SETS OF INTEGERS WITH PAIRWISE COMMON DIVISOR AND A FACTOR FROM A SPECIFIED SET OF PRIMES

 BYRudolf Ahlswede and Levon H. Khachatrian

Whenever possible we keep the notation of [3]. \mathbb{N} denotes the set of positive integers and \mathbb{N}^{*} is the set of positive squarefree numbers. $\mathbb{P}=\left\{p_{1}, p_{2}, \ldots\right\}=\{2,3,5, \ldots\}$ denotes the set of primes and p_{s} denotes the s-th prime.
For two numbers $u, v \in \mathbb{N}$ we write $u \mid v$ (resp. $u \nmid v$) iff u divides v (resp. u does not divide $v) .[u, v]$ stands for the least common multiple of u and $v .(u, v)$ is the largest common divisor of u, v and we say that u and v have a common divisor if $(u, v)>1 .\langle u, v\rangle$ denotes the interval $\{x \in \mathbb{N}: u \leq x \leq v\}$ and $(u, v\rangle$ denotes the left-open interval $\{x \in \mathbb{N}: u<x \leq v\}$.
For any set $A \subset \mathbb{N}$ we introduce $A(n)=A \cap\langle 1, n\rangle$ and $|A|$ as cardinality of A. The set of multiples of A is

$$
M(A)=\{m \in \mathbb{N}: a \mid m \text { for some } a \in A\}
$$

For $u \in \mathbb{N}, u \neq 1, p^{+}(u)$ (resp. $\left.p^{-}(u)\right)$ denotes the largest (resp. the smallest) prime factor of u.
For any $y \in \mathbb{N}, \pi(y)=|\mathbb{P}(y)|$ denotes the counting function of primes. For any subset of primes $T \subset \mathbb{P}$, and $u \in \mathbb{R}^{+}$we set

$$
\phi(u, T)=\{x \in \mathbb{N}(u):(x, p)=1 \text { for all } p \in T\}
$$

We note that always $\{1\} \in \phi(u, T)$ for all $T \subset \mathbb{P}, u \geq 1$.
Finally, for a set $A=\left\{a_{1}, \ldots, a_{m}\right\}$ of ordered numbers $a_{1}<a_{2}<\cdots<a_{m}$ we also just write $A=\left\{a_{1}<a_{2}<\cdots<a_{m}\right\}$.
P. Erdös and R. Graham (see [1], [2]) posed the following problem:

Let $1<a_{1}<a_{2}<\cdots<a_{k}=n,\left(a_{i}, a_{j}\right) \neq 1$. What is the maximal value of k ? We denote it by $g(n)$.
While in [1] the problem was stated unfortunately with many confusing misprints, in [2] one can find the following conjecture: $g(n)$ equals either $\frac{n}{p^{-(n)}}$ or the number of integers of the form $2 \cdot t, t \leq \frac{1}{2} n, \quad(t, n) \neq 1$.
However, it is easy to find a counterexample for this assertion and we informed Erdös about this during his visit in Bielefeld in the year 1992. He then came up with the following formulation:

Conjecture 1. Let $n=q_{1}^{\alpha_{1}} \cdot q_{2}^{\alpha_{2}} \cdots q_{r}^{\alpha_{r}}, \alpha_{i} \geq 1, q_{i} \in \mathbb{P}$, and $q_{1}<q_{2}<\cdots<q_{r}$, then

$$
g(n)=\max _{1 \leq j \leq r}\left|M\left(2 q_{1}, 2 q_{2}, \ldots, 2 q_{j}, q_{1} \ldots q_{j}\right) \cap \mathbb{N}(n)\right| .
$$

We consider a more general and seemingly more natural problem:
Let $Q=\left\{q_{1}<\cdots<q_{r}\right\} \subset \mathbb{P}$ be any finite set of primes and let $A=\left\{a_{1}<a_{2}<\right.$ $\left.\cdots<a_{k}\right\} \subset \mathbb{N}(n)$, be a set such that for all $1 \leq i, j \leq k$

$$
\begin{equation*}
\left(a_{i}, a_{j}\right) \neq 1 \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(a_{i}, \prod_{i=1}^{r} q_{i}\right)>1 \tag{1.2}
\end{equation*}
$$

$I(n, Q)$ denotes the set of all such sets. We are interested in the quantity

$$
\begin{equation*}
f(n, Q)=\max \{|A|: A \in I(n, Q)\} . \tag{1.3}
\end{equation*}
$$

For special values of n, namely $n=q_{1}^{\alpha_{1}} \ldots q_{r}^{\alpha_{r}}$ for some $\alpha_{i} \geq 1$, clearly $a_{f(n, Q)}=n$ and we get exactly the problem of Erdös-Graham.
Our problem can be viewed as being dual to that studied in [3], where a specified set of primes is excluded as factors.
Obviously, we can assume that $\{2\} \notin Q$, because otherwise $f(n, Q)=\left\lfloor\frac{n}{2}\right\rfloor$ is realized for the even numbers $\leq n$. Our main result is

Theorem 1. For every finite $Q=\left\{q_{1}<q_{2}<\cdots<q_{r}\right\} \subset \mathbb{P}$ and $n \geq \prod_{i=1}^{r} q_{i}$

$$
\begin{equation*}
f(n, Q)=\max _{1 \leq j \leq r}\left|M\left(2 q_{1}, 2 q_{2}, \ldots, 2 q_{j}, q_{1} \ldots q_{j}\right) \cap \mathbb{N}(n)\right| \tag{1.4}
\end{equation*}
$$

holds. In particular Conjecture 1 is true.

We will also show (see Section 6), that the restriction on n in Theorem 1 can not be ignored.

For given finite $Q=\left\{q_{1}<\cdots<q_{r}\right\} \subset \mathbb{P}$ let us look at our problem in the infinite case, i.e. $A=\left\{a_{1}<a_{2}<\ldots\right\} \subset \mathbb{N}$ satisfies (1.1) and (1.2). What is maximal \bar{d}_{Q} of the asymptotic (upper) density of such A ? From Theorem 1 immediately follows:

Corollary. For any finite $Q=\left\{q_{1}<\cdots<q_{r}\right\} \subset \mathbb{P}$ we have

$$
\bar{d}_{Q}=\max _{1 \leq j \leq r} \frac{1}{2}\left(1-\prod_{i=1}^{j}\left(1-\frac{1}{q_{i}}\right)+\frac{1}{q_{1} \ldots q_{j}}\right) .
$$

Moreover, this maximum is assumed for a set possessing an asymptotic density.
It is also natural to formulate the problem for the squarefree case. We define $f^{*}(n, Q)$ as the maximal cardinality of sets $A \subset \mathbb{N}^{*}(n)$ satisfying (1.1) and (1.2).

Theorem 2. For any finite $Q=\left\{q_{1}<\ldots q_{r}\right\} \subset \mathbb{P}$ we have

$$
f^{*}(n, Q)=\max _{1 \leq j \leq r}\left|M\left(2 q_{1}, \ldots, 2 q_{j}, q_{1} \ldots q_{j}\right) \cap \mathbb{N}^{*}(n)\right|
$$

We draw attention to the fact that here we have no restriction on n. The proof of Theorem 2 is much easier than that of Theorem 1.

Moreover, Theorem 2 can easily be extended to much more general objects, namely to squarefree quasi-numbers (see [3]).
Sections 2,3, and 4 provide auxiliary results for the proof of Theorem 1 (and sketch of proof of Theorem 2) in Section 5. We draw especially attention to an auxiliary result in Section 3, which is stated as Theorem 3, because it is of independent interest.

Finally, an example in Section 6 shows that (1.4) does not hold without any condition on n. The reader is advised to look first at this example.

2. An auxiliary result for "left compressed sets",
 "UPSETS", AND "DOWNSETS"

Let $\mathcal{O}(n, Q)$ denote the set of all optimal sets of $I(n, Q)$, i.e.

$$
\mathcal{O}(n, Q)=\{A \in I(n, Q):|A|=f(n, Q)\} \quad(\text { see }(1.3))
$$

For any $p_{s}, p_{t} \in \mathbb{P}, p_{s}<p_{t}$, we define the operation "left pushing" $L_{s, t}$ on subsets of \mathbb{N}. For $B \subset \mathbb{N}$ let

$$
B_{1}=\left\{b \in B: b=b_{1} \cdot p_{t}^{\alpha},\left(b_{1}, p_{s} \cdot p_{t}\right)=1, \alpha \geq 1,\left(b_{1} \cdot p_{s}^{\alpha}\right) \notin B\right\} .
$$

Then

$$
L_{s, t}(B)=\left(B \backslash B_{1}\right) \dot{\cup} B_{2},
$$

where $B_{2}=\left\{c \in \mathbb{N}: c=c_{1} \cdot p_{s}^{\beta},\left(c_{1}, p_{s} \cdot p_{t}\right)=1, \beta \geq 1,\left(c_{1} \cdot p_{t}^{\beta}\right) \in B_{1}\right\}$.
Clearly

$$
\begin{equation*}
\left|L_{s, t}(B) \cap \mathbb{N}(n)\right| \geq|B(n)| \text { for every } s, t ; s<t ; \quad \text { and } n \in \mathbb{N} . \tag{2.1}
\end{equation*}
$$

For $Q \subset \mathbb{P}$ the set $B \subset \mathbb{N}$ is said to be left compressed with respect to Q, if

$$
\begin{equation*}
L_{s, t}(B)=B \text { for all } s, t, s<t, p_{t} \in \mathbb{P} \backslash Q \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{s, t}(B)=B \text { for all } s, t, s<t, p_{s}, p_{t} \in Q \tag{2.3}
\end{equation*}
$$

For given $Q \subset \mathbb{P}$, we denote by $\mathcal{C}(Q)$ the set of all subsets of \mathbb{N}, which are left compresed with respect to Q.
Every finite set $B \subset \mathbb{N}$ can be transformed by finitely many operations $L_{s, t} ; s<t$; of the types (2.2) and (2.3) into a member of $\mathcal{C}(Q)$. Since these operations preserve (1.1) and (1.2), we get with (2.1) the following result.

