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1. Introduction and main results

Whenever possible we keep the notation of [3]. N denotes the set of positive integers
and N∗ is the set of positive squarefree numbers. P = {p1, p2, . . . } = {2, 3, 5, . . . }
denotes the set of primes and ps denotes the s–th prime.

For two numbers u, v ∈ N we write u|v (resp. u ∤ v ) iff u divides v (resp. u does
not divide v ). [u, v] stands for the least common multiple of u and v . (u, v) is
the largest common divisor of u, v and we say that u and v have a common divisor
if (u, v) > 1 . 〈u, v〉 denotes the interval {x ∈ N : u ≤ x ≤ v} and (u, v〉 denotes
the left–open interval {x ∈ N : u < x ≤ v} .

For any set A ⊂ N we introduce A(n) = A ∩ 〈1, n〉 and |A| as cardinality of A .
The set of multiples of A is

M(A) = {m ∈ N : a|m for some a ∈ A}.

For u ∈ N, u 6= 1, p+(u) (resp. p−(u) ) denotes the largest (resp. the smallest) prime
factor of u .

For any y ∈ N , π(y) = |P(y)| denotes the counting function of primes. For any subset
of primes T ⊂ P , and u ∈ R+ we set

φ(u, T ) =
{

x ∈ N(u) : (x, p) = 1 for all p ∈ T
}

.

We note that always {1} ∈ φ(u, T ) for all T ⊂ P , u ≥ 1 .

Finally, for a set A = {a1, . . . , am} of ordered numbers a1 < a2 < · · · < am we also
just write A = {a1 < a2 < · · · < am} .

P. Erdös and R. Graham (see [1], [2]) posed the following problem:

Let 1 < a1 < a2 < · · · < ak = n , (ai, aj) 6= 1 . What is the maximal value of k ? We
denote it by g(n) .

While in [1] the problem was stated unfortunately with many confusing misprints, in
[2] one can find the following conjecture: g(n) equals either n

p−(n) or the number of

integers of the form 2 · t , t ≤ 1
2n , (t, n) 6= 1 .

However, it is easy to find a counterexample for this assertion and we informed Erdös
about this during his visit in Bielefeld in the year 1992. He then came up with the
following formulation:

Conjecture 1. Let n = qα1

1 · qα2

2 . . . qαr
r , αi ≥ 1 , qi ∈ P , and q1 < q2 < · · · < qr ,

then
g(n) = max

1≤j≤r
|M(2q1, 2q2, . . . , 2qj , q1 . . . qj) ∩ N(n)|.

We consider a more general and seemingly more natural problem:

Let Q = {q1 < · · · < qr} ⊂ P be any finite set of primes and let A = {a1 < a2 <
· · · < ak} ⊂ N(n) , be a set such that for all 1 ≤ i, j ≤ k

(ai, aj) 6= 1 (1.1)
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and
(

ai,

r
∏

i=1

qi

)

> 1. (1.2)

I(n,Q) denotes the set of all such sets. We are interested in the quantity

f(n,Q) = max
{

|A| : A ∈ I(n,Q)
}

. (1.3)

For special values of n , namely n = qα1

1 . . . qαr
r for some αi ≥ 1 , clearly af(n,Q) = n

and we get exactly the problem of Erdös–Graham.

Our problem can be viewed as being dual to that studied in [3], where a specified set
of primes is excluded as factors.

Obviously, we can assume that {2} /∈ Q , because otherwise f(n,Q) =
⌊

n
2

⌋

is realized
for the even numbers ≤ n . Our main result is

Theorem 1. For every finite Q = {q1 < q2 < · · · < qr} ⊂ P and n ≥
r
∏

i=1

qi

f(n,Q) = max
1≤j≤r

|M(2q1, 2q2, . . . , 2qj , q1 . . . qj) ∩ N(n)| (1.4)

holds. In particular Conjecture 1 is true.

We will also show (see Section 6), that the restriction on n in Theorem 1 can not be
ignored.

For given finite Q = {q1 < · · · < qr} ⊂ P let us look at our problem in the infinite
case, i.e. A = {a1 < a2 < . . . } ⊂ N satisfies (1.1) and (1.2). What is maximal dQ of
the asymptotic (upper) density of such A ? From Theorem 1 immediately follows:

Corollary. For any finite Q = {q1 < · · · < qr} ⊂ P we have

dQ = max
1≤j≤r

1

2

(

1 −

j
∏

i=1

(

1 −
1

qi

)

+
1

q1 . . . qj

)

.

Moreover, this maximum is assumed for a set possessing an asymptotic density.

It is also natural to formulate the problem for the squarefree case. We define f∗(n,Q)
as the maximal cardinality of sets A ⊂ N∗(n) satisfying (1.1) and (1.2).

Theorem 2. For any finite Q = {q1 < . . . qr} ⊂ P we have

f∗(n,Q) = max
1≤j≤r

|M(2q1, . . . , 2qj , q1 . . . qj) ∩ N∗(n)|.

We draw attention to the fact that here we have no restriction on n . The proof of
Theorem 2 is much easier than that of Theorem 1.
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Moreover, Theorem 2 can easily be extended to much more general objects, namely to
squarefree quasi–numbers (see [3]).

Sections 2,3, and 4 provide auxiliary results for the proof of Theorem 1 (and sketch of
proof of Theorem 2) in Section 5. We draw especially attention to an auxiliary result
in Section 3, which is stated as Theorem 3, because it is of independent interest.

Finally, an example in Section 6 shows that (1.4) does not hold without any condition
on n . The reader is advised to look first at this example.

2. An auxiliary result for “left compressed sets”,

“upsets”, and “downsets”

Let O(n,Q) denote the set of all optimal sets of I(n,Q) , i.e.

O(n,Q) =
{

A ∈ I(n,Q) : |A| = f(n,Q)
}

(see (1.3)).

For any ps, pt ∈ P , ps < pt , we define the operation “left pushing” Ls,t on subsets
of N . For B ⊂ N let

B1 =
{

b ∈ B : b = b1 · p
α
t , (b1, ps · pt) = 1, α ≥ 1, (b1 · p

α
s ) /∈ B

}

.

