therefore ,  IAI[ = 0 and hence A* = A. Finally, when D1 = D2 =/93 V 0, /94 = 1; 
similarly, we have A* = A. [] 

5. THE MAIN RESULTS 

Let  L = 1-I~=~ [0, 1 . . . .  , k~-l] be a direct product  of n chains and let the polar i ty  cr be 
complementat ion;  that is, for  a = (al,  a2 . . . . .  an) ~ L ,  

(r(a) -- ~ = (kl - 1 - al . . . . .  k ,  - 1 - a ,) .  (5.1) 

Obviously, if 2 ] 1-I]' k i, then D = IZi ( there are no trivial orbits),  and if 2 J( 1-I7 k~, then 

and IDI = 1. 

THEOREM 3 (equality characterizat ion in terms of  numbers ,  II7 ki even).  Suppose 
that L = I-I,."=1 [0, 1 . . . . .  ki-1], 2 1117 ki and that polarity is complementation. Then there 
exist A, B = L, for which (4.3) and (4.4) hold, and 

IAI+IBI ILl 1-I7k, 
=-2--= 2 ' 0<IAI~<IBI 

iff there exist positive integers a and b and partition [n] = Io U Jo such that 

IAI = a . b, a <~ l"Ii~lo ki and b <~ rIi~Jo ki 
2 2 

PROOF. Let  (A, B)  be a pair  for which (4.3) and (4.4) hold,  IA[ + IBI = L/2  and 
0 <  IAI ~< IBI. 

Let  (A*, B*)  be a bisaturated extension of  (A, B).  Thus,  by definition, A*::k=B* 
and according to Lemma  4, we have A* = A. 

There fo re  A --- I(A ) \ (I(A ) fq I(B*) ) and B* = I(B*) \ (I(A ) N I(B*) ). 
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W e  set a = II(A)I,/3 = II(B*)I, apply L e m m a  3(ii) and obta in  

11(.4)1" I/(B*)I af t  
IAI = I I (A)I-  II(A) tq l(g*)l  = II(A)I = a - - -  

ILl ILl 

and IB*I = ft - aft~ILl. Therefore  the ideals I (A)  and l (B*)  minimize II('A) A I(B*)I for  
fixed I/(A)I = a and I/(n*)l = ft. 

Since IAI + IBI = ILl/2, IAI ~< IBI, necessarily a ~</3, [,41 + IB*I >~ ILl/2 and hence  

f t ,  ILl 
ILl 2 ' 

which is equivalent  to 

Therefore  
(ILl - 2a)( lLI  - 2/3) ~< O. 

a ~< ILl/2, /3 1> ILI/2. (5.2) 

Since the ideals l (A )  and l (B*)  minimize II(A)fl  I(B*)I we apply Theo rem 2 to the 
cardinalities II(m)l = a and II(B*)I -- /3: 

t l  
(a) a or /3  is 0 or l'Ii=l ki = ILl; 
(b) there  exists an 1 = [n], o < Ill < n, and there exists positive integers a~ and/31 with 

a = ~ k , . a , ,  f l =  ~ k , ' f t a .  
i ~ l  iE[n] \ l  

We omit  point (a), because 0 <  IAI ~< IBI. 
With  (5.2) we conclude f rom (b) that  

1-I k, . ax = a <--- lLl/2 = f-I k , / 2  , 
i ~ !  1 

thus 

and thus 
iE[n] i~[nlXl 

l E l  t I E !  i ~ l  

Hence ,  IAI = a - aft~ILl = a t "  1-Ii,lki - ad31 = a l ( l X i e l k i -  ftl) and as a, b, 10 and Jo 
we can take 

a = al ,  b = 1-I k, - [31, lo = In]\1, Jo = 1. 
i e l  

This proves necessity. 
Now suppose that  IAI = a - b ,  In] = loUJo, lo f~Jo= O, a<~rli~loki/2,  b <~l-L~joki/2 

and let us construct a pair (A, B)  with propert ies  (4.3), (4.4) and with IAI + IBI = ILl/2. 
Le t  A1 be the set of  the first a lexicographically smallest vectors of  length 11ol in 

sublatt ice LIo and let A2 be the set of the b lexicographically largest vectors of  length 
IYol = n - 1Iol in sublattice/_,So. We  consider A, B* c L,  where  

A = Ax × A2, B*  = (LIo \AO × (LJo\A2). 

It is clear that: 
(a) A =~c:B*; 
(b) the  sets A, B* are bisaturated with respect to the relat ion ' incomparable ' ;  
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(c) IAI = a .  b and IB*[ = (l-I,,~0 k~ - a)(IIi~Jo k, - b). 
Since 2 [ 1-I~ k ,  then at least one of  the integers IL~ol = H,.zo kt and IZJol = II~.~o k~ is 
even. 