Lemma 1. For any $Q \subset \mathbb{P}$ and $n \in \mathbb{N}$

$$
\mathcal{O}(n, Q) \cap \mathcal{C}(Q) \neq \varnothing
$$

Clearly any $A \in \mathcal{O}(n, Q)$ is an "upset":

$$
\begin{equation*}
A=M(A) \cap \mathbb{N}(n) \tag{2.4}
\end{equation*}
$$

and it is also a "downset" in the following sense:

$$
\begin{equation*}
\text { for } a \in A, a=p_{i_{1}}^{\alpha_{1}} \ldots p_{i_{t}}^{\alpha_{t}}, \alpha_{i} \geq 1 \text { also } p_{i_{1}} \ldots p_{i_{t}} \in A \tag{2.5}
\end{equation*}
$$

For every $B \subset \mathbb{N}$ we introduce the unique primitive subset $P(B), P(B) \subset B$, which has the properties

$$
\begin{equation*}
b_{1}, b_{2} \in P(B), b_{1} \neq b_{2}, \quad \text { implies } b_{1} \nmid b_{2} \text { and } B \subset M(P(B)) . \tag{2.6}
\end{equation*}
$$

We know from (2.5) that for any $A \in \mathcal{O}(n, Q) \quad P(A)$ consists only of squarefree numbers and that by (2.4)

$$
\begin{equation*}
A=M(P(A)) \cap \mathbb{N}(n) \tag{2.7}
\end{equation*}
$$

3. Auxiliary inequalities for sets of numbers WITH FORBIDDEN PRIME FACTORS

Let $T \subset \mathbb{P}, T=T_{1} \dot{\cup} T_{2}$, where

$$
T_{1} \subset\left\{p_{1}, \ldots, p_{s-1}\right\}, T_{2}=\left\{p_{j_{1}}, \ldots, p_{j_{r}}\right\} ; p_{s}<p_{j_{1}}<\cdots<p_{j_{r}}
$$

The sets T_{1} and T_{2} can be empty.
Lemma 2. Let $s>1$ and suppose that

$$
\begin{equation*}
r \leq \pi\left(p_{s+\ell-1} \cdot p_{s}\right)-s-2 \ell+1 \quad \text { for all } \ell \geq 1 \tag{3.1}
\end{equation*}
$$

then

$$
\begin{equation*}
2 \cdot|\phi(u, T)| \leq\left|\phi\left(u \cdot p_{s}, T\right)\right| \text { for all } u \in \mathbb{R}^{+} \tag{3.2}
\end{equation*}
$$

Remark 1: A more special form of the Lemma was proved (although it was not stated explicitly) in our paper [3]. Actually, in [3] we proved (3.2), if $T_{2}=\varnothing$. In this case we have $r=0$ and the condition (3.1)

$$
0 \leq \pi\left(p_{s+\ell-1} \cdot p_{s}\right)-s-2 \ell+1 \text { for all } \ell \geq 1
$$

always holds.

Indeed, since $s>1$ we have $p_{s} \geq 3$ and thus the first inequality in $\pi\left(p_{s+\ell-1} \cdot p_{s}\right) \geq$ $\pi\left(3 p_{s+\ell-1}\right) \geq 2 \pi\left(p_{s+\ell-1}\right)$, where the last inequality folows from $\pi(3 x) \geq 2 \pi(x)$, which was shown in [3]. Thus for the quantity in question
$\pi\left(p_{s+\ell-1} \cdot p_{s}\right)-s-2 \ell+1 \geq 2 \pi\left(p_{s+\ell-1}\right)-s-2 \ell+1=2(s+\ell-1)-s-2 \ell+1=s-1>0$.

Proof: Equivalent to (3.2) is

$$
\begin{equation*}
|\phi(u, T)| \leq \mid \phi^{\prime}\left(u \cdot p_{s}, T\right) \tag{3.3}
\end{equation*}
$$

where $\phi^{\prime}\left(u \cdot p_{s}, T\right)=\phi\left(u \cdot p_{s}, T\right) \cap\left(u, u \cdot p_{s}\right\rangle$.
We introduce

$$
\Psi(u, T)=\left\{a \in \phi(u, T): p^{+}(a)<p_{s} \text { or } a=1\right\}
$$

and for $a \in \Psi(u, T)$

$$
D(a)=\left\{b \in \phi(u, T): b=a \cdot d, p^{-}(d) \geq p_{s} \text { or } d=1\right\} .
$$

With these sets we can write $\phi(u, T)$ as a disjoint union

$$
\phi(u, T)=\bigcup_{a \in \Psi(u, T)} D(a) .
$$

Next we introduce for $a \in \Psi(u, T)$

$$
D^{\prime}(a)=\left\{c \in \phi^{\prime}\left(u \cdot p_{s}, T\right): c=a \cdot d^{*}, p^{-}\left(d^{*}\right) \geq p_{s}\right\} .
$$

Clearly these sets are disjoint and

$$
\phi^{\prime}\left(u p_{s}, T\right) \supset \bigcup_{a \in \Psi(u, T)} D^{\prime}(a) .
$$

Sufficient for (3.3) is

$$
\begin{equation*}
\left|D^{\prime}(a)\right| \geq|D(a)| \text { for all } a \in \Psi(u, T) \tag{3.4}
\end{equation*}
$$

From the definition of the sets $D(a)$ and $D^{\prime}(a)$ it follows that for

$$
\begin{gathered}
T^{*}=\left\{p_{1}, \ldots, p_{s-1}\right\} \cup T_{2} \\
|D(a)|=\phi\left(\frac{u}{a}, T^{*}\right),\left|D^{\prime}(a)\right|=\left\lvert\, \phi^{\prime}\left(\frac{u p_{s}}{a}, T^{*}\right)\right., \text { and } \\
\phi^{\prime}\left(\frac{u p_{s}}{a}, T^{*}\right)=\phi\left(\frac{u p_{s}}{a}, T^{*}\right) \backslash \phi\left(\frac{u}{a}, T^{*}\right)=\phi\left(\frac{u p_{s}}{a}, T^{*}\right) \cap\left(\frac{u}{a}, \frac{u p_{s}}{a}\right\rangle .
\end{gathered}
$$

Thus we arrived at the following sufficient condition for (3.4):

$$
\begin{equation*}
\left|\phi\left(v, T^{*}\right)\right| \leq\left|\phi^{\prime}\left(v \cdot p_{s}, T^{*}\right)\right|=\left|\phi\left(v \cdot p_{s}, T^{*}\right) \backslash \phi\left(v, T^{*}\right)\right| \text { for all } v \in \mathbb{R}^{+} \tag{3.5}
\end{equation*}
$$

We avoid the trivial cases $v<1$ for which $\phi\left(v, T^{*}\right)=\varnothing$ and $1 \leq v<p_{s}$, for which $\left|\phi\left(v, T^{*}\right)\right|=1$ and $p_{s} \in \phi^{\prime}\left(v \cdot p_{s}, T^{*}\right)$. Hence we assume $v \geq p_{s}$ and introduce

$$
F\left(v, T^{*}\right)=\left\{b \in \phi\left(v, T^{*}\right), b \neq 1: b \cdot p^{+}(b) \leq v\right\} \cup\{1\} .
$$

Then $\phi\left(v, T^{*}\right)$ is a disjoint union

$$
\phi\left(v, T^{*}\right)=\bigcup_{b \in F\left(v, T^{*}\right)} \tau(b) \cup\{1\},
$$

where

$$
\tau(b)=\left\{m \in \mathbb{N}: m=p \cdot b ; p \in \mathbb{P} \backslash T^{*} ; p^{+}(b) \leq p \leq \frac{v}{b}\right\} .
$$

Hence for all $b \in F\left(v, T^{*}\right)$

$$
\begin{gather*}
|\tau(b)|=\left|\left\{p \in \mathbb{P} \backslash T^{*}: p^{+}(b) \leq p \leq \frac{v}{b}\right\}\right| \text { and } \tag{3.6}\\
\left|\phi\left(v, T^{*}\right)\right|=\sum_{b \in F\left(v, T^{*}\right)}|\tau(b)|+1 \tag{3.7}
\end{gather*}
$$

where integer 1 in (3.7) stands to account for the element $\{1\} \in \phi\left(v, T^{*}\right)$.