Then
Ls,t(B) = (B r B1)

.
∪ B2,

where B2 =
{

c ∈ N : c = c1 · p
β
s , (c1, ps · pt) = 1, β ≥ 1, (c1 · p

β
t ) ∈ B1

}

.

Clearly
|Ls,t(B) ∩ N(n)| ≥ |B(n)| for every s, t; s < t; and n ∈ N. (2.1)

For Q ⊂ P the set B ⊂ N is said to be left compressed with respect to Q , if

Ls,t(B) = B for all s, t, s < t, pt ∈ P r Q (2.2)

and
Ls,t(B) = B for all s, t, s < t, ps, pt ∈ Q. (2.3)

For given Q ⊂ P , we denote by C(Q) the set of all subsets of N , which are left
compresed with respect to Q .

Every finite set B ⊂ N can be transformed by finitely many operations Ls,t ; s < t ;
of the types (2.2) and (2.3) into a member of C(Q) . Since these operations preserve
(1.1) and (1.2), we get with (2.1) the following result.
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Lemma 1. For any Q ⊂ P and n ∈ N

O(n,Q) ∩ C(Q) 6= ∅.

Clearly any A ∈ O(n,Q) is an “upset”:

A = M(A) ∩ N(n), (2.4)

and it is also a “downset” in the following sense:

for a ∈ A, a = pα1

i1
. . . pαt

it
, αi ≥ 1 also pi1 . . . pit

∈ A. (2.5)

For every B ⊂ N we introduce the unique primitive subset P (B) , P (B) ⊂ B , which
has the properties

b1, b2 ∈ P (B), b1 6= b2, implies b1 ∤ b2 and B ⊂ M
(

P (B)
)

. (2.6)

We know from (2.5) that for any A ∈ O(n,Q) P (A) consists only of squarefree
numbers and that by (2.4)

A = M
(

P (A)
)

∩ N(n). (2.7)

3. Auxiliary inequalities for sets of numbers

with forbidden prime factors

Let T ⊂ P, T = T1

.
∪ T2 , where

T1 ⊂ {p1, . . . , ps−1}, T2 = {pj1 , . . . , pjr
}; ps < pj1 < · · · < pjr

.

The sets T1 and T2 can be empty.

Lemma 2. Let s > 1 and suppose that

r ≤ π(ps+ℓ−1 · ps) − s − 2ℓ + 1 for all ℓ ≥ 1, (3.1)

then
2 · |φ(u, T )| ≤ |φ(u · ps, T )| for all u ∈ R+. (3.2)

Remark 1: A more special form of the Lemma was proved (although it was not stated
explicitly) in our paper [3]. Actually, in [3] we proved (3.2), if T2 = ∅ . In this case
we have r = 0 and the condition (3.1)

0 ≤ π(ps+ℓ−1 · ps) − s − 2ℓ + 1 for all ℓ ≥ 1

always holds.
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Indeed, since s > 1 we have ps ≥ 3 and thus the first inequality in π(ps+ℓ−1 · ps) ≥
π(3 ps+ℓ−1) ≥ 2π(ps+ℓ−1) , where the last inequality folows from π(3x) ≥ 2π(x) ,
which was shown in [3]. Thus for the quantity in question

π(ps+ℓ−1 ·ps)−s−2ℓ+1 ≥ 2π(ps+ℓ−1)−s−2ℓ+1 = 2(s+ℓ−1)−s−2ℓ+1 = s−1 > 0.

Proof: Equivalent to (3.2) is

|φ(u, T )| ≤ |φ′(u · ps, T ), (3.3)

where φ′(u · ps, T ) = φ(u · ps, T ) ∩ (u, u · ps〉 .

We introduce
Ψ(u, T ) =

{

a ∈ φ(u, T ) : p+(a) < ps or a = 1
}

and for a ∈ Ψ(u, T )

D(a) =
{

b ∈ φ(u, T ) : b = a · d, p−(d) ≥ ps or d = 1
}

.

With these sets we can write φ(u, T ) as a disjoint union

φ(u, T ) =
.

⋃

a∈Ψ(u,T )

D(a).
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Next we introduce for a ∈ Ψ(u, T )

D′(a) =
{

c ∈ φ′(u · ps, T ) : c = a · d∗, p−(d∗) ≥ ps

}

.

Clearly these sets are disjoint and

φ′(u ps, T ) ⊃

.
⋃

a∈Ψ(u,T )

D′(a).

Sufficient for (3.3) is

|D′(a)| ≥ |D(a)| for all a ∈ Ψ(u, T ). (3.4)

From the definition of the sets D(a) and D′(a) it follows that for

T ∗ = {p1, . . . , ps−1} ∪ T2

|D(a)| = φ
(u

a
, T ∗

)

, |D′(a)| = |φ′
(u ps

a
, T ∗

)

, and

φ′
(u ps

a
, T ∗

)

= φ
(u ps

a
, T ∗

)

r φ
(u

a
, T ∗

)

= φ
(u ps

a
, T ∗

)

∩
(u

a
,
u ps

a

〉

.

Thus we arrived at the following sufficient condition for (3.4):

|φ(v, T ∗)| ≤ |φ′(v · ps, T
∗)| = |φ(v · ps, T

∗) r φ(v, T ∗)| for all v ∈ R+. (3.5)

We avoid the trivial cases v < 1 for which φ(v, T ∗) = ∅ and 1 ≤ v < ps , for which
|φ(v, T ∗)| = 1 and ps ∈ φ′(v · ps, T

∗) . Hence we assume v ≥ ps and introduce

F (v, T ∗) =
{

b ∈ φ(v, T ∗), b 6= 1 : b · p+(b) ≤ v
}

∪ {1}.

Then φ(v, T ∗) is a disjoint union

φ(v, T ∗) =

.
⋃

b∈F (v,T∗)

τ(b) ∪ {1},

where

τ(b) =
{

m ∈ N : m = p · b; p ∈ P r T ∗; p+(b) ≤ p ≤
v

b

}

.

