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1 Introduction

Identification via channels was introduced in [1,2] as a problem of a reliable transmission
of one of M messages to M receivers in such a way that each receiver decides whether it
is his message, which was sent, or not. If a receiver misses his message then the decoding
error of the first kind takes place, and if a receiver accepts a message which was sent for a
different receiver, then the decoding error of the second kind takes place. An identification
scheme should be constructed in such a way that the decoding error probabilities of the
both kinds are small for all receivers.

A key idea of constructing good identification codes is an assignement of the probability
distributions (PDs) to the messages instead of fixed codewords. Suppose we a given a
discrete memoryless channel W having the input alphabet X and the output alphabet
Y , i.e., the probability to receive a vector y = (y(1), ..., y(n)) ∈ Yn, when a vector x =
(x(1), ..., x(n)) ∈ X n was transmitted, is defined as

W (y|x) =
n

∏

t=1

W (y(t)|x(t)).

Definition 1 An (n,M, Λ1, Λ2) ID code is a collection

{ (Qi(·),Di), i = 1, ...,M }

such that, for all i, j = 1, ...,M,

1) Qi(·) = { Qi(x),x ∈ X n } is a PD;

2) Dj ⊂ Y n;

3)
∑

x Qj(x) · W (Dj|x) ≥ 1 − Λ1;

4)
∑

x Qi(x) · W (Dj|x) ≤ Λ2 if i 6= j.

The input distributions of an ID code can be realized if the sender has M collections of not
necessarily distinct codewords. To send the i-th message, he selects one of the codewords
of the i-th collection in accordance with the uniform distribution. Each receiver knows
his collection and checks if the received vectors is likely to be generated by one of the
codewords of this collection or not. The known results show that the number of messages
that can be reliably transmitted using an ID code turns out to be doubly exponential in
the blocklength n [1].

We will consider the system of information transmission given in Fig.1, where the sender
and the receivers have an access to a public random process and get correlated binary
sequences x∗ and y∗ of length k before the sender generates a codeword, depending of the
message i, and transmits it over a memoryless channel W . The probability to receive a
pair (x∗,y∗) is defined as

P (x∗,y∗) = 2−kpdH(x∗,y∗)(1 − p)k−dH(x∗,y∗), (1.1)
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where dH denotes the Hamming distance and p ≤ 1/2. Our intension is to evaluate the
decoding error probabilities of the first and of the second kind as functions of the number
of possible messages,

ρ = k/n, (1.2)

the channel capacity C, and the probability p.

A randomization of the transmission can be represented in such a way that the sender
observes a vector z of length l, whose components are independent identically distributed
(i.i.d.) binary random variables taking values 0 and 1 with the probability 1/2, and the
use of this vector as a pointer to a collection corresponding to the message to be sent.
Such a procedure can be also realized if the sender uses the vector x∗ ∈ {0, 1}k for this
purpose. The difference of these two possibilities is concluded in the note that in the
second case the receivers have a side information on the pointer, which is y∗ ∈ {0, 1}k,
and that the length k is assumed to be given, while the length l can be chosen in an
arbitrarily way.

Let us denote by Rρ the log log of the number of messages 1 to be identified with an
arbitrarily small decoding error probabilities divided by n (more explicitely, Rρ is defined
in Section 2) and consider two cases when p = 0 and p = 1/2. If p = 1/2, then we have a
classical identification model where the channel W is the only link, connecting the sender
and the receivers. Therefore, we refer to the known results [1,3,4] and claim that Rρ = C,
that the length l should be chosen approximetely equaled nC, and that the observations
of a random process are useless (Fig.2).

A common randomness is valuable for constructing effective communication systems [5].
In particular, asymptotically optimal identification scheme with a noiseless feedback con-
sists of two parts [2]. In the first part, the sender and the receivers distribute the result
of a random experiment, which is a realization of a noise sequence during transmission
of a given or randomly chosen sequence over the channel W . This result becomes com-
mon because of feedback. The distribution of a common randomness occupies almost
all transmission time and completely determines the asymptotical characteristics of the
identification system. Our model is close to the identification with the feedback [2,6]. The
main difference is that the random experiment is public and it occures somewhere outside
the system. Therefore, we cannot control it, but we also do not include its duration into
the transmission time. However, using the results of [2] we can claim that Rρ = C + ρ for
all ρ ≥ 0 when p = 0 (Fig.2).

The cases considered above show that there is a limit on the length k = ρn when p = 1/2
and that this limit is absent when p = 0. In Section 2 we examine the general case,
p ∈ [0, 1/2], and come to the conclusion that, from a point of view of the direct coding
theorems, this limit does not exist for all p < 1/2, but the additional quantity in the
maximal identification rate, which we gain while observing the process, is limited at a
threshold value for all p > 0 and give an expression for that value.

