Note

A counterexample to Aharoni's strongly maximal matching conjecture

R. Ahlswede*, L.H. Khachatrian
Universität Bielefeld, Fakultät für Mathematik, Postfach 100131, 33501 Bielefeld, Germany

Received 1 May 1995; revised 12 July 1995

It is conjectured (and proved for edge sets of graphs) in [1] that in every family \mathscr{A} of finite sets a subfamily \mathscr{B} of disjoint sets (called a 'strongly maximal matching') exists, so that no replacement of k of them by more than k sets from \mathscr{A} results again in a subfamily of disjoint sets.
As expected by Erdős (Introduction of [2]), the conjecture is false. A counterexample is \mathscr{A}, the family of those finite subsets of the set \mathbb{N} of natural numbers, whose cardinality and smallest element (in canonical order) are equal.

In fact, suppose \mathscr{A} contains a strongly maximal matching \mathscr{B}, then, by our definitions \mathscr{B} is infinite, has an element $B=\left\{b_{1}<b_{2}<\cdots<b_{t}\right\}$ with $b_{1}=t \geqslant 3$ and also an element $B^{\prime}=\left\{b_{1}^{\prime}<b_{2}^{\prime}<\cdots<b_{t}^{\prime}\right\}$ with
(1) $t^{\prime}=b_{1}^{\prime} \geqslant b_{2}+b_{3}$.

By the disjointness property of \mathscr{B}
(2) $\left|B \cup B^{\prime}\right|=t+t^{\prime}$
and there exist disjoint $A_{1}, A_{2}, A_{3} \in \mathscr{A}$:
(i) b_{i} is the minimal element of A_{i} and $\left|A_{i}\right|=b_{i}(i=1,2,3)$.
(ii) $A_{1} \cup A_{2} \cup A_{3} \subset B \cup B^{\prime}$.

The two sets $B, B^{\prime} \in \mathscr{B}$ can be replaced by the three sets $A_{1}, A_{2}, A_{3} \in \mathscr{A}$ without violating the disjointness property, but in violation of our supposition.

Remark. The conjecture remains open for families of sets of bounded sizes.

References

[1] R. Aharoni, Infinite matching theory, Discrete Math. 95 (1991) 5-22.
[2] P. Erdös, Problems and results in discrete mathematics, Discrete Math. 136 (1994) 53-73.

[^0]
[^0]: * Corresponding author.