Hence for all b ∈ F (v, T ∗)

|τ(b)| =
∣

∣

∣

{

p ∈ P r T ∗ : p+(b) ≤ p ≤
v

b

}∣

∣

∣
and (3.6)

|φ(v, T ∗)| =
∑

b∈F (v,T∗)

|τ(b)| + 1, (3.7)

where integer 1 in (3.7) stands to account for the element {1} ∈ φ(v, T ∗) .
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On the other hand we have

φ′(v · ps, T
∗) ⊃

.
⋃

b∈F (v,T∗)

τ1(b) ∪ {pk
s},

where τ1(b) =
{

m1 ∈ N : m1 = p · b, p ∈ P r T ∗, v
b

< p ≤ v·ps

b

}

and pk
s satisfies v <

pk
s ≤ v · ps for some k ∈ N .

It is easy to see, that the sets
{

τ1(b)
}

, b ∈ F (v, T ∗) , are disjoint and that the element

{pk
s} does not belong to any of them.

We have

|τ1(b)| =
∣

∣

∣

{

p ∈ P r T ∗ :
v

b
< p ≤

v · ps

b

}∣

∣

∣
(3.8)

for all b ∈ F (v, T ∗) and

|φ′(v · ps, T
∗)| ≥

∑

b∈F (v,T∗)

|τ1(b)| + 1, (3.9)

where integer 1 in (3.9) stands to account for the element {pk
s} .

From (3.7) and (3.9) it follows that sufficient for (3.5) is

|τ1(b)| ≥ |τ(b)| for all b ∈ F (v, T ∗).

Let ps+ℓ−1 ≤ v
b

< ps+ℓ for some ℓ ≥ 1 .

Then, from (3.6) and (3.8), we have

|τ(b)| =
∣

∣

∣

{

p ∈ P r T ∗ : p+(b) ≤ p ≤
v

b

}
∣

∣

∣
≤ |{p ∈ P : ps ≤ p ≤ ps+ℓ−1}| = ℓ

and

|τ1(b)| =
∣

∣

∣

{

p ∈ P r T ∗ :
v

b
< p ≤

v · ps

b

}∣

∣

∣
≥

|{p ∈ P r T ∗ : ps+ℓ−1 < p ≤ ps+ℓ−1 · ps}| = π(ps+ℓ−1 · ps) − (s + ℓ − 1) − r1,

where r1 is the number of primes from T2 in the interval 〈ps+ℓ, ps+ℓ−1 · ps〉 . Since
r1 ≤ r = |T2| we have

|τ1(b)| ≥ π(ps+ℓ−1 · ps) − (s + ℓ − 1) − r.

Finally, using condition (3.1) we have established the sufficient condition

|τ1(b)| ≥ π(ps+ℓ−1 · ps) − (s + ℓ − 1) − r ≥ ℓ ≥ |τ(b)|.

Remark 2: Perhaps one can try to simplify condition (3.1) in Lemma 2 by finding

min
ℓ∈N

(

π(ps+ℓ−1 · ps) − 2ℓ
)

for s ≥ 2.

However, if the minimum is achieved for ℓ = 1 (which seems the most likely), then
one has at least to prove, that between p2

s and ps ·ps+1 there are at least two primes,
which seems hopeless. For comparison let us recall that in 1904 Brocard conjectured
that between p2

s and p2
s+1 , there are at least 4 primes and this remains unsolved (see

[5]).

We need the folowing result, which is probably known to the experts (in fact, it is an
easy consequence of known results), but we could not find in the literature.
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Lemma 3.

ps · pt > ps·t

for all s, t ∈ N expect for two cases, namely, s = 3 , t = 4 , for which p3 · p4 =
5 · 7 = 35 < p12 = 37 , and s = t = 4 , for which p4 · p4 = 7 · 7 = 49 < p16 = 53 .

Proof: We use very sharp estimates of the size of primes, which are due to Rosser and
Schoenfeld [4]:

pn < n

(

log n + log log n −
1

2

)

for n ≥ 20,

pn > n log n for n ≥ 1. (3.10)

Using (3.10) one gets
ps · pt > ps·t for all t ≥ s ≥ 12.

For every s ≤ 11 , we take the exact value of ps and estimate, using (3.10), only
primes pt and pst . For example let s = 4 , p4 = 7 , t ≥ 5 . Since s · t ≥ 20 we can
use (3.10) to get

p4t < 4t

(

log 4t + log log 4t −
1

2

)

and p4 · pt = 7 · pt > 7 · t log t. (3.11)

From (3.11) we have 7 ·pt > p4·t for all t ≥ 25 and this cases 5 ≤ t ≤ 24 are verified
by inspection using the list of primes.

In the case s = t = 4 we have the opposite inequality and this is one of the two
exceptions specified in the Lemma. For other values of s ≤ 11 we have similar
calculations.

We recall the definitions of the sets T1, T2, T in Lemma 2:

T1 ⊂ {p1, . . . , ps−1}, T2 = {pj1 , . . . , pjr
}; ps < pj1 < · · · < pjr

;

and s > 1 . We introduce

T3 =
(

{p1, . . . , ps−1} r T1

)

∪ {ps} = {pi1 , . . . , pit
}, pi1 < · · · < pit

= ps.

Theorem 3. Let s > 1 and the sets of primes T1, T2, T3 , T = T1 ∪T2 as described
above. Then for every u ∈ R+ with

u ≥

∏

p∈T2
p

∏

p∈T3
p

(3.12)

2|φ(u, T )| ≤ |φ(u · ps, T )| holds. (3.13)

Proof: In the light of Lemma 2 we can assume

r > π(ps+ℓ−1 · ps) − s − 2ℓ + 1 for some ℓ ≥ 1. (3.14)
9



At first let us show that from (3.14) one can get

r > (s − 1)2. (3.15)

Indeed from Lemma 3 we know

ps+ℓ−1 · ps > p(s+ℓ−1)s for all s, ℓ except s = 3, ℓ = 2 and s = 4, ℓ = 1.

Hence
π(ps+ℓ−1 · ps) ≥ π(p(s+ℓ−1)·s) = s(s + ℓ − 1)

for all s, ℓ with the exceptions mentioned above.