1All the logarithms in the paper are based modulo 2. Furthermore, we denote exp
2
z = 2z for all z.
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During the analysis, we distinguish between two cases when ρH(p) < C and when ρH(p) ≥
C, where

H(p) = −p log p − (1 − p) log(1 − p)

is the entropy of the noise sequence which makes the observations of the process different
at the sender’s and at the receiver’s sides. In the first case the encoder can improve the
behaviour using an additional randomization, and in the second case there is more than
enough randomness in these observations.

There was an attempt to represent identification via channels as a model for a human
communication (”in a stormy night one sailor drowns in the ocean...” [1,p.27]). We can
also continue this direction saying that the observation of a process is a kind of a pray,
which allows the sender to predict a way of thinking of the receivers before he transmits
the messages to these receivers.

The paper is organized as follows. In subsection 2.1 we give a notational background and
some auxiliary results needed in analysis. These results concern different ways of parti-
tioning of the space, because we meet the problem of an upper-bounding the expectation
of a product of dependent random variables, and the partitions give an opportunity to
select the subsets of independent variables. Two identification schemes, with and with-
out additional randomization, are described in subsection 2.2, and corresponding code
ensembles are introduced in subsection 2.3. The direct coding theorems for these cases
are given in subsections 2.4,2.5. Subsection 2.6 is devoted to the calculation of an addi-
tional quantity in the maximal indentification rate, ∆R∞, which comes with the infinite
observations.

2 Direct Coding Theorems for Identification under a

Binary Symmetric Random Process

2.1 Basic ideas and auxiliary results

Let us start with the definitions.

Definition 1.1 An (n,M, Λ1, Λ2) ID code for identification under a random process

Pk = { P (x∗,y∗), x∗,y∗ ∈ {0, 1}k }

is a collection
{ (Qi(·|x

∗),Di(y
∗)), x∗,y∗ ∈ {0, 1}k, i = 1, ...,M }

such that, for all x∗,y∗ ∈ {0, 1}k and i, j = 1, ...,M,

1) Qi(·|x
∗) = { Qi(x|x

∗),x ∈ X n } is a PD for all x∗ ∈ {0, 1}k;

2) Dj(y
∗) ⊂ Y n;

3)
∑

x∗,y∗ P (x∗,y∗) ·
∑

x Qj(x|x
∗) · W (Dj(y

∗)|x) ≥ 1 − Λ1;
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4)
∑

x∗,y∗ P (x∗,y∗) ·
∑

x Qi(x|x
∗) · W (Dj(y

∗)|x) ≤ Λ2 if i 6= j.

Definition 1.2 The triple (R, e1, e2) will be referred to as a ρ-achievable ID triple under

a random process Pk, k = ρn, if, for all δ > 0 and n ≥ n(δ, |X |, |Y|), an (n,M, Λ1, Λ2) ID
code for identification under the process Pk with

1

n
log log M ≥ R − δ, (2.1)

Λ1 ≤ 2−n(e1−δ),

Λ2 ≤ 2−n(e2−δ)

exists.

Definition 1.3 The parameter R will be referred to as a ρ-achievable ID rate under a

random process Pk, k = ρn, if there exist e1, e2 > 0 such that (R, e1, e2) is a ρ-achievable
ID triple under that process. The ρ-achievable ID rate will be denoted by Rρ.

To realize an identification, we will use an error-correcting code G consisting of

m = 2nr (2.2)

codewords x ∈ X n. We suppose that the use of this code to transmit data over a mem-
oryless channel W provides the exponent of the maximal decoding error probability at
level 2−ne(r) and denote the decoding decision sets by C(x),x ∈ G, i.e.,

W (C(x)|x) ≥ 1 − 2−ne(r) for all x ∈ G. (2.3)

We assign the encoding function for the i-th message, fi, in such a way that it takes values
in the code G. Hence, the transmitted codeword, x(i), always belongs to G.

Each receiver can construct a list of the vectors x∗ in such a way that, with the high
probability, the list contains the vector observed by the sender. Therefore, the decoding
error probabilities of the first kind are estimated by the sum consisting of the probability
that the sender’s observation does not belong to the list and the maximal decoding error
probability for the code G.

To estimate the decoding error probabilities of the second kind we introduce the code
ensembles. These ensembles are different for the cases ρH(p) < C and ρH(p) ≥ C.
However, in every case we prove that, for any fixed pair (i, j), i 6= j, an upper bound of
the following form :

Pr { λij > Λ } ≤ exp2 { −2ne } (2.4)

is valid, where λij is the decoding error probability of the j-th receiver when the message
i was sent, Λ and e are constant chosen in a special way, and Pr{ } is the probability in
the code ensemble. Using (1.4) we claim that if

M < exp2 { −2ne/2 } , (2.5)

5



then there exists an ID code such that

λij ≤ Λ for all i 6= j. (2.6)

Really, if (1.5) holds, then

Pr { λij > Λ for at least one (i, j), i 6= j } (2.7)

≤
M

∑

i=1

∑

j 6=i

Pr { λij > Λ } < M2 · exp2 { −2ne } < 1.