On the other hand we have

$$
\phi^{\prime}\left(v \cdot p_{s}, T^{*}\right) \supset \bigcup_{b \in F\left(v, T^{*}\right)} \tau_{1}(b) \cup\left\{p_{s}^{k}\right\},
$$

where $\tau_{1}(b)=\left\{m_{1} \in \mathbb{N}: m_{1}=p \cdot b, p \in \mathbb{P} \backslash T^{*}, \frac{v}{b}<p \leq \frac{v \cdot p_{s}}{b}\right\}$ and p_{s}^{k} satisfies $v<$ $p_{s}^{k} \leq v \cdot p_{s}$ for some $k \in \mathbb{N}$.
It is easy to see, that the sets $\left\{\tau_{1}(b)\right\}, b \in F\left(v, T^{*}\right)$, are disjoint and that the element $\left\{p_{s}^{k}\right\}$ does not belong to any of them.
We have

$$
\begin{equation*}
\left|\tau_{1}(b)\right|=\left|\left\{p \in \mathbb{P} \backslash T^{*}: \frac{v}{b}<p \leq \frac{v \cdot p_{s}}{b}\right\}\right| \tag{3.8}
\end{equation*}
$$

for all $b \in F\left(v, T^{*}\right)$ and

$$
\begin{equation*}
\left|\phi^{\prime}\left(v \cdot p_{s}, T^{*}\right)\right| \geq \sum_{b \in F\left(v, T^{*}\right)}\left|\tau_{1}(b)\right|+1, \tag{3.9}
\end{equation*}
$$

where integer 1 in (3.9) stands to account for the element $\left\{p_{s}^{k}\right\}$.
From (3.7) and (3.9) it follows that sufficient for (3.5) is

$$
\left|\tau_{1}(b)\right| \geq|\tau(b)| \text { for all } b \in F\left(v, T^{*}\right)
$$

Let $p_{s+\ell-1} \leq \frac{v}{b}<p_{s+\ell}$ for some $\ell \geq 1$.
Then, from (3.6) and (3.8), we have

$$
|\tau(b)|=\left|\left\{p \in \mathbb{P} \backslash T^{*}: p^{+}(b) \leq p \leq \frac{v}{b}\right\}\right| \leq\left|\left\{p \in \mathbb{P}: p_{s} \leq p \leq p_{s+\ell-1}\right\}\right|=\ell
$$

and

$$
\begin{aligned}
& \left|\tau_{1}(b)\right|=\left|\left\{p \in \mathbb{P} \backslash T^{*}: \frac{v}{b}<p \leq \frac{v \cdot p_{s}}{b}\right\}\right| \geq \\
& \left|\left\{p \in \mathbb{P} \backslash T^{*}: p_{s+\ell-1}<p \leq p_{s+\ell-1} \cdot p_{s}\right\}\right|=\pi\left(p_{s+\ell-1} \cdot p_{s}\right)-(s+\ell-1)-r_{1},
\end{aligned}
$$

where r_{1} is the number of primes from T_{2} in the interval $\left\langle p_{s+\ell}, p_{s+\ell-1} \cdot p_{s}\right\rangle$. Since $r_{1} \leq r=\left|T_{2}\right|$ we have

$$
\left|\tau_{1}(b)\right| \geq \pi\left(p_{s+\ell-1} \cdot p_{s}\right)-(s+\ell-1)-r .
$$

Finally, using condition (3.1) we have established the sufficient condition

$$
\left|\tau_{1}(b)\right| \geq \pi\left(p_{s+\ell-1} \cdot p_{s}\right)-(s+\ell-1)-r \geq \ell \geq|\tau(b)| .
$$

Remark 2: Perhaps one can try to simplify condition (3.1) in Lemma 2 by finding

$$
\min _{\ell \in \mathbb{N}}\left(\pi\left(p_{s+\ell-1} \cdot p_{s}\right)-2 \ell\right) \text { for } s \geq 2
$$

However, if the minimum is achieved for $\ell=1$ (which seems the most likely), then one has at least to prove, that between p_{s}^{2} and $p_{s} \cdot p_{s+1}$ there are at least two primes, which seems hopeless. For comparison let us recall that in 1904 Brocard conjectured that between p_{s}^{2} and p_{s+1}^{2}, there are at least 4 primes and this remains unsolved (see [5]).

We need the folowing result, which is probably known to the experts (in fact, it is an easy consequence of known results), but we could not find in the literature.

Lemma 3.

$$
p_{s} \cdot p_{t}>p_{s \cdot t}
$$

for all $s, t \in \mathbb{N}$ expect for two cases, namely, $s=3, t=4$, for which $p_{3} \cdot p_{4}=$ $5 \cdot 7=35<p_{12}=37$, and $s=t=4$, for which $p_{4} \cdot p_{4}=7 \cdot 7=49<p_{16}=53$.

Proof: We use very sharp estimates of the size of primes, which are due to Rosser and Schoenfeld [4]:

$$
\begin{align*}
& p_{n}<n\left(\log n+\log \log n-\frac{1}{2}\right) \text { for } n \geq 20 \\
& p_{n}>n \log n \text { for } n \geq 1 \tag{3.10}
\end{align*}
$$

Using (3.10) one gets

$$
p_{s} \cdot p_{t}>p_{s \cdot t} \text { for all } t \geq s \geq 12
$$

For every $s \leq 11$, we take the exact value of p_{s} and estimate, using (3.10), only primes p_{t} and $p_{s t}$. For example let $s=4, p_{4}=7, t \geq 5$. Since $s \cdot t \geq 20$ we can use (3.10) to get

$$
\begin{equation*}
p_{4 t}<4 t\left(\log 4 t+\log \log 4 t-\frac{1}{2}\right) \quad \text { and } p_{4} \cdot p_{t}=7 \cdot p_{t}>7 \cdot t \log t \tag{3.11}
\end{equation*}
$$

From (3.11) we have $7 \cdot p_{t}>p_{4 \cdot t}$ for all $t \geq 25$ and this cases $5 \leq t \leq 24$ are verified by inspection using the list of primes.
In the case $s=t=4$ we have the opposite inequality and this is one of the two exceptions specified in the Lemma. For other values of $s \leq 11$ we have similar calculations.

We recall the definitions of the sets T_{1}, T_{2}, T in Lemma 2:

$$
T_{1} \subset\left\{p_{1}, \ldots, p_{s-1}\right\}, T_{2}=\left\{p_{j_{1}}, \ldots, p_{j_{r}}\right\} ; p_{s}<p_{j_{1}}<\cdots<p_{j_{r}}
$$

and $s>1$. We introduce

$$
T_{3}=\left(\left\{p_{1}, \ldots, p_{s-1}\right\} \backslash T_{1}\right) \cup\left\{p_{s}\right\}=\left\{p_{i_{1}}, \ldots, p_{i_{t}}\right\}, p_{i_{1}}<\cdots<p_{i_{t}}=p_{s}
$$

Theorem 3. Let $s>1$ and the sets of primes $T_{1}, T_{2}, T_{3}, T=T_{1} \cup T_{2}$ as described above. Then for every $u \in \mathbb{R}^{+}$with

$$
\begin{gather*}
u \geq \frac{\prod_{p \in T_{2}} p}{\prod_{p \in T_{3}} p} \tag{3.12}\\
2|\phi(u, T)| \leq\left|\phi\left(u \cdot p_{s}, T\right)\right| \quad \text { holds. } \tag{3.13}
\end{gather*}
$$

Proof: In the light of Lemma 2 we can assume

$$
\begin{gather*}
r>\pi\left(p_{s+\ell-1} \cdot p_{s}\right)-s-2 \ell+1 \text { for some } \ell \geq 1 . \tag{3.14}\\
9
\end{gather*}
$$

At first let us show that from (3.14) one can get

$$
\begin{equation*}
r>(s-1)^{2} . \tag{3.15}
\end{equation*}
$$

Indeed from Lemma 3 we know

$$
p_{s+\ell-1} \cdot p_{s}>p_{(s+\ell-1) s} \text { for all } s, \ell \text { except } s=3, \ell=2 \text { and } s=4, \ell=1
$$

Hence

$$
\pi\left(p_{s+\ell-1} \cdot p_{s}\right) \geq \pi\left(p_{(s+\ell-1) \cdot s}\right)=s(s+\ell-1)
$$

for all s, ℓ with the exceptions mentioned above.
Therefore

$$
r>\pi\left(p_{s+\ell-1} \cdot p_{s}\right)-s-2 \ell+1 \geq s(s+\ell-1)-s-2 \ell+1 \geq(s-1)^{2} .
$$

since $s>1$. For $s=3, \ell=2$ and $s=4, \ell=1$ we verify (3.15) by inspection.
Now, for every $u \in \mathbb{R}^{+}$by the inclusion-exclusion principle we have

$$
|\phi(u, T)|=\lfloor u\rfloor-\sum_{p \in T}\left\lfloor\frac{u}{p}\right\rfloor+\sum_{\substack{p<q \\ p, q \in T}}\left\lfloor\frac{u}{p \cdot q}\right\rfloor \cdots \leq u \cdot \prod_{p \in T}\left(1-\frac{1}{p}\right)+2^{|T|-1}
$$

and

$$
\left|\phi\left(u \cdot p_{s}\right), T\right| \geq u \cdot p_{s} \cdot \prod_{p \in T}\left(1-\frac{1}{p}\right)-2^{|T|-1}
$$

Hence, sufficient for (3.13) is

$$
\begin{equation*}
u\left(p_{s}-2\right) \cdot \prod_{p \in T}\left(1-\frac{1}{p}\right) \geq 3 \cdot 2^{|T|-1} \text { for all } u \geq \frac{\prod_{p \in T_{2}} p}{\prod_{p \in T_{3}} p} . \tag{3.16}
\end{equation*}
$$

Since $|T|=s-t+r$, equivalent to (3.16) is
$\left(p_{s}-2\right) \cdot \frac{\prod_{p \in T_{2}} p}{\prod_{p \in T_{3}} p} \cdot \prod_{p \in T_{1} \cup T_{2}}\left(1-\frac{1}{p}\right)=\left(p_{s}-2\right) \cdot \frac{\prod_{p \in T_{2}}(p-1)}{\prod_{i=1}^{s} p_{i}} \cdot \prod_{p \in T_{1}}(p-1) \geq 3 \cdot 2^{r} \cdot 2^{s-t-1}$.