Therefore

r > π(ps+ℓ−1 · ps) − s − 2ℓ + 1 ≥ s(s + ℓ − 1) − s − 2ℓ + 1 ≥ (s − 1)2.

since s > 1 . For s = 3 , ℓ = 2 and s = 4 , ℓ = 1 we verify (3.15) by inspection.

Now, for every u ∈ R+ by the inclusion–exclusion principle we have

|φ(u, T )| = ⌊u⌋ −
∑

p∈T

⌊

u

p

⌋

+
∑

p<q
p,q∈T

⌊

u

p · q

⌋

· · · ≤ u ·
∏

p∈T

(

1 −
1

p

)

+ 2|T |−1

and

|φ(u · ps), T | ≥ u · ps ·
∏

p∈T

(

1 −
1

p

)

− 2|T |−1.

Hence, sufficient for (3.13) is

u(ps − 2) ·
∏

p∈T

(

1 −
1

p

)

≥ 3 · 2|T |−1 for all u ≥

∏

p∈T2
p

∏

p∈T3
p
. (3.16)

Since |T | = s − t + r , equivalent to (3.16) is

(ps−2)·

∏

p∈T2
p

∏

p∈T3
p
·

∏

p∈T1∪T2

(

1 −
1

p

)

= (ps−2)·

∏

p∈T2
(p − 1)

∏s
i=1 pi

·
∏

p∈T1

(p−1) ≥ 3·2r ·2s−t−1.

(3.17)

Since |T1| = s − t , we observe that

∏

p∈T1

(p − 1) ≥ 2s−t−1

and sufficient for (3.17) is

(ps − 2) ·

∏

p∈T2
(p − 1)

∏s
i=1 pi

≥ 3 · 2r. (3.18)
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Now, if s ≥ 3 , then

(ps − 2) ·

∏

p∈T2
(p − 1)

∏s
i=1 pi

= (ps − 2)
(pj1 − 1) . . . (pjr

− 1)

p1 . . . ps

>

(ps − 2)(pjs+1
− 1) . . . (pjr

− 1) > (ps − 2) · (pjs+1
− 1)r−s ≥ (ps − 2) · 16r−s > 3 · 2r,

since pj1 ≥ 7, pjs+1
≥ 17 and we know that r ≥ (s − 1)2 + 1 (see (3.15)).

So, it remains to show the validity of (3.13) only for the case s = 2 . From (3.15) we
know that r ≥ 2 and, if r > 2 , we have in (3.18)

(pj1 − 1)(pj2 − 1) . . . (pjr
− 1)

2 · 3
≥

(5 − 1)(7 − 1)(11 − 1) . . . (pjr
− 1)

6
≥ 3 · 2r.

Hence, we can assume r = 2 . However the formula (3.18) does not hold in this case
for instance for pj1 = 5 , pj2 = 7 :

(5 − 1)(7 − 1)

6
¤ 3 · 22 = 12.

In the case s = r = 2 we have to estimate the quantities |φ(u, T )| and |φ(3u, T )|
more accurately.

We have to consider two cases: t = 1 and t = 2 , where t = |T3| . We are going to
prove (3.13) only for t = 1 (the case t = 2 is similar, actually even simpler).

We have to prove that for q1, q2 , 5 ≤ q1 < q2 ; T = {2, q, q2}

2|φ(u, T )| < |φ(3u, T )| holds provided that u ≥ q1·q2

3 . We have

|φ(3u, T )|−2|φ(u, T )| = ⌊3u⌋−
⌊

3u
2

⌋

−
⌊

3u
q1

⌋

−
⌊

3u
q2

⌋

+
⌊

3u
2q1

⌋

+
⌊

3u
2q2

⌋

+
⌊

3u
q1q2

⌋

−
⌊

3u
2q1q2

⌋

−

2⌊u⌋ + 2
⌊

u
2

⌋

+ 2
⌊

u
q1

⌋

+ 2
⌊

u
q2

⌋

− 2
⌊

u
2q1

⌋

− 2
⌊

u
2q2

⌋

− 2
⌊

u
q1q2

⌋

+ 2
⌊

u
2q1q2

⌋

=

(

⌊3u⌋ −
⌊

3u
2

⌋

− 2⌊u⌋ + 2
⌊

u
2

⌋)

−
(⌊

3u
q1

⌋

−
⌊

3u
2q1

⌋

− 2
⌊

u
q1

⌋

+ 2
⌊

u
2q1

⌋)

−

(⌊

3u
q2

⌋

−
⌊

3u
2q2

⌋

− 2
⌊

u
q2

⌋

+ 2
⌊

u
2q2

⌋)

+
(⌊

3u
q1q2

⌋

−
⌊

3u
2q1q2

⌋

− 2
⌊

u
q1q2

⌋

+ 2
⌊

u
2q1q2

⌋)

.

Now we use the following inequalities (which can be easily verified).

x − 1 < x − 5
6 < ⌊6x⌋ − ⌊3x⌋ − 2⌊2x⌋ + 2⌊x⌋ ≤ x + 5

6 < x + 1 for all x ∈ R+ to get

|φ(3u, T )| − 2|φ(u, T )| > u
(

1 − 1
2

)

(

1 − 1
q1

) (

1 − 1
q2

)

− 4 =

= u(q1−1)(q2−1)
2q1q2

− 4 ≥ (q1−1)(q2−1)
6 − 4 ≥ 0 , since u ≥ q1q2

3 and 5 ≤ q1 < q2 .

Remarks:

3. We note that (3.13) does not always hold, if we ignore the restriction on u . For
example for T = {2, 5, 7} , s = 2 , u = 3 we have

2|φ(3, T )| = 2 · |{1, 3}| = 4 £ |φ(p2 · 3, T )| = |φ(9, T )| = |{1, 3, 9}| = 3 .

4. If u is sufficiently large, u > u(ε) , then the coefficient 2 in (3.13) of the Theorem
(in Lemma 2 as well), clearly can be changed to (ps − ε) , for any ε > 0 .
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4. Further preparations: Lemmas 4, 5, 6

For given Q ⊂ P and any b ∈ N let p+(b,Q) denote the maximal prime from PrQ
which occurs in the prime decomposition of b (in the case Q = ∅ we always have
p+(b, φ) = p+(b) ).