Therefore, the statement (1.6) is true with a positive probability and we get the result of
an existence type.

To prove (1.5) we construct an upper bound on the expectation of a product of dependent
random variables via selecting the maximal independent subsets of these variables and
obtaining the product of expectations based on Hölder’s inequality. Such a possibility is
realized using the known constructions of error-correcting codes.

Definition 1.4 Given d, a ∈ {1, ..., k/2} and b ∈ {0, 1}k, let

{0, 1}k
d =

{

c ∈ {0, 1}k : wH(c) = d
}

, (2.8)

Sk
d(b) = b + {0, 1}k

d,

Sk
d,a(b) = b + {0, 1}k

d +
a

∑

τ=0

{0, 1}k
τ .

where wH denotes the Hamming weight. Furthermore, for any given collection of sets
{Bν} and any index t, we write

εt({Bν}) = max
ν

∣

∣

∣

∣

∣

∣

Sk
t (b)

⋂





⋃

b′∈Bν\{b}

Sk
t (b

′)





∣

∣

∣

∣

∣

∣

−1

·
∣

∣ Sk
t (b)

∣

∣ .

(1D) A system of ντ pairwise disjoint subsets Bν , ν = 1, ..., νd, consisting of µd vectors
b ∈ {0, 1}k, will be referred to as a (d, µd × νd, εd)-pairwise disjoint decomposition

of the set {0, 1}k if

νd =
|{0, 1}k|

µd

=
2k

µd

(2.9)

and
εd({Bν}) = εd.

(2D) A system of νd pairwise disjoint subsets Bν , ν = 1, ..., νd,a, consisting of µd,a vec-
tors b ∈ {0, 1}k, will be referred to as a ((d, a), µd,a × νd,a, εd,a)-pairwise disjoint

decomposition of the set {0, 1}k if

νd =
|{0, 1}k|

µd,a

=
2k

µd,a

(2.10)
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and
εd,a({Bν}) = εd,a.

(3D) A system of ν
(a)
d subsets B0

ν , ν = 1, ..., ν
(a)
d , consisting of µ

(a)
d vectors b ∈ {0, 1}k

d, will

be referred to as a (d|a, µ
(a)
d × ν

(a)
d , ε

(a)
d )-decomposition of the set {0, 1}k

d if

ν
(a)
d
⋃

ν=1

B0
ν = {0, 1}k

d (2.11)

and
εd(a)({B0

ν}) = ε
(a)
d .

Lemma 1.5 Let d = kγ and a = kα.

(1L) One can find εk, δk → 0, as k → ∞, such that there exists a (d, µd × νd, εd)-pairwise
disjoint decomposition of the set {0, 1}k with

µd = 2k(1−H(γ)+δk), (2.12)

εd = εk.

(2L) One can find εk, δk → 0, as k → ∞, such that there exists a ((d, a), µd,a × νd,a, εd,a)-
pairwise disjoint decomposition of the set {0, 1}k with

µd,a = 2k(1−H(α∗γ)+δk), (2.13)

εd,a = εk,

where
α ∗ γ = α(1 − γ) + (1 − α)γ.

(3L) One can find ε0
k, δ

0
k → 0, as k → ∞, such that there exists a (d|a, µ

(a)
d × ν

(a)
d , ε

(a)
d )-

decomposition of the set {0, 1}k
d\{0, 1}

k
kq, where q > 0, with

µ
(a)
d = 2k(H(α∗γ)−H(α)+δ0

k
), (2.14)

ν
(a)
d = k!,

ε
(a)
d = ε0

k,

Proof To obtain (1.12) we take a best error-correcting code for a binary symmetric chan-
nel (BSC) with crossover probability γ+δ′k as B1 and define all the other sets by the shifts
c + B1, c ∈ {0, 1}k

t , where t = 1, ..., d. The construction, which provides (1.13) is simi-
lar. To obtain (1.14) we construct a best error-correcting code for a BSC with crossover
probability α + δ0′

k , whose codewords belong to {0, 1}k
d, define it as B0

1, and generate all
the other sets by all possible permutations of the components of this code. An existence
of codes satisfying (1.12)-(1.14) follows from the well-known results of coding theory [7].
Q.E.D.
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Convention 1.6 In the further considerations we will use the relation ′ ∼′ and write

an ∼ bn

if

lim
n→∞

log an

n
= lim

n→∞

log bn

n
,

where we also assume that the limits exist. Furthermore, we write :

cn . bn

if cn ≤ an and an ∼ bn. In particular, the inequalities (1.12)-(1.14) will be rewritten as

md ∼ 2k(1−H(γ)), (2.15)

md,a ∼ 2k(1−H(α∗γ)),

m
(a)
d ∼ 2k(H(α∗γ)−H(α)).