Furthermore,  since a ~< [Lzo[/2 and b <~ [Ljo[/2, and A1 and A2 have lexicographic 
order, then necessarily at least one of  the following holds: 
(1) ~ E L ~ \ A 1  for all a l ~  A1; 
(2) ~ E L / 0 \ A  2 for all a 2 e A2. 
Hence A c B*. It is easy to verify that  in B* there a reexac t ly  (ILl0l - 2a)(lLJo] - 2b) /2  
unordered pairs {c, ~}; c, ? e B*. Therefore,  B* = B U B1, where B1 c B, IBxl = (IL~01 - 
2 a ) ( I L j -  2b)/2 and B contains no element  and its complement .  Therefore  (A, B) 
satisfies both (4.3) and (4.4), and we verify that  

IAI + IBI = a .  b + (IL,ol - a)( lLjol  - b) - ( IL , J  - 2a)(lL~0l - 2b) ILl 
2 = T "  [] 

THEOREM 4 (equality characterization in terms of numbers,  1-17ffil k~ is odd).  Suppose  
that L = 1-I7=1 [0, 1 , . . . ,  k~ - 1], 2 ;f 1-I~ k~ and that polarity is complementat ion.  Then 
there exist A,  B ~ L for  which (4.3) and (4.4) hold, and 

I L l -  1 
I A I + I B I =  2 IAI~<IBI 

/ft.. 
(i) there exist positive integers a and b and a partition [n] = lo U9 Jo, lo, Jo # 0 such that 

IAI = a .  b, a < [Lzol/2, b < ILs01/2; 

o r  

(ii) IA[ = ([Ltol ± 1)([LjJ :t= 1)/4 and 

for  all lo and Jo, I0 U J0 = [n], I0, J0 ~ O. 

IBI = IL~ol ~= 1)(ILJol ± ) / 4  

PROOF. Let ( A , B )  be a pair for which (4.3), (4.4), IAI + IBI = ( I L l - 1 ) / 2  and 
0 <  IAI ~< IBI hold. Let  (A*, B*) be a bisaturated extension of  (A, B)  and again apply 
Lemma 4 to obtain A* = A. 

As in the proof of Theorem 3, II(m)l = a and II(B*)I ---/3; 

IAI = u - ,~IILI,  IB*I = / 3  - '~IILI ,  a = ~ k~. ,,~, ~ -- I ]  k~. ~ .  
i e l  iG[n]\! 

Furthermore,  1,41 + IB*f ~> [A[ + IBI = (ILl - 1)/2, and hence 

IAI + IB*l = ,~ - "~3~ILl +/3 - ,,~3~ILl 

= r I  k , .  ~1 - ,~1"/31 + 1-I k , . / 3 1  - al/31 >~ (ILl - 1 ) / 2  
i ~ l  iE[n]Xl 

or, equivalently, (II~Efnl\~ k,. - 2 a l ) ( I I t ~  k~ - 2/31) - 1 ~< 0. 
This can be true only when: 

(a) 2al  < l'L~[~lxtki, 2/31 > I I i~k i ;  
(b) 2al  = IIi~tn]xlki - 1, 2/3a = II~Elki - 1; 
(c) 2oq = l'L~tn]\tki + 1, 2/31 = l'Ii~lki + 1. 

For the case (a), as in the proof  of  Theorem 3, we can take integers a = a l ,  
b = 1-L~lki- /31,  Io = [n] \ I  and Jo = I, and so IAI can have parameters  as in (i). 
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If (b) holds  or, equivalent ly,  a = ( I L l -  ILl1)/2 a n d / 3  = ( I L l -  ILE.lxl[)/2, then  A and 
B can have pa ramete r s  

IAI = (IL,I + 1)(IL[.1,~I - 1)/4,  IBI <~ IB*I = (IL, I - 1)(IL[.1~ + 1) /4  

In case (c) one  has 

[,41 = ( IL / I  - 1)(IL[.] , . , t  + 1) /4 ,  IBI ~< IB* I  = ( ILA + 1 ) ( I L t . 1 , A -  1) /4.  

Therefore  IA[ can have  only pa ramete r s  as in (i) or  (ii). 
This proves  necessity.  
To  show sufficiency, suppose  that  [AI = a .  b, [n] = Io O Jo, Io, Jo ~ O,  a < Ilol/2 and 

b < ~ro[/2. W e  construct  (A, B*)  as in the  p roo f  of  T h e o r e m  3: 

x = x l  x a 2 ,  B = (L ,o \a , )  x (L,o\X2). 

W e  note  that  B* = B U Bx U {d}, whe re  Bx = B, IBtl = [(ILzol - 2a)(lL~ol - 2b)  - 1]/2 
and d E L is an e lement  with d = d; i.e. 

, . . . ~  • 

W e  verify that  ,4 and B satisfy (4.3) and (4.4) and 

1,41 + IBI = ( I L l -  1)/2. 

N o w  let IAal = ([L~01 + 1) /2  and IA21 = (Iej01 • 1)/2 (the sets A~ and A2 are  defined in the  
p r o o f  of  T h e o r e m  3) and consider  

a = x a2 ,  B = (Lloxa ) x (L oxa2). 

It is easy to verify that  (A, B )  satisfies (4.3) and (4.4): 

IAI = (IL~01 ± 1)(ILJ01 =F 1)/4, B = (Ittol =F 1)(ILJol + 1) /4  and 

IAI + IBI = ( I L l -  1)/2. []  

COROLLARY. (i) Suppose that kt  >I k2 ~ " " ~ k,.  Then, for  all r, r <<- 117 -1 kj)/2, 
there exists a pair (A, B),  A,  B c L, for  which (4.3) and (4.4) hold, [,4[ + IBI = LILI/Ed 
and [,4[ = r. 

(ii) Suppose that k l = k 2  . . . . .  k , = 2  (Hilton's results in [16]). Then, for  all r, 
r <~ 2 "-1, there exists a pair (,4, B ) c  L for  which (4.3) and (4.4) hold, 

IAI + IBI = 2 "-1 and IAI = r. 

PROOF. (i) W e  put  a = 1, b = r, Io = {n}, Jo = {1, 2 . . . .  , n - 1} and apply Theo rems  
3 and 4. 

(ii) follows f rom (i), because  min([AI, IB[)~<2 "-2. []  
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