If b is completely composed from the primes Q or b = 1 , then p+(b,Q) = 1 .

Further, let A ⊂ N(n) be such that P (A) , the primitive subset of A , consists only
of squarefree numbers and let A = M

(

P (A)
)

∩ N(n) .

For given Q ⊂ P , we define

p+
(

P (A), Q
)

= max
a∈P (A)

p+(a,Q). (4.1)

We consider Li,j(A) = A′ , where i < j and pj ∈ Q implies pi ∈ Q .

One can easily verify the following statement.

Lemma 4.

p+
(

P (A), Q
)

≥ p+
(

P (A′), Q
)

.

Let A ∈ O(n,Q) ∩ C(Q) for some Q = {q1, q2, . . . , qr} , 2 < q1 < · · · < qr and
n ∈ N .

We know (see Lemma 1), that such a set A always exists. Let P (A) be the primitive
subset of A and p+

(

P (A), Q
)

= ps for some ps ∈ (P r Q) ∪ {1} .

We write P (A) in the form P (A) = R0

.
∪ R1

.
∪ . . .

.
∪ Rs , where

R0 =
{

a ∈ P (A) : p+(a,Q) = 1
}

(4.2)

and
Ri =

{

a ∈ P (A) : p+(a,Q) = pi

}

, 1 ≤ i ≤ s.

We note that some of the Ri can be empty, but not Rs .

Since A is optimal, we know that A = M
(

P (A)
)

∩ N(n) , which can be written in
the form

A = M
(

P (A)
)

∩ N(n) =
(

M(R0

.
∪ . . .

.
∪ Rs−1)

.
∪ K(Rs)

)

∩ N(n),

where K(Rs) =
(

M(Rs)rM(R0∪· · ·∪Rs−1)
)

∩N(n) , i.e. K(Rs) is the set of those
elements of A , which are not divisible by any b, b ∈ R0 ∪ · · · ∪ Rs−1 .

Let s > 1 , Rs = R0
s

.
∪ R1

s , where

R0
s = {b ∈ Rs : 2 | b}, R1

s = Rs r R0
s (4.3)

and K(Rs) = K0(Rs)
.
∪ K1(Rs) , where

K0(Rs) =
{

a ∈ K(Rs) : 2 | a
}

,K1(Rs) = K(Rs) r K0(Rs). (4.4)

Finally, let
Gi

s = {m ∈ N : m · ps ∈ Ri
s}, i = 0, 1. (4.5)
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Lemma 5. Let A ∈ O(n,Q) ∩ C(Q) , let the sets Ki(Rs), R
i
s, G

i
s , i = 0, 1 , be

defined as above, and let s > 1 . Then

(1) b ∤ a for all b ∈ Ri
s , a ∈ K1−i(Rs) , i = 0, 1

(2) Ki(Rs) = M(Ri
s) r M(R0 ∪ · · · ∪ Rs−1) , i = 0, 1

(3) Gi
s ∈ I(n,Q) , i = 0, 1 . (defined in the Introduction)

(4) (R0 ∪ · · · ∪ Rs−1 ∪ Gi
s) ∈ I(n,Q) , i = 0, 1 .

Proof: (1) Obviously, b ∤ a for all b ∈ R0
s , a ∈ K1(Rs) . Suppose b | a for

some b ∈ R1
s , a ∈ K0(Rs) . Then b

ps
· 2 | a as well, because 2 ∤ b and 2 | a .

However b
ps

· 2 ∈ A , because A is left compressed with respect to Q and ps /∈ Q ,

ps > 2, 2 ∤ b . Hence b
ps

· 2 ∈ M(R0 ∪ · · · ∪ Rs−1) , because ps ∤ b
ps

· 2 . Therefore

a /∈ K(Rs) , becuase b
ps

· 2 | a . This is a contradiction.

(2) follows from (1).

(3) Clearly G0
s ∈ I(n,Q) , because all elements of G0

s are even and prime ps /∈ Q . Let
us show that G1

s ∈ I(n,Q) as well. Suppose to the opposite, there exist b1, b2 ∈ G1
s

with (b1, b2) = 1 .

We have b1 · ps, b2 · ps ∈ R1
s (see definition of G1

s and R1
s ).

However, since R1
s ⊂ A , A is left compressed with respect to Q and ps /∈ Q ,

ps > 2 , 2 ∤ b1 , 2 ∤ b2 , we conclude 2 · b1 ∈ A as well. Hence the elements 2 · b1 ,
ps · b2 ∈ A and at the same time (2 · b1, ps · b2) = 1 , which is a contradiction.

(4) This is trivial.

Finally we need an auxiliary result concerning the set K(Rs) . Let a be any element
of K(Rs) . This element uniquely can be written in the forms

a = pα1

i1
· . . . · pαt

it
· qβ1

j1
. . . qβℓ

jℓ
· a3, where (4.6)

pi1 < pi2 < · · · < pit
= ps < qj1 < · · · < qjℓ

; αi, βi ≥ 1 , qji
∈ Q , p−(a3) > ps ,

p | a3 implies p ∈ P r Q or a3 = 1 .

We note, that {qj1 , . . . , qjℓ
} = ∅ is also possible.

Lemma 6. Let A ∈ O(n,Q)∩C(Q) , p+
(

p(A), Q
)

= ps , s > 1 and let a ∈ K(Rs)
be an element of the form (4.6), then

(1) a′ = p
α′

1

i1
. . . p

α′

t

it
· q

β′

1

j1
. . . q

β′

ℓ

jℓ
· a′

3 ∈ K(Rs) for all α′
i ≥ 1 , β′

i ≥ 1 , p−(a′
3) > ps ,

p | a′
3 implies p ∈ P r Q , or a′

3 = 1 , provided that a′ ≤ n .

(2) For every integer b ∈ N of the form b = pγ1

i1
. . . p

γt−1

it−1
·qδ1

j1
. . . qδℓ

jℓ
·b′, γi ≥ 0, δi ≥ 0,

p−(b′) > ps , p | b′ implies p ∈ P r Q or b′ = 1 , we have b /∈ A .