2.2 Identification schemes

Given observation y∗ ∈ {0, 1}k, let us introduce the set

Xk
τ (y

∗) = y∗ +
τ

∑

d=kq

{0, 1}k
d, (2.16)

where the set {0, 1}k
d is defined in (1.8) and the values of τ and q will be specified later.

Let

cd =

(

k
d

)

, (2.17)

pd = pd(1 − p)k−d, d = 0, ..., τ,

Pτ = P (Xk
τ (y

∗)|y∗),

Cτ = |Xk
τ (y

∗)|,

where we have used the fact that the probability P (Xk
τ (y

∗)|y∗) and the cardinality
|Xk

τ (y
∗)| do not depend on y∗. Note that if τ = kβ > kp and d = kγ then, as it is

well-known [7],

cd ∼ 2kH(γ), (2.18)

Cτ ∼ 2kH(β),

1 − Pτ ∼ 2−kD(β‖p),

where

D(β ‖ p) = β log
β

p
+ (1 − β) log

1 − β

1 − p

denotes the I-divergence between (β, 1 − β) and (p, 1 − p).

8



We assume that one of the codewords of the code G is transmitted and assign the decoding
decision regions of the j-th receiver, Dj(y

∗), as follows :

Dj(y
∗) =

⋃

x∈Fj(y∗)

{Cj(x)} , (2.19)

where

Fj(y
∗) =

⋃

x∗∈Xk
τ (y∗)

⋃

z

{fj(x
∗, z)} . (2.20)

Then

λj = 2−l
∑

x∗,y∗,z

P (x∗,y∗)
∑

y

W (y|fj(x
∗, z)) · χ{ y 6∈ Dj(y

∗) } (2.21)

and

λij = 2−l
∑

x∗,y∗,z

P (x∗,y∗)
∑

y

W (y|fi(x
∗, z)) · χ{ y ∈ Dj(y

∗) } (2.22)

are the decoding error probabilities of the first and of the second kind at the output of
the j-th receiver, provided that the message i was generated. If ρH(p) ≥ C, then l = 0
and we omit dependence on z in (2.5)-(2.7).

2.3 Ensembles of ID codes

If ρH(p) < C, we introduce an ensemble of ID codes in such a way that the codewords,
assigned to the message i, are selected from a fixed code G in accordance with the uniform
distribution, and such a selection is realized independently for all i, x∗ ∈ {0, 1}k, and
z ∈ {0, 1}l. We denote the probability in this ensemble by Pr{ } and write :

Pr{ fi(x
∗, z) = c } =

{

1/m, if c ∈ G,
0, if c 6∈ G.

(2.23)

If ρH(p) ≥ C, we will use a different code ensemble. Its construction depends on a
parameter α ∈ (0, 1/2), and we will denote the probability in this ensemble by Prα{ }.
Let a = kα and A = {x∗

1, ...,x
∗
ma

}, where

ma ∼ 2k(1−H(α)), (2.24)

be a ’good’ code for a BSC with crossover probability α, i.e., the maximal decoding error
probability tends to zero when k tends to infinity. Let

Ak
a(x

∗
t ) = x∗

t +
a

∑

d=0

{0, 1}k
d (2.25)
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and let Aa(x
∗
t ) be the subset of Ak

a(x
∗
t ) consisting of the vectors, which do not belong to

Ak
a(x

∗
t′ , ) t′ 6= t; t = 1, ....,ma. Let

A′
a = {0, 1}k\

ma
⋃

t=1

Aa(x
∗
t ). (2.26)

Since the sets Ak
a(x

∗
t ), t = 1, ...,ma, are disjoint, for any x∗ ∈ {0, 1}k we can either find a

unique h such that x∗ ∈ Aa(x
∗
h), or claim that x∗ ∈ A′

a. For all x∗ ∈ A, let

Prα{ fi(x
∗) = c |A } =

{

1/m, if c ∈ G,
0, if c 6∈ G,

(2.27)

and for all x∗ 6∈ A, let

Prα{ fi(x
∗) = c |A } =

{

fi(x
∗
h), if x∗ 6∈ A′

α,
c0, if x∗ ∈ A′

α,
(2.28)

where c0 ∈ G is some codeword, assigned in advance. We also need a randomization all
over possible shifts of the set A. Therefore, we define

Prα{ fi(x
∗) = c } = |Ak

a|
−1 ·

∑

∆x∗∈Ak
a

Prα{ fi(x
∗) = c |A + ∆x∗ }, (2.29)

where

Ak
a =

a
∑

d=0

{0, 1}k
d. (2.30)

We also denote by
εα = Prα{ fi(x

∗) = c0 } (2.31)

the probability that a certain vector x∗ ∈ {0, 1}k belongs to the set A′
α and note that

(3.7), (3.8) lead to εα, which does not depend on x∗.