Since $\left|T_{1}\right|=s-t$, we observe that

$$
\prod_{p \in T_{1}}(p-1) \geq 2^{s-t-1}
$$

and sufficient for (3.17) is

$$
\begin{equation*}
\left(p_{s}-2\right) \cdot \frac{\prod_{p \in T_{2}}(p-1)}{\prod_{\substack{i=1 \\ 10}}^{s} p_{i}} \geq 3 \cdot 2^{r} . \tag{3.18}
\end{equation*}
$$

Now, if $s \geq 3$, then

$$
\begin{aligned}
& \left(p_{s}-2\right) \cdot \frac{\prod_{p \in T_{2}}(p-1)}{\prod_{i=1}^{s} p_{i}}=\left(p_{s}-2\right) \frac{\left(p_{j_{1}}-1\right) \ldots\left(p_{j_{r}}-1\right)}{p_{1} \ldots p_{s}}> \\
& \left(p_{s}-2\right)\left(p_{j_{s+1}}-1\right) \ldots\left(p_{j_{r}}-1\right)>\left(p_{s}-2\right) \cdot\left(p_{j_{s+1}}-1\right)^{r-s} \geq\left(p_{s}-2\right) \cdot 16^{r-s}>3 \cdot 2^{r},
\end{aligned}
$$

since $p_{j_{1}} \geq 7, p_{j_{s+1}} \geq 17$ and we know that $r \geq(s-1)^{2}+1$ (see (3.15)).
So, it remains to show the validity of (3.13) only for the case $s=2$. From (3.15) we know that $r \geq 2$ and, if $r>2$, we have in (3.18)

$$
\frac{\left(p_{j_{1}}-1\right)\left(p_{j_{2}}-1\right) \ldots\left(p_{j_{r}}-1\right)}{2 \cdot 3} \geq \frac{(5-1)(7-1)(11-1) \ldots\left(p_{j_{r}}-1\right)}{6} \geq 3 \cdot 2^{r}
$$

Hence, we can assume $r=2$. However the formula (3.18) does not hold in this case for instance for $p_{j_{1}}=5, p_{j_{2}}=7$:

$$
\frac{(5-1)(7-1)}{6} \nsupseteq 3 \cdot 2^{2}=12 .
$$

In the case $s=r=2$ we have to estimate the quantities $|\phi(u, T)|$ and $|\phi(3 u, T)|$ more accurately.
We have to consider two cases: $t=1$ and $t=2$, where $t=\left|T_{3}\right|$. We are going to prove (3.13) only for $t=1$ (the case $t=2$ is similar, actually even simpler).
We have to prove that for $q_{1}, q_{2}, 5 \leq q_{1}<q_{2} ; T=\left\{2, q, q_{2}\right\}$
$2|\phi(u, T)|<|\phi(3 u, T)|$ holds provided that $u \geq \frac{q_{1} \cdot q_{2}}{3}$. We have

$$
\begin{aligned}
& |\phi(3 u, T)|-2|\phi(u, T)|=\lfloor 3 u\rfloor-\left\lfloor\frac{3 u}{2}\right\rfloor-\left\lfloor\frac{3 u}{q_{1}}\right\rfloor-\left\lfloor\frac{3 u}{q_{2}}\right\rfloor+\left\lfloor\frac{3 u}{2 q_{1}}\right\rfloor+\left\lfloor\frac{3 u}{2 q_{2}}\right\rfloor+\left\lfloor\frac{3 u}{q_{1} q_{2}}\right\rfloor-\left\lfloor\frac{3 u}{2 q_{1} q_{2}}\right\rfloor- \\
& 2\lfloor u\rfloor+2\left\lfloor\frac{u}{2}\right\rfloor+2\left\lfloor\frac{u}{q_{1}}\right\rfloor+2\left\lfloor\frac{u}{q_{2}}\right\rfloor-2\left\lfloor\frac{u}{2 q_{1}}\right\rfloor-2\left\lfloor\frac{u}{2 q_{2}}\right\rfloor-2\left\lfloor\frac{u}{q_{1} q_{2}}\right\rfloor+2\left\lfloor\frac{u}{2 q_{1} q_{2}}\right\rfloor= \\
& \left(\lfloor 3 u\rfloor-\left\lfloor\frac{3 u}{2}\right\rfloor-2\lfloor u\rfloor+2\left\lfloor\frac{u}{2}\right\rfloor\right)-\left(\left\lfloor\frac{3 u}{q_{1}}\right\rfloor-\left\lfloor\frac{3 u}{2 q_{1}}\right\rfloor-2\left\lfloor\frac{u}{q_{1}}\right\rfloor+2\left\lfloor\frac{u}{2 q_{1}}\right\rfloor\right)- \\
& \left(\left\lfloor\frac{3 u}{q_{2}}\right\rfloor-\left\lfloor\frac{3 u}{2 q_{2}}\right\rfloor-2\left\lfloor\frac{u}{q_{2}}\right\rfloor+2\left\lfloor\frac{u}{2 q_{2}}\right\rfloor\right)+\left(\left\lfloor\frac{3 u}{q_{1} q_{2}}\right\rfloor-\left\lfloor\frac{3 u}{2 q_{1} q_{2}}\right\rfloor-2\left\lfloor\frac{u}{q_{1} q_{2}}\right\rfloor+2\left\lfloor\frac{u}{2 q_{1} q_{2}}\right\rfloor\right) .
\end{aligned}
$$

Now we use the following inequalities (which can be easily verified).

$$
\begin{aligned}
& x-1<x-\frac{5}{6}<\lfloor 6 x\rfloor-\lfloor 3 x\rfloor-2\lfloor 2 x\rfloor+2\lfloor x\rfloor \leq x+\frac{5}{6}<x+1 \text { for all } x \in \mathbb{R}^{+} \text {to get } \\
& |\phi(3 u, T)|-2|\phi(u, T)|>u\left(1-\frac{1}{2}\right)\left(1-\frac{1}{q_{1}}\right)\left(1-\frac{1}{q_{2}}\right)-4= \\
& =\frac{u\left(q_{1}-1\right)\left(q_{2}-1\right)}{2 q_{1} q_{2}}-4 \geq \frac{\left(q_{1}-1\right)\left(q_{2}-1\right)}{6}-4 \geq 0, \text { since } u \geq \frac{q_{1} q_{2}}{3} \text { and } 5 \leq q_{1}<q_{2} .
\end{aligned}
$$

Remarks:

3. We note that (3.13) does not always hold, if we ignore the restriction on u. For example for $T=\{2,5,7\}, s=2, u=3$ we have

$$
2|\phi(3, T)|=2 \cdot|\{1,3\}|=4 \not \leq\left|\phi\left(p_{2} \cdot 3, T\right)\right|=|\phi(9, T)|=|\{1,3,9\}|=3 .
$$

4. If u is sufficiently large, $u>u(\varepsilon)$, then the coefficient 2 in (3.13) of the Theorem (in Lemma 2 as well), clearly can be changed to $\left(p_{s}-\varepsilon\right)$, for any $\varepsilon>0$.

4. Further preparations: Lemmas 4, 5, 6

For given $Q \subset \mathbb{P}$ and any $b \in \mathbb{N}$ let $p^{+}(b, Q)$ denote the maximal prime from $\mathbb{P} \backslash Q$ which occurs in the prime decomposition of b (in the case $Q=\varnothing$ we always have $\left.p^{+}(b, \phi)=p^{+}(b)\right)$.
If b is completely composed from the primes Q or $b=1$, then $p^{+}(b, Q)=1$.
Further, let $A \subset \mathbb{N}(n)$ be such that $P(A)$, the primitive subset of A, consists only of squarefree numbers and let $A=M(P(A)) \cap \mathbb{N}(n)$.
For given $Q \subset \mathbb{P}$, we define

$$
\begin{equation*}
p^{+}(P(A), Q)=\max _{a \in P(A)} p^{+}(a, Q) \tag{4.1}
\end{equation*}
$$

We consider $L_{i, j}(A)=A^{\prime}$, where $i<j$ and $p_{j} \in Q$ implies $p_{i} \in Q$.
One can easily verify the following statement.