Proof: (1) Since a ∈ K(Rs) ⊂ A , we have m | a for some m ∈ P (A) and hence
m | pi1 . . . pit

·qj1 . . . qjℓ
, because p+

(

P (A), Q
)

= ps and m ∈ P (A) implies m ∈ N∗ .
Therefore all integers of the form in (1) belong to our set A . However, every m ∈ P (A)
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with m | a must belong to the set Rs , otherwise a /∈ K(Rs) and this completes the
proof of (1).

(2) If for some b ∈ N of the form in (2) we have b ∈ A , then m′ | b for some
m′ ∈ R0 ∪ · · · ∪Rs−1 ( m′ /∈ Rs , because ps ∤ b ). Since A is a “downset”, p+(R0 ∪
· · · ∪ Rs−1, Q) ≤ s − 1 and since p−(b′) > ps , p | b′ implies p ∈ P r Q or b′ = 1 ,
we have m′ | pi1 . . . pit−1

qj1 . . . qjℓ
as well, and hence m′ | a , which is a contradiction

to a ∈ K(Rs) .

¤

Let

Z =
{

a∗ ∈ K(Rs)∩N∗ : a∗ = pi1 . . . pit
·qj1 . . . qjℓ

, pi1 < · · · < pit
= ps < qj1 < · · · < qjℓ

, qji
∈ Q

}

and let for a∗ ∈ Z,E(a∗) denotes the set of all integers a′ of the form (1) in Lemma
6 with a′ ≤ n .

From Lemma 6 (1) immediately follows

K(Rs) =

.
⋃

a∗∈Z

E(a∗). (4.7)

Finally, from Lemma 5 (1) and (4.7) we have

Ki(Rs) =
⋃

a∗∈Zi

E(a∗), i = 0, 1, (4.8)

where Zi = Z ∩ Ki(Rs), i = 0, 1 .

5. Proof of Theorem 1

Let Q = {q1, q2, . . . , qr} , 2 < q1 < · · · < qr , n ∈ N , n ≥
r
∏

i=1

qi and let O(n,Q) be

the set of all optimal sets. For every B ∈ O(n,Q) we consider P (B) the primitive,
generating subset of B : B = M

(

P (B)
)

∩ N(n) .

Let
ps = min

B∈O(n,Q)
p+

(

P (B), Q
)

,

where p+
(

P (B), Q
)

is defined in (4.1), and ps ∈ (P r Q) ∪ {1} .

Let O1(n,Q) =
{

B ∈ O(n,Q) : p+
(

P (B), Q
)

= ps

}

. Our first step is to prove

ps ≤ 2. (5.1)

From Lemma 1 and 4 it follows that

O1(n,Q) ∩ C(Q) 6= ∅.
14



Let A ∈ O1(n,Q) ∩ C(Q) and suppose to the opposite of (5.1) that ps ≥ 3 , i.e.
s ≥ 2 .

Let P (A) = R0 ∪ R1 ∪ · · · ∪ Rs , where the Ri−s are described in (4.2).

We also recall the definitions of the sets Ri
s, G

i
s,K

i(Rs) (see (4.3), (4.4)). We consider
the following two sets:

Ai = M(R0 ∪ · · · ∪ Rs−1 ∪ Gi
s) ∩ N(n), i = 0, 1.

From Lemma 5 we know that A0, A1 ∈ I(n,Q) and we are going to prove, that at
least one of the following inequalities |A0| ≥ |A|, |A1| ≥ |A| holds. Suppose

|K1(Rs) ∩ N(n)| ≥ |K0(Rs) ∩ N(n)| (5.2)

(the opposite case is symmetrically the same), and let us prove that

|A1| = |M(R0 ∪ · · · ∪ Rs−1 ∪ G1
s) ∩ N(n)| ≥ |A|. (5.3)

Let
K∗

(

M(G1
s) r M(R0 ∪ · · · ∪ Rs−1)

)

∩ N(n).

In the light of (5.2), sufficient for (5.3) is

|K∗| ≥ 2|K1(Rs)|. (5.4)

From (4.8) we know that

K1(Rs) =
⋃

a∗∈Z1

E(a∗), where (5.5)

Z1 = {a∗ ∈ K1(Rs)∩N∗ : a∗ = pi1 . . . pit
·qj1 . . . qjℓ

, pj1 <. . .<pit
= ps < qj1 <. . .<qjℓ

, qji
∈ Q}

and

E(a∗) = {a ≤ n : a = pα1

i1
. . . pαt

it
· qβ1

j1
. . . qβℓ

jℓ
· a3, αi ≥ 1, βi ≥ 1, p−(a3) > ps, p | a3 ⇒ p ∈ P r Q

or a3 = 1, and a∗ = pi1 . . . pit
· qj1 . . . qjℓ

∈ Z1}.

It is easy to see that one can write the set E(a∗) in the following form:

E(a∗) =
{

a ≤ n : a = a∗ · a′
3, a

′
3 ∈ φ

( n

a∗
, T

)}

, (5.6)

where T =
(

{p1, . . . , ps) r {pi1 , . . . , pit
}
)

∪
(

{q ∈ Q : q > ps} r {qj1 , . . . , qjℓ
}
)

.

Hence
|E(a∗)| =

∣

∣

∣
φ

( n

a∗
, T

)∣

∣

∣
(5.7)
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for every a∗ ∈ Z1 and T = T (a∗) , as described in (5.6).

Now, for any a∗ ∈ Z1 , a∗ = pi1 . . . pit
· qj1 . . . qjℓ

, pi1 < · · · < pit
= ps < qj1 < · · · <

qjℓ
; qji

∈ Q we consider the integer b∗ = a∗

ps
= pi1 . . . pit−1

· qj1 . . . qjℓ
and the set

E∗(b∗) = {b ≤ n : b = pγ1

i1
. . . p

γt−1

it−1
· qδ1

j1
. . . qδℓ

jℓ
· b3, γi, δi ≥ 1, p−(b3) ≥ ps, p | b3 ⇒ p ∈ P r Q

or b3 = 1}.