2.4 Direct coding theorem for the case ρH(p) < C

Theorem 4.1 For all β ∈ (p, 1/2] and σ > 0, the triple (R, e1, e2) such that

e1 = min { e(r), ρD(β ‖ p) } , (2.32)

e2 = min { e(r), r − ρH(β) − σ } ,

R = ρ + σ − e2

is a ρ-achievable ID triple.

Corollary 4.2

Rρ ≥ C + ρ(1 − H(p)) for all ρ < ρ0, (2.33)
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where

ρ0 =
C

H(p)
. (2.34)

Proof We may assign

r = C − εn, (2.35)

β = p + δn,

σ = C − ρH(p) + δ′n,

where εn, δn, δ′n → 0, as n → ∞. Then the exponents of the decoding error probabilities,
given in (4.1), are still positive, and the rate R asymptotically coincides with the expres-
sion at the right hand side of (4.2). This expression is a lower bound on Rρ since a more
explicit analysis can give more tight results. Q.E.D.

The inequality (4.2) provides a straight line, given in Fig.3.

Proof of the theorem 4.1

Let us fix
τ = kβ > p

and assign a positive q < p such that D(q ‖ p) = D(β ‖ p). Then using (1.3) and
(2.4)-(2.6) we write :

λj ≤
∑

y∗

∑

x∗ 6∈Xk
τ (y∗)

P (x∗,y∗) (2.36)

+ 2−l
∑

x∗,y∗,z

P (x∗,y∗)
∑

y∈C(fi(x∗,z))

W (y|fi(x
∗, z))

. 2 · 2−ρnD(β‖p) + 2−ne(r).

Therefore, e1, given in (4.1), is an asymptotically achievable exponent of the decoding
error probability of the first kind.

Using (1.3) and (2.4)-(2.7) we can also estimate λij as follows :

λij = 2−l
∑

x∗,y∗,z

P (x∗,y∗)
∑

y 6∈C(fi(x∗,z))

W (y|fi(x
∗, z)) · χ{ y ∈ Dj(y

∗) } (2.37)

+ 2−l
∑

x∗,y∗,z

P (x∗,y∗)
∑

y∈C(fi(x∗,z))

W (y|fi(x
∗, z)) · χ{ y ∈ Dj(y

∗) }

≤ 2−ne(r)

+ 2−l
∑

x∗,y∗,z

P (y∗)P (x∗|y∗)
∑

y∈C(fi(x∗,z))

W (y|fi(x
∗, z)) · χ{ y ∈ Dj(y

∗) }

= 2−ne(r) + 2−(k+l)

τ
∑

d=kq

pd

∑

y∗,z

η
(d)
ij (y∗, z),
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where

η
(d)
ij (y∗, z) =

∑

x∗∈Sk
d
(y∗)

χ{ fi(x
∗, z) ∈ Fj(y

∗) } (2.38)

and notations (1.8), (2.2) are used.

Let d = kγ. Then, given Λ > 0, we can use Chernov’s inequality and write :

log Pr

{

∑

y∗,z

η
(d)
ij (y∗, z) > 2k+lcdΛ

}

≤ −s · 2k+lcdΛ + log G(d)(s), (2.39)

where s ≥ 0,

G(d)(s) = E

[

∏

y∗,z

2s·η
(d)
ij (y∗,z)

]

, (2.40)

and E [ ] denotes the expectation in the code ensemble.

The result below is proved in Appendix.

Lemma 4.3 If there exists a (d, µd × νd, εd)-pairwise disjoint decomposition of the set
{0, 1}k, then

log G(d)(s) ≤ µdcd2
l · ( log g(sνd) + sεd ) , (2.41)

where

g(s) = 1 − Π + Π · 2s, (2.42)

Π =
Cτ2

l

m
∼ 2−n(r−ρH(β)−σ),

where l = nσ and notations (2.2) are used.

Using (1.10), (1.12), and (2.3) in (4.10) we have :

log G(d)(s) . 2k+l ·
(

log g
(

s · 2kH(γ)
)

+ sεd

)

. (2.43)

Hence, (4.8) and (4.12) lead to the following asymptotic inequality :

log Pr

{

∑

y∗,z

η
(d)
ij (y∗, z) > 2k+lcdΛ

}

(2.44)

. 2k+l
(

−s · 2kH(γ)Λ + log g
(

s · 2kH(γ)
)

+ sεd

)

.

Let
Λ > Π. (2.45)
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Then we can set

s = 2−kH(γ) · log
Λ

1 − Λ

1 − Π

Π
(2.46)

and

log Pr

{

∑

y∗,z

η
(d)
ij (y∗, z) > 2k+lcdΛ

}

. −2k+l · D(Λ ‖ Π). (2.47)

The estimate (4.16) does not depend on d. Therefore,

Pr

{

τ
∑

d=kq

pd

∑

y∗,z

η
(d)
ij (y∗, z) > Pτ · Λ

}

(2.48)

= Pr

{

τ
∑

d=kq

pd

(

∑

y∗,z

η
(d)
ij (y∗, z) − cdΛ

)

> 0

}

≤
τ

∑

d=kq

Pr

{

∑

y∗,z

η
(d)
ij (y∗, z) > cdΛ

}

. τ exp2

{

−2k+l · D(Λ ‖ Π)
}

.