Lemma 4.

$$
p^{+}(P(A), Q) \geq p^{+}\left(P\left(A^{\prime}\right), Q\right)
$$

Let $A \in \mathcal{O}(n, Q) \cap C(Q)$ for some $Q=\left\{q_{1}, q_{2}, \ldots, q_{r}\right\}, 2<q_{1}<\cdots<q_{r}$ and $n \in \mathbb{N}$.
We know (see Lemma 1), that such a set A always exists. Let $P(A)$ be the primitive subset of A and $p^{+}(P(A), Q)=p_{s}$ for some $p_{s} \in(\mathbb{P} \backslash Q) \cup\{1\}$.
We write $P(A)$ in the form $P(A)=R_{0} \dot{\cup} R_{1} \dot{\cup} \ldots \dot{U} R_{s}$, where

$$
\begin{equation*}
R_{0}=\left\{a \in P(A): p^{+}(a, Q)=1\right\} \tag{4.2}
\end{equation*}
$$

and

$$
R_{i}=\left\{a \in P(A): p^{+}(a, Q)=p_{i}\right\}, 1 \leq i \leq s
$$

We note that some of the R_{i} can be empty, but not R_{s}.
Since A is optimal, we know that $A=M(P(A)) \cap \mathbb{N}(n)$, which can be written in the form

$$
A=M(P(A)) \cap \mathbb{N}(n)=\left(M\left(R_{0} \dot{\cup} \ldots \dot{\cup} R_{s-1}\right) \dot{\cup} K\left(R_{s}\right)\right) \cap \mathbb{N}(n),
$$

where $K\left(R_{s}\right)=\left(M\left(R_{s}\right) \backslash M\left(R_{0} \cup \cdots \cup R_{s-1}\right)\right) \cap \mathbb{N}(n)$, i.e. $K\left(R_{s}\right)$ is the set of those elements of A, which are not divisible by any $b, b \in R_{0} \cup \cdots \cup R_{s-1}$.
Let $s>1, R_{s}=R_{s}^{0} \dot{\cup} R_{s}^{1}$, where

$$
\begin{equation*}
R_{s}^{0}=\left\{b \in R_{s}: 2 \mid b\right\}, R_{s}^{1}=R_{s} \backslash R_{s}^{0} \tag{4.3}
\end{equation*}
$$

and $K\left(R_{s}\right)=K^{0}\left(R_{s}\right) \dot{\cup} K^{1}\left(R_{s}\right)$, where

$$
\begin{equation*}
K^{0}\left(R_{s}\right)=\left\{a \in K\left(R_{s}\right): 2 \mid a\right\}, K^{1}\left(R_{s}\right)=K\left(R_{s}\right) \backslash K^{0}\left(R_{s}\right) \tag{4.4}
\end{equation*}
$$

Finally, let

$$
\begin{equation*}
G_{s}^{i}=\left\{m \in \mathbb{N}: m \cdot p_{s} \in R_{s}^{i}\right\}, i=0,1 \tag{4.5}
\end{equation*}
$$

Lemma 5. Let $A \in \mathcal{O}(n, Q) \cap C(Q)$, let the sets $K^{i}\left(R_{s}\right), R_{s}^{i}, G_{s}^{i}, i=0,1$, be defined as above, and let $s>1$. Then
(1) $b \nmid a$ for all $b \in R_{s}^{i}, a \in K^{1-i}\left(R_{s}\right), i=0,1$
(2) $K^{i}\left(R_{s}\right)=M\left(R_{s}^{i}\right) \backslash M\left(R_{0} \cup \cdots \cup R_{s-1}\right), i=0,1$
(3) $G_{s}^{i} \in I(n, Q), i=0,1$. (defined in the Introduction)
(4) $\left(R_{0} \cup \cdots \cup R_{s-1} \cup G_{s}^{i}\right) \in I(n, Q), i=0,1$.

Proof: (1) Obviously, $b \nmid a$ for all $b \in R_{s}^{0}, a \in K^{1}\left(R_{s}\right)$. Suppose $b \mid a$ for some $b \in R_{s}^{1}, a \in K^{0}\left(R_{s}\right)$. Then $\left.\frac{b}{p_{s}} \cdot 2 \right\rvert\, a$ as well, because $2 \nmid b$ and $2 \mid a$. However $\frac{b}{p_{s}} \cdot 2 \in A$, because A is left compressed with respect to Q and $p_{s} \notin Q$, $p_{s}>2,2 \nmid b$. Hence $\frac{b}{p_{s}} \cdot 2 \in M\left(R_{0} \cup \cdots \cup R_{s-1}\right)$, because $p_{s} \nmid \frac{b}{p_{s}} \cdot 2$. Therefore $a \notin K\left(R_{s}\right)$, becuase $\left.\frac{b}{p_{s}} \cdot 2 \right\rvert\, a$. This is a contradiction.
(2) follows from (1).
(3) Clearly $G_{s}^{0} \in I(n, Q)$, because all elements of G_{s}^{0} are even and prime $p_{s} \notin Q$. Let us show that $G_{s}^{1} \in I(n, Q)$ as well. Suppose to the opposite, there exist $b_{1}, b_{2} \in G_{s}^{1}$ with $\left(b_{1}, b_{2}\right)=1$.
We have $b_{1} \cdot p_{s}, b_{2} \cdot p_{s} \in R_{s}^{1} \quad$ (see definition of G_{s}^{1} and R_{s}^{1}).
However, since $R_{s}^{1} \subset A, A$ is left compressed with respect to Q and $p_{s} \notin Q$, $p_{s}>2,2 \nmid b_{1}, 2 \nmid b_{2}$, we conclude $2 \cdot b_{1} \in A$ as well. Hence the elements $2 \cdot b_{1}$, $p_{s} \cdot b_{2} \in A$ and at the same time $\left(2 \cdot b_{1}, p_{s} \cdot b_{2}\right)=1$, which is a contradiction.
(4) This is trivial.

Finally we need an auxiliary result concerning the set $K\left(R_{s}\right)$. Let a be any element of $K\left(R_{s}\right)$. This element uniquely can be written in the forms

$$
\begin{equation*}
a=p_{i_{1}}^{\alpha_{1}} \cdot \ldots \cdot p_{i_{t}}^{\alpha_{t}} \cdot q_{j_{1}}^{\beta_{1}} \ldots q_{j_{\ell}}^{\beta_{\ell}} \cdot a_{3}, \quad \text { where } \tag{4.6}
\end{equation*}
$$

$p_{i_{1}}<p_{i_{2}}<\cdots<p_{i_{t}}=p_{s}<q_{j_{1}}<\cdots<q_{j_{\ell}} ; \alpha_{i}, \beta_{i} \geq 1, q_{j_{i}} \in Q, p^{-}\left(a_{3}\right)>p_{s}$, $p \mid a_{3}$ implies $p \in \mathbb{P} \backslash Q$ or $a_{3}=1$.
We note, that $\left\{q_{j_{1}}, \ldots, q_{j_{\ell}}\right\}=\varnothing$ is also possible.
Lemma 6. Let $A \in \mathcal{O}(n, Q) \cap C(Q), p^{+}(p(A), Q)=p_{s}, s>1$ and let $a \in K\left(R_{s}\right)$ be an element of the form (4.6), then

$$
\begin{equation*}
a^{\prime}=p_{i_{1}}^{\alpha_{1}^{\prime}} \ldots p_{i_{t}}^{\alpha_{t}^{\prime}} \cdot q_{j_{1}}^{\beta_{1}^{\prime}} \ldots q_{j_{\ell}}^{\beta_{\ell}^{\prime}} \cdot a_{3}^{\prime} \in K\left(R_{s}\right) \text { for all } \alpha_{i}^{\prime} \geq 1, \quad \beta_{i}^{\prime} \geq 1, p^{-}\left(a_{3}^{\prime}\right)>p_{s} \tag{1}
\end{equation*}
$$ $p \mid a_{3}^{\prime}$ implies $p \in \mathbb{P} \backslash Q$, or $a_{3}^{\prime}=1$, provided that $a^{\prime} \leq n$.

(2) For every integer $b \in \mathbb{N}$ of the form $b=p_{i_{1}}^{\gamma_{1}} \ldots p_{i_{t-1}}^{\gamma_{t-1}} \cdot q_{j_{1}}^{\delta_{1}} \ldots q_{j_{\ell}}^{\delta_{\ell}} \cdot b^{\prime}, \gamma_{i} \geq 0, \delta_{i} \geq 0$, $p^{-}\left(b^{\prime}\right)>p_{s}, p \mid b^{\prime}$ implies $p \in \mathbb{P} \backslash Q$ or $b^{\prime}=1$, we have $b \notin A$.

Proof: (1) Since $a \in K\left(R_{s}\right) \subset A$, we have $m \mid a$ for some $m \in P(A)$ and hence $m \mid p_{i_{1}} \ldots p_{i_{t}} \cdot q_{j_{1}} \ldots q_{j_{\ell}}$, because $p^{+}(P(A), Q)=p_{s}$ and $m \in P(A)$ implies $m \in \mathbb{N}^{*}$. Therefore all integers of the form in (1) belong to our set A. However, every $m \in P(A)$
with $m \mid a$ must belong to the set R_{s}, otherwise $a \notin K\left(R_{s}\right)$ and this completes the proof of (1).
(2) If for some $b \in \mathbb{N}$ of the form in (2) we have $b \in A$, then $m^{\prime} \mid b$ for some $m^{\prime} \in R_{0} \cup \cdots \cup R_{s-1}\left(m^{\prime} \notin R_{s}\right.$, because $\left.p_{s} \nmid b\right)$. Since A is a "downset", $p^{+}\left(R_{0} \cup\right.$ $\left.\cdots \cup R_{s-1}, Q\right) \leq s-1$ and since $p^{-}\left(b^{\prime}\right)>p_{s}, p \mid b^{\prime}$ implies $p \in \mathbb{P} \backslash Q$ or $b^{\prime}=1$, we have $m^{\prime} \mid p_{i_{1}} \ldots p_{i_{t-1}} q_{j_{1}} \ldots q_{j_{\ell}}$ as well, and hence $m^{\prime} \mid a$, which is a contradiction to $a \in K\left(R_{s}\right)$.