One can write the set E∗(b∗) in the form:

E∗(b∗) =
{

b ≤ n : b = b∗ · b′3, b
′
3 ∈ φ

( n

b∗
, T

)}

,

where the set T is the same as in (5.6).

Hence

|E∗(b∗)| =
∣

∣

∣
φ

( n

b∗
, T

)∣

∣

∣
=

∣

∣

∣

(n · ps

a∗
, T

)∣

∣

∣
. (5.8)

From the definitions of the sets E(a∗) and E∗(b∗) we know for every a∗ ∈ Z1 ,

b∗ = a∗

ps
, that

E∗
0 (b∗) = E(a∗), (5.9)

where E∗
0 (b∗) =

{

b ∈ E∗(b∗) : ps | b
}

and that (by Lemma 6 (2))

(

E∗(b∗) r E∗
0 (b∗)

)

∩ A = ∅. (5.10)

Hence, in the light of (5.5) – (5.10), sufficient for (5.4) is

|E∗(b∗)| ≥ 2|E(a∗)| for every a∗ ∈ Z1, b∗ =
a∗

ps

, (5.11)

which by (5.7) and (5.8) is equivalent to

∣

∣

∣
φ

(n · ps

a∗
, T

)∣

∣

∣
≥ 2 ·

∣

∣

∣
φ

( n

a∗
, T

)∣

∣

∣
(5.12)

for T =
(

{p1, . . . , ps} r {pi1 , . . . , pit
}
)

∪
(

{q ∈ Q : q > ps} r {qj1 , . . . , qjℓ
}
)

,

a∗ = pi1 . . . pit
· qj1 . . . qjℓ

; pi1 < pi2 < · · · < pit
= ps < qj1 < · · · < qjℓ

, qji
∈ Q .

Now we are in the position to apply Theorem 3 to show the validity of (5.12). The sets
of primes T1, T2, T3 in Theorem 3 are now

T1 = {p1, . . . , ps} r {pi1 , . . . , pit
} = {p1, . . . , ps−1} r {pi1 , . . . , pit−1

} , (pit
= ps)

T2 = {q ∈ Q : q > ps} r {qj1 , . . . , qjℓ
} , and T3 = {pi1 , . . . , pit

} .

The condition (3.12), i.e. u ≥
Q

p∈T2
p

Q

p∈T3
p

, also holds, because n ≥
∏

q∈Q

q yields

u =
n

a∗
=

n

pi1 . . . pit
· qj1 . . . qjℓ

≥

∏

q∈Q q

pi1 . . . pit
· qj1 . . . qjℓ

≥

∏

q∈T2
q

∏

p∈T3
p
.
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This proves (5.12) and consequently (5.3):

|A1| = |M(R0 ∪ · · · ∪ Rs−1 ∪ G1
s) ∩ N(n)| ≥ |A|.

Hence A1 ∈ O(n,Q) , because A ∈ O(n,Q) and A1 ∈ I(n,Q) . Obviously, P (A′) ⊂
R0 ∪ · · · ∪ Rs−1 ∪ G1

s . Therefore p+
(

P (A′), Q
)

< ps , which is a contradiction to the

definition ps = min
B∈O(n,Q)

p+
(

P (B), Q
)

. This proves (5.1).

Since for every B ∈ O1(n,Q) we have bi ∈ P (B) it follows that either

p ∤ bi for all p ∈ P r Q

or
2 | bi, but p ∤ bi, p ∈ P r

(

Q ∪ {2}
)

.

Let
qt = min

B∈O1(n,Q)
p+

(

P (B), φ
)

,

and let
O2(n,Q) =

{

B ∈ O1(n,Q) : p+
(

P (B), φ
)

= qt

}

.

Again, it is easy to see, that

O2(n,Q) ∩ C(Q) 6= ∅.

Let
A ∈ O2(n,Q) ∩ C(Q).

We write P (A) in the form

P (A) = S1

.
∪ S2

.
∪ . . .

.
∪ St,

where Si =
{

b ∈ p(A) : p+(b) = qi

}

, 1 ≤ i ≤ t ≤ r .

We are going to prove, that P (A) = {q1} , if t = 1 , and P (A) = {2q1, . . . , 2qt, q1 . . . qt} ,
if t > 1 , and this is equivalent to the statement (1.4) of Theorem 1.

If t = 1 , then clearly P (A) = {q1} and the Theorem is true. Hence we assume t > 1 .
We observe that {qt} /∈ S1 , because otherwise {q1} ∈ S1 as well, since A ∈ C(Q)
and hence (qt, q1) = 1 in contradiction to A ∈ I(n,Q) . Let us assume that

2 · qt /∈ St. (5.13)

Since A ∈ O2(n,Q) ⊂ O1(n,Q) , (5.13) means that every integer a ∈ St has at least
two different primes from the set Q in its prime decomposition (one of this primes is
of course qt ).

Let us prove that the assumption (5.13) is false. For this we choose a similar approach
as for proving (5.1). Let

St = S0
t

.
∪ S1

t ,
17



where S0
t = {a ∈ St : qt−1 | a} , S1

t = St r S0
t and

V i
t = {m ∈ N : m · qt ∈ Si

t}, i = 0, 1.

Under assumption (5.13) it can be shown that

Ai = M(S1 ∪ · · · ∪ St−1 ∪ V i
t ) ∩ N(n) ∈ I(n,Q), i = 0, 1.

Using the approach described in the first part of this paragraph it can be proved that
at least one of the inequalities

|A0| ≥ |A|, |A1| ≥ |A| holds. (5.14)

We mention that only a very special case of Lemma 2 has been used and not Theorem
3. We also note that here we do not need a restriction on n like n ≥

∏

q∈Q

q .

It can be seen that the fact (5.14) contradicts A ∈ O2(n,Q) and hence the assumption
(5.13) is false. Therefore 2·qt ∈ St for A ∈ O2(n,Q)∩C(Q) and P (A) = S1∪· · ·∪St .

However, from 2 · qt ∈ St ⊂ A ∈ O2(n,Q)∩C(Q) it follows that 2 · q1, . . . , 2qt−1 ∈ A
as well and that qi /∈ A for all qi ∈ Q . Hence 2q1, 2q2, . . . , 2qt ∈ P (A) .