If Λ → 0, as n → ∞, then
D(Λ ‖ Π) ∼ Λ, (2.49)

and (4.17), (4.18) lead to the inequality :

Pr

{

τ
∑

d=kq

pd

∑

y∗,z

η
(d)
ij (y∗, z) > Pτ · Λ

}

. exp2

{

−2k+l · Λ
}

. (2.50)

Let us assign
Λ = Pτ · (2

−ne2 + 2−ne(r)), (2.51)

where e2 is given in (4.1). Then we can refer to the considerations of subsection 2.1 and
using (4.6), (4.19) conclude that the rate Rρ, given in (4.1), is asymptotically achievable.
Q.E.D.

2.5 Direct coding theorem for the case ρH(p) ≥ C

Theorem 5.1 For all β ∈ (p, 1/2] and α > 0, the triple (R, e1, e2) such that

e1 = min { e(r), ρD(β ‖ p) } , (2.52)

e2 = min { e(r), r − ρ(H(α ∗ β) − H(α)) } ,

R = ρ(1 − H(α)) − e2

is a ρ-achievable ID triple.
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Corollary 5.2

Rρ ≥ ρ(1 − H(α)) (2.53)

= C + ρ(1 − H(α ∗ p)) for all ρ ≥ ρ0,

where the parameter ρ0 is defined in (4.3), and α is chosen in such a way that

C = ρ(H(α ∗ p) − H(α)). (2.54)

Proof We substitute the expressions at the right hand side of (4.4) for r and β into (5.1)
and complete the proof. Q.E.D.

The inequality (5.2) provides a convex up curve, given in Fig.3.

Proof of the theorem 5.1 The same considerations as in the proof of theorem 4.1 lead
to the inequalities :

λj ≤ 2 · 2−ρnD(β‖p) + 2−ne(r), (2.55)

λij ≤ 2−ne(r) + 2−k

τ
∑

d=kq

pd

∑

y∗

η
(d)
ij (y∗),

where the variables η
(d)
ij (y∗) are defined similarly to (4.7), i.e.,

η
(d)
ij (y∗) =

∑

x∗∈Sk
d
(y∗)

χ{ fi(x
∗) ∈ Fj(y

∗) }. (2.56)

Furthermore,

log Pr

{

∑

y∗

η
(d)
ij (y∗) > 2kcdΛ

}

≤ −s · 2kcdΛ + log G(d)
α (s), (2.57)

where Λ > 0 is a given constant, s ≥ 0,

G(d)
α (s) = Eα

[

∏

y∗

2s·η
(d)
ij (y∗)

]

, (2.58)

and Eα [ ] denotes the expectation in the code ensemble.

All the peculiarities of the analysis are concentraned in a new upper bound on G
(d)
α (s).

The result below is proved in Appendix.

Lemma 5.3 Let a = kα, τ = kβ, and d = kγ.
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1. If there exists a ((d, a), µd,a × νd,a, εd,a)-pairwise disjoint decomposition of the set
{0, 1}k, then

log G(d)
α (s) ≤ µd,a ·

(

log ĝ(d)(sνd,a) + sεd,a

)

, (2.59)

where

ĝ(d)
α (s) = Eα

[

2s·η
(d)
ij (y∗)

]

(2.60)

for some y∗ ∈ {0, 1}k.

2. Let B0
ν , ν = 1, ..., ν

(a)
d , be a (d|a, µ

(a)
d × ν

(a)
d , ε

(a)
d )-decomposition of the set {0, 1}k

d

such that n(x∗) is the number of occurences of x∗ in the collection B0
ν , ν = 1, ..., ν

(a)
d ,

i.e.,

n(x∗) =

ν
(a)
d

∑

ν=1

χ{ x∗ ∈ B0
ν }. (2.61)

Then

ĝ(d)
α (s) ≤

ν
(a)
d

∏

ν=1





∏

x∗∈B0
ν

gα

(

sν
(a)
d /n(x∗)

)





1/ν
(a)
d

, (2.62)

where

(2.63)

gα(s) = (1 − ε
(a)
d − εα) · (1 − Πα + Πα · 2s) + (ε

(a)
d + εα) · 2s

∼ 1 − Πα + Πα · 2s,

Πα ∼ 2−n(r−ρ(H(α∗β)−H(α))).

Let us use the construction of a (d|a, µ
(a)
d × ν

(a)
d , ε

(a)
d )-decomposition of the set {0, 1}k

d,
described in the proof of lemma 1.5. Then, as it easy to see,

n(x∗) =
k! · µ

(a)
d

cd

(2.64)

Thus, substituting (1.14), (5.13) to (5.11) we obtain :

log ĝ(d)
α (s) . µ

(a)
d · log gα

(

scd2
−k(H(α∗γ)−H(α))

)

(2.65)

∼ 2k(H(α∗γ)−H(α)) log gα

(

scd2
−k(H(α∗γ)−H(α))

)

.