Let
$Z=\left\{a^{*} \in K\left(R_{s}\right) \cap \mathbb{N}^{*}: a^{*}=p_{i_{1}} \ldots p_{i_{t}} \cdot q_{j_{1}} \cdots q_{j_{\ell}}, p_{i_{1}}<\cdots<p_{i_{t}}=p_{s}<q_{j_{1}}<\cdots<q_{j_{\ell}}, q_{j_{i}} \in Q\right\}$
and let for $a^{*} \in Z, E\left(a^{*}\right)$ denotes the set of all integers a^{\prime} of the form (1) in Lemma 6 with $a^{\prime} \leq n$.
From Lemma 6 (1) immediately follows

$$
\begin{equation*}
K\left(R_{s}\right)=\bigcup_{a^{*} \in Z} E\left(a^{*}\right) \tag{4.7}
\end{equation*}
$$

Finally, from Lemma 5 (1) and (4.7) we have

$$
\begin{equation*}
K^{i}\left(R_{s}\right)=\bigcup_{a^{*} \in Z^{i}} E\left(a^{*}\right), i=0,1 \tag{4.8}
\end{equation*}
$$

where $Z^{i}=Z \cap K^{i}\left(R_{s}\right), i=0,1$.

5. Proof of Theorem 1

Let $Q=\left\{q_{1}, q_{2}, \ldots, q_{r}\right\}, 2<q_{1}<\cdots<q_{r}, n \in \mathbb{N}, n \geq \prod_{i=1}^{r} q_{i}$ and let $\mathcal{O}(n, Q)$ be the set of all optimal sets. For every $B \in \mathcal{O}(n, Q)$ we consider $P(B)$ the primitive, generating subset of $B: B=M(P(B)) \cap \mathbb{N}(n)$.
Let

$$
p_{s}=\min _{B \in \mathcal{O}(n, Q)} p^{+}(P(B), Q)
$$

where $p^{+}(P(B), Q)$ is defined in (4.1), and $p_{s} \in(\mathbb{P} \backslash Q) \cup\{1\}$.
Let $\mathcal{O}_{1}(n, Q)=\left\{B \in \mathcal{O}(n, Q): p^{+}(P(B), Q)=p_{s}\right\}$. Our first step is to prove

$$
\begin{equation*}
p_{s} \leq 2 \tag{5.1}
\end{equation*}
$$

From Lemma 1 and 4 it follows that

$$
\underset{14}{\mathcal{O}_{1}(n, Q) \cap C(Q) \neq \varnothing .}
$$

Let $A \in \mathcal{O}_{1}(n, Q) \cap C(Q)$ and suppose to the opposite of (5.1) that $p_{s} \geq 3$, i.e. $s \geq 2$.
Let $P(A)=R_{0} \cup R_{1} \cup \cdots \cup R_{s}$, where the R_{i-s} are described in (4.2).
We also recall the definitions of the sets $R_{s}^{i}, G_{s}^{i}, K^{i}\left(R_{s}\right)$ (see (4.3), (4.4)). We consider the following two sets:

$$
A^{i}=M\left(R_{0} \cup \cdots \cup R_{s-1} \cup G_{s}^{i}\right) \cap \mathbb{N}(n), i=0,1
$$

From Lemma 5 we know that $A^{0}, A^{1} \in I(n, Q)$ and we are going to prove, that at least one of the following inequalities $\left|A^{0}\right| \geq|A|,\left|A^{1}\right| \geq|A|$ holds. Suppose

$$
\begin{equation*}
\left|K^{1}\left(R_{s}\right) \cap \mathbb{N}(n)\right| \geq\left|K^{0}\left(R_{s}\right) \cap \mathbb{N}(n)\right| \tag{5.2}
\end{equation*}
$$

(the opposite case is symmetrically the same), and let us prove that

$$
\begin{equation*}
\left|A^{1}\right|=\left|M\left(R_{0} \cup \cdots \cup R_{s-1} \cup G_{s}^{1}\right) \cap \mathbb{N}(n)\right| \geq|A| . \tag{5.3}
\end{equation*}
$$

Let

$$
K^{*}\left(M\left(G_{s}^{1}\right) \backslash M\left(R_{0} \cup \cdots \cup R_{s-1}\right)\right) \cap \mathbb{N}(n)
$$

In the light of (5.2), sufficient for (5.3) is

$$
\begin{equation*}
\left|K^{*}\right| \geq 2\left|K^{1}\left(R_{s}\right)\right| \tag{5.4}
\end{equation*}
$$

From (4.8) we know that

$$
\begin{equation*}
K^{1}\left(R_{s}\right)=\bigcup_{a^{*} \in Z^{1}} E\left(a^{*}\right), \quad \text { where } \tag{5.5}
\end{equation*}
$$

$Z^{1}=\left\{a^{*} \in K^{1}\left(R_{s}\right) \cap \mathbb{N}^{*}: a^{*}=p_{i_{1}} \ldots p_{i_{t}} \cdot q_{j_{1}} \ldots q_{j_{\ell}}, p_{j_{1}}<\ldots<p_{i_{t}}=p_{s}<q_{j_{1}}<\ldots<q_{j_{\ell}}, q_{j_{i}} \in Q\right\}$ and
$E\left(a^{*}\right)=\left\{a \leq n: a=p_{i_{1}}^{\alpha_{1}} \ldots p_{i_{t}}^{\alpha_{t}} \cdot q_{j_{1}}^{\beta_{1}} \ldots q_{j_{\ell}}^{\beta_{\ell}} \cdot a_{3}, \alpha_{i} \geq 1, \beta_{i} \geq 1, p^{-}\left(a_{3}\right)>p_{s}, p \mid a_{3} \Rightarrow p \in \mathbb{P} \backslash Q\right.$ or $a_{3}=1$, and $\left.a^{*}=p_{i_{1}} \ldots p_{i_{t}} \cdot q_{j_{1}} \ldots q_{j_{\ell}} \in Z^{1}\right\}$.

It is easy to see that one can write the set $E\left(a^{*}\right)$ in the following form:

$$
\begin{equation*}
E\left(a^{*}\right)=\left\{a \leq n: a=a^{*} \cdot a_{3}^{\prime}, a_{3}^{\prime} \in \phi\left(\frac{n}{a^{*}}, T\right)\right\} \tag{5.6}
\end{equation*}
$$

where $T=\left(\left\{p_{1}, \ldots, p_{s}\right) \backslash\left\{p_{i_{1}}, \ldots, p_{i_{t}}\right\}\right) \cup\left(\left\{q \in Q: q>p_{s}\right\} \backslash\left\{q_{j_{1}}, \ldots, q_{j_{\ell}}\right\}\right)$.
Hence

$$
\begin{equation*}
\left|E\left(a^{*}\right)\right|=\left|\underset{15}{\mid}\left(\frac{n}{a^{*}}, T\right)\right| \tag{5.7}
\end{equation*}
$$

for every $a^{*} \in Z^{1}$ and $T=T\left(a^{*}\right)$, as described in (5.6).
Now, for any $a^{*} \in Z^{1}, a^{*}=p_{i_{1}} \ldots p_{i_{t}} \cdot q_{j_{1}} \ldots q_{j_{\ell}}, p_{i_{1}}<\cdots<p_{i_{t}}=p_{s}<q_{j_{1}}<\cdots<$ $q_{j_{\ell}} ; q_{j_{i}} \in Q$ we consider the integer $b^{*}=\frac{a^{*}}{p_{s}}=p_{i_{1}} \ldots p_{i_{t-1}} \cdot q_{j_{1}} \ldots q_{j_{\ell}}$ and the set
$E^{*}\left(b^{*}\right)=\left\{b \leq n: b=p_{i_{1}}^{\gamma_{1}} \ldots p_{i_{t-1}}^{\gamma_{t-1}} \cdot q_{j_{1}}^{\delta_{1}} \ldots q_{j_{\ell}}^{\delta_{\ell}} \cdot b_{3}, \gamma_{i}, \delta_{i} \geq 1, p^{-}\left(b_{3}\right) \geq p_{s}, p \mid b_{3} \Rightarrow p \in \mathbb{P} \backslash Q\right.$ or $\left.b_{3}=1\right\}$.