Let a ∈ P (A) and a 6= 2qi , i = 1, . . . , t . Since p+(a) ≤ qt

(

A ∈ O2(n,Q)
)

, then
2 ∤ a for otherwise 2qi | a for some i ≤ t , which is impossible, because P (A) is
primitive.

Therefore 2 ∤ a and a = q1 . . . qt , because otherwise (a, 2qi) = 1 for some i ≤ t .
Hence P (A) = {2q1, . . . , 2qt, q1 . . . qt} and Theorem 1 is proved.

¤

Proof of Theorem 2:

Since the proof is very similar (and much easier) than the proof of Theorem 1, we will
give only a sketch.

We repeat all steps up to formula (5.4) (proof of which was the most difficult part of
Theroem 1) and observe that (5.4) trivially holds for squarefree numbers without any
restriction on n .

The situation is similar with formula (5.14) (which was the second main step in the
proof of Theorem 1).
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6. Example of Q ⊂ P and n, n <
∏

q∈Q

q , for which

the conclusion of Theorem 1 does not hold

We take Q ⊂ P as follows:

Q = {q1, q2, . . . , qr−1, qr} = {5, 7, . . . , pr+1, qr},

i.e. qi = pi+2 , i = 1, 2, . . . , r − 1 and qr is a prime specified in (6.3) below.

We also assume that
qr−1 = pr+1 > 1000. (6.1)

Let

n = 2 · 3 · 11 ·
r−1
∏

i=1

qi. (6.2)

Finally, as a qr ∈ P we take any prime satisfying

n

2000
< qr <

n

1000
. (6.3)

The existence of such primes follows from Bertrand’s postulate. We use the abbreviation

Hj = M{2q1, 2q2, . . . , 2qj , q1 . . . qj} ∩ N(n); j = 1, . . . , r.

We are going to prove, that for the specified Q ⊂ P and n , the conclusion of Theorem
1 does not hold, i.e.

f(n,Q) > max
1≤j≤r

|Hj |. (6.4)

We show first that
max

1≤j≤r
|Hj | = max

{

|Hr−1|, |Hr|
}

. (6.5)

Since 2 ·
r−1
∏

i=1

qi | n , it is easy to see that

|Hj | = n ·
1

2

(

1 −

j
∏

i=1

(

1 −
1

qi

)

+
1

q1 . . . qj

)

for all 1 ≤ j ≤ r − 1

and that
|H2| < |H3| < |H4| < · · · < |Hr−1|.

This proves (6.5), because

|H1| =
1

5
n <

1063

5005
n = |H4|

and trivially r − 1 ≥ 4 (see (6.1)).
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Clearly, to prove (6.4), it is sufficient to find a set A ∈ I(n,Q) for which

|A| > max
1≤j≤r

|Hj | = max{|Hr−1|, |Hr|}.

We choose A as follows:

A = M{2q1, 2q2, . . . , 2 · qr−1, 2 · 3 · qr, 3 · q1 · . . . · qr−1} ∩ N(n).

Obviously, A ∈ I(n,Q) and we have to show that both hold:

|A| > |Hr−1| (6.6)

and
|A| > |Hr|. (6.7)

We consider first the set Hr−1 r A . Since

Hr−1 = M{2q1, . . . , 2qr−1, q1q2 . . . qr−1} ∩ N(n),

the set Hr−1 r A consists only of integers of the form

a · q1 · q2 . . . qr−1 ≤ n = 2 · 3 · 11 · q1 . . . qr−1 = 66q1 . . . qr−1

and (a, 6) = 1 , because for (a, 6) 6= 1 we have a · q1 . . . qr−1 ∈ A . There are exactly
22 integers a with a ≤ 66 , (a, 6) = 1 . Hence

|Hr−1 r A| = 22.

Now we consider the set A r Hr−1 .

It is clear that all integers of the form 2α · 3β · qr ≤ n , α ≥ 1 , β ≥ 1 , are in the
set A r Hr−1 . We verify that there are 24 integers of the form 2α · 3β < 1000 ,
α ≥ 1 , β ≥ 1 and since 1000 · qr < n (by (6.3)) we conclude that |A r Hr−1| ≥
24 > |Hr−1 r A| = 22 . This proves (6.6).

To prove (6.7) we compare the cardinalities of the sets Hr r A and A r Hr . Since

Hr = M{2q1, 2q2, . . . , 2qr−1, 2qr, q1 . . . qr} ∩N(n) = M{2q1, . . . , 2qr} ∩N(n) (because
q1 . . . qr > n ), Hr r A consists only of integers of the form

2 · qr · b ≤ n, (6.8)

where b is not divisible by anyone of the primes 3, q1, . . . , qr−1 .

Since qr > n
2000 (see (6.3)), we conclude from (6.8) that b < 1000 . However, since

qr−1 > 1000 , (see (6.1)), we have b ∈ {1, 2, . . . , 29} and hence

|Hr r A| ≤ 10.

Now we consider the set A r Hr .

This set consists of the integers of the form

3 · q1 . . . qr−1 · c ≤ n = 66q1 . . . qr−1,

where 2 ∤ c . There are exactly 11 such integers c ≤ 22 . Hence

|A r Hr| = 11 > 10 = |Hr r A|

and this proves (6.7).
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7. Directions of research

We think that our methods are applicable to other number theoretical extremal problems.

A first question is how f(n,Q) can be characterized, if Q is an infinite set of primes.

Perhaps more demanding is the problem of finding a common generalisation of the
problem analysed in this paper and its in dual in [3]:

For (finite) sets Q1, Q2 ⊂ P , Q1 ∩ Q2 = ∅ , and n ∈ N , what is the maximal
cardinality k of sets A = {a1 < · · · < ak} ⊂ N(n) satisfying (ai, aj) 6= 1 ,
(

ai,
∏

q∈Q1

q

)

6= 1 , and

(

ai,
∏

q∈Q2

q

)

= 1 for all i, j ?

Instead of requiring that no two numbers of A are relatively prime one can require
that no ℓ numbers are pairwise relatively prime.
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