Hence (1.13), (1.15), (5.8), and (5.14) lead to the inequality :

log G(d)
α (s) ≤ 2k(1−H(α)) ·

(

log gα

(

scd · 2
kH(α)

)

+ sεd,a

)

(2.66)
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and

log Pr

{

∑

y∗

η
(d)
ij (y∗) > 2kcdΛ

}

(2.67)

. 2k(1−H(α))
(

−scd · 2
kH(α)Λ + log gα

(

scd · 2
kH(α)

)

+ sεd,a

)

.

Let
Λ > Πα. (2.68)

Then we can set

s = c−1
d · 2−kH(α) · log

Λ

1 − Λ

1 − Πα

Πα

(2.69)

and

log Pr

{

∑

y∗,z

η
(d)
ij (y∗, z) > 2kcdΛ

}

. −2k(1−H(α)) · D(Λ ‖ Πα). (2.70)

We set Λ → 0, as n → ∞, in such a way that (5.17) is valid, note that

D(Λ ‖ Πα) ∼ Λ, (2.71)

and repeat the considerations of subsection 2.4 to complete the proof. Q.E.D.

2.6 Direct coding theorem for the case ρH(p) ≥ C

Theorem 5.1 For all β ∈ (p, 1/2] and α > 0, the triple (R, e1, e2) such that

e1 = min { e(r), ρD(β ‖ p) } , (2.72)

e2 = min { e(r), r − ρ(H(α ∗ β) − H(α)) } ,

R = ρ(1 − H(α)) − e2

is a ρ-achievable ID triple.

Corollary 5.2

Rρ ≥ ρ(1 − H(α)) (2.73)

= C + ρ(1 − H(α ∗ p)) for all ρ ≥ ρ0,

where the parameter ρ0 is defined in (4.3), and α is chosen in such a way that

C = ρ(H(α ∗ p) − H(α)). (2.74)

Proof We substitute the expressions at the right hand side of (4.4) for r and β into (5.1)
and complete the proof. Q.E.D.

The inequality (5.2) provides a convex up curve, given in Fig.3.
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Proof of the theorem 5.1 The same considerations as in the proof of theorem 4.1 lead
to the inequalities :

λj ≤ 2 · 2−ρnD(β‖p) + 2−ne(r), (2.75)

λij ≤ 2−ne(r) + 2−k

τ
∑

d=kq

pd

∑

y∗

η
(d)
ij (y∗),

where the variables η
(d)
ij (y∗) are defined similarly to (4.7), i.e.,

η
(d)
ij (y∗) =

∑

x∗∈Sk
d
(y∗)

χ{ fi(x
∗) ∈ Fj(y

∗) }. (2.76)

Furthermore,

log Pr

{

∑

y∗

η
(d)
ij (y∗) > 2kcdΛ

}

≤ −s · 2kcdΛ + log G(d)
α (s), (2.77)

where Λ > 0 is a given constant, s ≥ 0,

G(d)
α (s) = Eα

[

∏

y∗

2s·η
(d)
ij (y∗)

]

, (2.78)

and Eα [ ] denotes the expectation in the code ensemble.

All the peculiarities of the analysis are concentraned in a new upper bound on G
(d)
α (s).

The result below is proved in Appendix.

Lemma 5.3 Let a = kα, τ = kβ, and d = kγ.

1. If there exists a ((d, a), µd,a × νd,a, εd,a)-pairwise disjoint decomposition of the set
{0, 1}k, then

log G(d)
α (s) ≤ µd,a ·

(

log ĝ(d)(sνd,a) + sεd,a

)

, (2.79)

where

ĝ(d)
α (s) = Eα

[

2s·η
(d)
ij (y∗)

]

(2.80)

for some y∗ ∈ {0, 1}k.

2. Let B0
ν , ν = 1, ..., ν

(a)
d , be a (d|a, µ

(a)
d × ν

(a)
d , ε

(a)
d )-decomposition of the set {0, 1}k

d

such that n(x∗) is the number of occurences of x∗ in the collection B0
ν , ν = 1, ..., ν

(a)
d ,

i.e.,

n(x∗) =

ν
(a)
d

∑

ν=1

χ{ x∗ ∈ B0
ν }. (2.81)
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Then

ĝ(d)
α (s) ≤

ν
(a)
d

∏

ν=1





∏

x∗∈B0
ν

gα

(

sν
(a)
d /n(x∗)

)





1/ν
(a)
d

, (2.82)

where

(2.83)

gα(s) = (1 − ε
(a)
d − εα) · (1 − Πα + Πα · 2s) + (ε

(a)
d + εα) · 2s

∼ 1 − Πα + Πα · 2s,

Πα ∼ 2−n(r−ρ(H(α∗β)−H(α))).