One can write the set $E^{*}\left(b^{*}\right)$ in the form:

$$
E^{*}\left(b^{*}\right)=\left\{b \leq n: b=b^{*} \cdot b_{3}^{\prime}, b_{3}^{\prime} \in \phi\left(\frac{n}{b^{*}}, T\right)\right\}
$$

where the set T is the same as in (5.6).
Hence

$$
\begin{equation*}
\left|E^{*}\left(b^{*}\right)\right|=\left|\phi\left(\frac{n}{b^{*}}, T\right)\right|=\left|\left(\frac{n \cdot p_{s}}{a^{*}}, T\right)\right| . \tag{5.8}
\end{equation*}
$$

From the definitions of the sets $E\left(a^{*}\right)$ and $E^{*}\left(b^{*}\right)$ we know for every $a^{*} \in Z^{1}$, $b^{*}=\frac{a^{*}}{p_{s}}$, that

$$
\begin{equation*}
E_{0}^{*}\left(b^{*}\right)=E\left(a^{*}\right), \tag{5.9}
\end{equation*}
$$

where $E_{0}^{*}\left(b^{*}\right)=\left\{b \in E^{*}\left(b^{*}\right): p_{s} \mid b\right\}$ and that (by Lemma 6 (2))

$$
\begin{equation*}
\left(E^{*}\left(b^{*}\right) \backslash E_{0}^{*}\left(b^{*}\right)\right) \cap A=\varnothing . \tag{5.10}
\end{equation*}
$$

Hence, in the light of (5.5) - (5.10), sufficient for (5.4) is

$$
\begin{equation*}
\left|E^{*}\left(b^{*}\right)\right| \geq 2\left|E\left(a^{*}\right)\right| \text { for every } a^{*} \in Z^{1}, b^{*}=\frac{a^{*}}{p_{s}} \tag{5.11}
\end{equation*}
$$

which by (5.7) and (5.8) is equivalent to

$$
\begin{equation*}
\left|\phi\left(\frac{n \cdot p_{s}}{a^{*}}, T\right)\right| \geq 2 \cdot\left|\phi\left(\frac{n}{a^{*}}, T\right)\right| \tag{5.12}
\end{equation*}
$$

$$
\begin{aligned}
& \text { for } T=\left(\left\{p_{1}, \ldots, p_{s}\right\} \backslash\left\{p_{i_{1}}, \ldots, p_{i_{t}}\right\}\right) \cup\left(\left\{q \in Q: q>p_{s}\right\} \backslash\left\{q_{j_{1}}, \ldots, q_{j_{\ell}}\right\}\right), \\
& a^{*}=p_{i_{1}} \ldots p_{i_{t}} \cdot q_{j_{1}} \ldots q_{j_{\ell}} ; p_{i_{1}}<p_{i_{2}}<\cdots<p_{i_{t}}=p_{s}<q_{j_{1}}<\cdots<q_{j_{\ell}}, q_{j_{i}} \in Q .
\end{aligned}
$$

Now we are in the position to apply Theorem 3 to show the validity of (5.12). The sets of primes T_{1}, T_{2}, T_{3} in Theorem 3 are now
$T_{1}=\left\{p_{1}, \ldots, p_{s}\right\} \backslash\left\{p_{i_{1}}, \ldots, p_{i_{t}}\right\}=\left\{p_{1}, \ldots, p_{s-1}\right\} \backslash\left\{p_{i_{1}}, \ldots, p_{i_{t-1}}\right\},\left(p_{i_{t}}=p_{s}\right)$
$T_{2}=\left\{q \in Q: q>p_{s}\right\} \backslash\left\{q_{j_{1}}, \ldots, q_{j_{\ell}}\right\}$, and $T_{3}=\left\{p_{i_{1}}, \ldots, p_{i_{t}}\right\}$.
The condition (3.12), i.e. $u \geq \frac{\prod_{p \in T_{2}} p}{\prod_{p \in T_{3}} p}$, also holds, because $n \geq \prod_{q \in Q} q$ yields

$$
u=\frac{n}{a^{*}}=\frac{n}{p_{i_{1}} \ldots p_{i_{t}} \cdot q_{j_{1}} \ldots q_{j_{\ell}}} \geq \frac{\prod_{q \in Q} q}{p_{i_{1}} \ldots p_{i_{t}} \cdot q_{j_{1}} \ldots q_{j_{\ell}}} \geq \frac{\prod_{q \in T_{2}} q}{\prod_{p \in T_{3}} p} .
$$

This proves (5.12) and consequently (5.3):

$$
\left|A^{1}\right|=\left|M\left(R_{0} \cup \cdots \cup R_{s-1} \cup G_{s}^{1}\right) \cap \mathbb{N}(n)\right| \geq|A| .
$$

Hence $A^{1} \in \mathcal{O}(n, Q)$, because $A \in \mathcal{O}(n, Q)$ and $A^{1} \in I(n, Q)$. Obviously, $P\left(A^{\prime}\right) \subset$ $R_{0} \cup \cdots \cup R_{s-1} \cup G_{s}^{1}$. Therefore $p^{+}\left(P\left(A^{\prime}\right), Q\right)<p_{s}$, which is a contradiction to the definition $p_{s}=\min _{B \in \mathcal{O}(n, Q)} p^{+}(P(B), Q)$. This proves (5.1).
Since for every $B \in \mathcal{O}_{1}(n, Q)$ we have $b_{i} \in P(B)$ it follows that either

$$
p \nmid b_{i} \text { for all } p \in \mathbb{P} \backslash Q
$$

or

$$
2 \mid b_{i}, \text { but } p \nmid b_{i}, p \in \mathbb{P} \backslash(Q \cup\{2\}) .
$$

Let

$$
q_{t}=\min _{B \in \mathcal{O}_{1}(n, Q)} p^{+}(P(B), \phi)
$$

and let

$$
\mathcal{O}_{2}(n, Q)=\left\{B \in \mathcal{O}_{1}(n, Q): p^{+}(P(B), \phi)=q_{t}\right\}
$$

Again, it is easy to see, that

$$
\mathcal{O}_{2}(n, Q) \cap C(Q) \neq \varnothing
$$

Let

$$
A \in \mathcal{O}_{2}(n, Q) \cap C(Q)
$$

We write $P(A)$ in the form

$$
P(A)=S_{1} \dot{\cup} S_{2} \dot{\cup} \ldots \dot{U} S_{t}
$$

where $S_{i}=\left\{b \in p(A): p^{+}(b)=q_{i}\right\}, 1 \leq i \leq t \leq r$.
We are going to prove, that $P(A)=\left\{q_{1}\right\}$, if $t=1$, and $P(A)=\left\{2 q_{1}, \ldots, 2 q_{t}, q_{1} \ldots q_{t}\right\}$, if $t>1$, and this is equivalent to the statement (1.4) of Theorem 1.
If $t=1$, then clearly $P(A)=\left\{q_{1}\right\}$ and the Theorem is true. Hence we assume $t>1$. We observe that $\left\{q_{t}\right\} \notin S_{1}$, because otherwise $\left\{q_{1}\right\} \in S_{1}$ as well, since $A \in C(Q)$ and hence $\left(q_{t}, q_{1}\right)=1$ in contradiction to $A \in I(n, Q)$. Let us assume that

$$
\begin{equation*}
2 \cdot q_{t} \notin S_{t} \tag{5.13}
\end{equation*}
$$

Since $A \in \mathcal{O}_{2}(n, Q) \subset \mathcal{O}_{1}(n, Q)$, (5.13) means that every integer $a \in S_{t}$ has at least two different primes from the set Q in its prime decomposition (one of this primes is of course q_{t}).
Let us prove that the assumption (5.13) is false. For this we choose a similar approach as for proving (5.1). Let

$$
\begin{aligned}
S_{t}= & S_{t}^{0} \dot{\cup} S_{t}^{1} \\
& 17
\end{aligned}
$$

where $S_{t}^{0}=\left\{a \in S_{t}: q_{t-1} \mid a\right\}, S_{t}^{1}=S_{t} \backslash S_{t}^{0}$ and

$$
V_{t}^{i}=\left\{m \in \mathbb{N}: m \cdot q_{t} \in S_{t}^{i}\right\}, i=0,1
$$

Under assumption (5.13) it can be shown that

$$
A^{i}=M\left(S_{1} \cup \cdots \cup S_{t-1} \cup V_{t}^{i}\right) \cap \mathbb{N}(n) \in I(n, Q), i=0,1
$$

Using the approach described in the first part of this paragraph it can be proved that at least one of the inequalities

$$
\begin{equation*}
\left|A^{0}\right| \geq|A|,\left|A^{1}\right| \geq|A| \text { holds. } \tag{5.14}
\end{equation*}
$$

We mention that only a very special case of Lemma 2 has been used and not Theorem 3. We also note that here we do not need a restriction on n like $n \geq \prod_{q \in Q} q$.

It can be seen that the fact (5.14) contradicts $A \in \mathcal{O}_{2}(n, Q)$ and hence the assumption (5.13) is false. Therefore $2 \cdot q_{t} \in S_{t}$ for $A \in \mathcal{O}_{2}(n, Q) \cap C(Q)$ and $P(A)=S_{1} \cup \cdots \cup S_{t}$. However, from $2 \cdot q_{t} \in S_{t} \subset A \in \mathcal{O}_{2}(n, Q) \cap C(Q)$ it follows that $2 \cdot q_{1}, \ldots, 2 q_{t-1} \in A$ as well and that $q_{i} \notin A$ for all $q_{i} \in Q$. Hence $2 q_{1}, 2 q_{2}, \ldots, 2 q_{t} \in P(A)$.
Let $a \in P(A)$ and $a \neq 2 q_{i}, i=1, \ldots, t$. Since $p^{+}(a) \leq q_{t} \quad\left(A \in \mathcal{O}_{2}(n, Q)\right)$, then $2 \nmid a$ for otherwise $2 q_{i} \mid a$ for some $i \leq t$, which is impossible, because $P(A)$ is primitive.
Therefore $2 \nmid a$ and $a=q_{1} \ldots q_{t}$, because otherwise $\left(a, 2 q_{i}\right)=1$ for some $i \leq t$. Hence $P(A)=\left\{2 q_{1}, \ldots, 2 q_{t}, q_{1} \ldots q_{t}\right\}$ and Theorem 1 is proved.

Proof of Theorem 2:

Since the proof is very similar (and much easier) than the proof of Theorem 1, we will give only a sketch.
We repeat all steps up to formula (5.4) (proof of which was the most difficult part of Theroem 1) and observe that (5.4) trivially holds for squarefree numbers without any restriction on n.

The situation is similar with formula (5.14) (which was the second main step in the proof of Theorem 1).

6. Example of $Q \subset \mathbb{P}$ and $n, n<\prod_{q \in Q} q$, FOR WHich

 the conclusion of Theorem 1 does not holdWe take $Q \subset \mathbb{P}$ as follows:

$$
Q=\left\{q_{1}, q_{2}, \ldots, q_{r-1}, q_{r}\right\}=\left\{5,7, \ldots, p_{r+1}, q_{r}\right\},
$$

i.e. $q_{i}=p_{i+2}, i=1,2, \ldots, r-1$ and q_{r} is a prime specified in (6.3) below.

We also assume that

$$
\begin{equation*}
q_{r-1}=p_{r+1}>1000 . \tag{6.1}
\end{equation*}
$$

Let

$$
\begin{equation*}
n=2 \cdot 3 \cdot 11 \cdot \prod_{i=1}^{r-1} q_{i} \tag{6.2}
\end{equation*}
$$

Finally, as a $q_{r} \in \mathbb{P}$ we take any prime satisfying

$$
\begin{equation*}
\frac{n}{2000}<q_{r}<\frac{n}{1000} \tag{6.3}
\end{equation*}
$$

The existence of such primes follows from Bertrand's postulate. We use the abbreviation

$$
H_{j}=M\left\{2 q_{1}, 2 q_{2}, \ldots, 2 q_{j}, q_{1} \ldots q_{j}\right\} \cap \mathbb{N}(n) ; j=1, \ldots, r .
$$

We are going to prove, that for the specified $Q \subset \mathbb{P}$ and n, the conclusion of Theorem 1 does not hold, i.e.

$$
\begin{equation*}
f(n, Q)>\max _{1 \leq j \leq r}\left|H_{j}\right| . \tag{6.4}
\end{equation*}
$$

We show first that

$$
\begin{equation*}
\max _{1 \leq j \leq r}\left|H_{j}\right|=\max \left\{\left|H_{r-1}\right|,\left|H_{r}\right|\right\} . \tag{6.5}
\end{equation*}
$$

Since $2 \cdot \prod_{i=1}^{r-1} q_{i} \mid n$, it is easy to see that

$$
\left|H_{j}\right|=n \cdot \frac{1}{2}\left(1-\prod_{i=1}^{j}\left(1-\frac{1}{q_{i}}\right)+\frac{1}{q_{1} \ldots q_{j}}\right) \quad \text { for all } 1 \leq j \leq r-1
$$

and that

$$
\left|H_{2}\right|<\left|H_{3}\right|<\left|H_{4}\right|<\cdots<\left|H_{r-1}\right| .
$$

This proves (6.5), because

$$
\left|H_{1}\right|=\frac{1}{5} n<\frac{1063}{5005} n=\left|H_{4}\right|
$$

and trivially $r-1 \geq 4$ (see (6.1)).

Clearly, to prove (6.4), it is sufficient to find a set $A \in I(n, Q)$ for which

$$
|A|>\max _{1 \leq j \leq r}\left|H_{j}\right|=\max \left\{\left|H_{r-1}\right|,\left|H_{r}\right|\right\} .
$$

We choose A as follows:

$$
A=M\left\{2 q_{1}, 2 q_{2}, \ldots, 2 \cdot q_{r-1}, 2 \cdot 3 \cdot q_{r}, 3 \cdot q_{1} \cdot \ldots \cdot q_{r-1}\right\} \cap \mathbb{N}(n)
$$

Obviously, $A \in I(n, Q)$ and we have to show that both hold:

$$
\begin{equation*}
|A|>\left|H_{r-1}\right| \tag{6.6}
\end{equation*}
$$

and

$$
\begin{equation*}
|A|>\left|H_{r}\right| . \tag{6.7}
\end{equation*}
$$

We consider first the set $H_{r-1} \backslash A$. Since

$$
H_{r-1}=M\left\{2 q_{1}, \ldots, 2 q_{r-1}, q_{1} q_{2} \ldots q_{r-1}\right\} \cap \mathbb{N}(n),
$$

the set $H_{r-1} \backslash A$ consists only of integers of the form

$$
a \cdot q_{1} \cdot q_{2} \ldots q_{r-1} \leq n=2 \cdot 3 \cdot 11 \cdot q_{1} \ldots q_{r-1}=66 q_{1} \ldots q_{r-1}
$$

and $(a, 6)=1$, because for $(a, 6) \neq 1$ we have $a \cdot q_{1} \ldots q_{r-1} \in A$. There are exactly 22 integers a with $a \leq 66,(a, 6)=1$. Hence

$$
\left|H_{r-1} \backslash A\right|=22
$$

Now we consider the set $A \backslash H_{r-1}$.
It is clear that all integers of the form $2^{\alpha} \cdot 3^{\beta} \cdot q_{r} \leq n, \alpha \geq 1, \beta \geq 1$, are in the set $A \backslash H_{r-1}$. We verify that there are 24 integers of the form $2^{\alpha} \cdot 3^{\beta}<1000$, $\alpha \geq 1, \beta \geq 1$ and since $1000 \cdot q_{r}<n$ (by (6.3)) we conclude that $\left|A \backslash H_{r-1}\right| \geq$ $24>\left|H_{r-1} \backslash A\right|=22$. This proves (6.6).
To prove (6.7) we compare the cardinalities of the sets $H_{r} \backslash A$ and $A \backslash H_{r}$. Since $H_{r}=M\left\{2 q_{1}, 2 q_{2}, \ldots, 2 q_{r-1}, 2 q_{r}, q_{1} \ldots q_{r}\right\} \cap \mathbb{N}(n)=M\left\{2 q_{1}, \ldots, 2 q_{r}\right\} \cap \mathbb{N}(n)$ (because $\left.q_{1} \ldots q_{r}>n\right), H_{r} \backslash A$ consists only of integers of the form

$$
\begin{equation*}
2 \cdot q_{r} \cdot b \leq n, \tag{6.8}
\end{equation*}
$$

where b is not divisible by anyone of the primes $3, q_{1}, \ldots, q_{r-1}$.
Since $q_{r}>\frac{n}{2000}$ (see (6.3)), we conclude from (6.8) that $b<1000$. However, since $q_{r-1}>1000$, (see (6.1)), we have $b \in\left\{1,2, \ldots, 2^{9}\right\}$ and hence

$$
\left|H_{r} \backslash A\right| \leq 10
$$

Now we consider the set $A \backslash H_{r}$.
This set consists of the integers of the form

$$
3 \cdot q_{1} \ldots q_{r-1} \cdot c \leq n=66 q_{1} \ldots q_{r-1}
$$

where $2 \nmid c$. There are exactly 11 such integers $c \leq 22$. Hence

$$
\left|A \backslash H_{r}\right|=11>10=\left|H_{r} \backslash A\right|
$$

and this proves (6.7).

7. Directions of research

We think that our methods are applicable to other number theoretical extremal problems. A first question is how $f(n, Q)$ can be characterized, if Q is an infinite set of primes. Perhaps more demanding is the problem of finding a common generalisation of the problem analysed in this paper and its in dual in [3]:
For (finite) sets $Q_{1}, Q_{2} \subset \mathbb{P}, Q_{1} \cap Q_{2}=\varnothing$, and $n \in \mathbb{N}$, what is the maximal cardinality k of sets $A=\left\{a_{1}<\cdots<a_{k}\right\} \subset \mathbb{N}(n)$ satisfying $\left(a_{i}, a_{j}\right) \neq 1$, $\left(a_{i}, \prod_{q \in Q_{1}} q\right) \neq 1$, and $\left(a_{i}, \prod_{q \in Q_{2}} q\right)=1$ for all i, j ?
Instead of requiring that no two numbers of A are relatively prime one can require that no ℓ numbers are pairwise relatively prime.

References

[1] P. Erdös, "Problems and results in combinatorial number theory", Chapt. 12 in: A Survey of Combinatorial Theory, J.N. Srivastava et al (eds.), North-Holland, 1973.
[2] P. Erdös, "A survey of problems in combinatorial number theory", Ann. Discrete Math. 6, 89-115, 1980.
[3] R. Ahlswede and L.H. Khachatrian, "Sets of integers and quasi-integers with pairwise common divisor", to appear in Acta Arithmetica.
[4] J.B. Rosser and L. Schoenfeld, "Approximate formulas for some functions of prime numbers", Illinois J. Math. 6, 64-89, 1962.
[5] P. Ribenboim, "The little book of big primes", Springer-Verlag 1991.
[6] R. Ahlswede and L.H. Khachatrian, "Maximal sets of numbers not containing $k+1$ pairwise coprime integers", to appear in Acta Arithmetica.