Let us use the construction of a (d|a, µ
(a)
d × ν

(a)
d , ε

(a)
d )-decomposition of the set {0, 1}k

d,
described in the proof of lemma 1.5. Then, as it easy to see,

n(x∗) =
k! · µ

(a)
d

cd

(2.84)

Thus, substituting (1.14), (5.13) to (5.11) we obtain :

log ĝ(d)
α (s) . µ

(a)
d · log gα

(

scd2
−k(H(α∗γ)−H(α))

)

(2.85)

∼ 2k(H(α∗γ)−H(α)) log gα

(

scd2
−k(H(α∗γ)−H(α))

)

.

Hence (1.13), (1.15), (5.8), and (5.14) lead to the inequality :

log G(d)
α (s) ≤ 2k(1−H(α)) ·

(

log gα

(

scd · 2
kH(α)

)

+ sεd,a

)

(2.86)

and

log Pr

{

∑

y∗

η
(d)
ij (y∗) > 2kcdΛ

}

(2.87)

. 2k(1−H(α))
(

−scd · 2
kH(α)Λ + log gα

(

scd · 2
kH(α)

)

+ sεd,a

)

.

Let
Λ > Πα. (2.88)

Then we can set

s = c−1
d · 2−kH(α) · log

Λ

1 − Λ

1 − Πα

Πα

(2.89)

and

log Pr

{

∑

y∗,z

η
(d)
ij (y∗, z) > 2kcdΛ

}

. −2k(1−H(α)) · D(Λ ‖ Πα). (2.90)

We set Λ → 0, as n → ∞, in such a way that (5.17) is valid, note that

D(Λ ‖ Πα) ∼ Λ, (2.91)

and repeat the considerations of subsection 2.4 to complete the proof. Q.E.D.
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2.7 Calculation of the function ∆R∞

Using (5.2) we conclude that additional quantity in the identification rate, which we gain
because of the observations of the process, is measured as ρ(1 − H(α ∗ p)), where the
parameter α is defined by the equation (5.3). Let us consider the function

∆R∞ = lim
ρ→∞

ρ · (1 − H(α ∗ p)) , (2.92)

which derives this additional quantity conditioned on the infinite length of the vectors
x∗,y∗. This function can be calculated exactly, as it follows from the result below.

Lemma 6.1

∆R∞ =
(1 − 2p)2

1 − (1 − 2p)2
· C. (2.93)

Proof The parameter α satisfying (5.3) is a function of ρ, and we may write :

α =
1

2
− ερ,

α ∗ p =
1

2
− (1 − 2p) · ερ,

where
ερ → 0, as ρ → ∞. (2.94)

Since, for all ε ∈ (0, 1/2),

log

(

1

2
− ε

)

= −1 −
1

ln 2
·
∑

i≥1

(2ε)i

i
,

log

(

1

2
+ ε

)

= −1 −
1

ln 2
·
∑

i≥1

(−1)i ·
(2ε)i

i
,

we have

H(α) = 1 −
1

ln 2
·
∑

k≥1

(2ερ)
2k ·

(

1

2k − 1
−

1

2k

)

,

H(α ∗ p) = 1 −
1

ln 2
·
∑

k≥1

(1 − 2p)2k · (2ερ)
2k ·

(

1

2k − 1
−

1

2k

)

and

∆R∞ = lim
ρ→∞

ρ

ln 2
·
∑

k≥1

(1 − 2p)2k · (2ερ)
2k ·

(

1

2k − 1
−

1

2k

)

,

C =
ρ

ln 2
·
∑

k≥1

(1 − (1 − 2p)2k) · (2ερ)
2k ·

(

1

2k − 1
−

1

2k

)

.
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Therefore,

∆R∞ = lim
ρ→∞

2((1 − 2p)2) + δ
(R)
ρ

2(1 − (1 − 2p)2) + δ
(C)
ρ

· C, (2.95)

where

δ(R)
ρ =

∑

k≥2

(1 − 2p)2k · (2ερ)
2k−2 ·

(

1

2k − 1
−

1

2k

)

,

δ(C)
ρ =

∑

k≥2

(1 − (1 − 2p)2k) · (2ερ)
2k−2 ·

(

1

2k − 1
−

1

2k

)

.

Using (6.3) we conclude that

δ(R)
ρ , δ(C)

ρ → 0, as ρ → ∞, (2.96)

and (6.2) follows from (6.4), (6.5). Q.E.D.
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Appendix

1 Proof of Lemma 4.3

Let Bν , ν = 1, ..., νd be a (d, µd × νd, εd)-pairwise disjoint decomposition of the set {0, 1}k.
Then

G(d)(s) = E

[

∏

y∗,z

2s·η
(d)
ij (y∗,z)

]

(A.1)

=
∏

z

E

[

∏

y∗

2s·η
(d)
ij (y∗,z)

]

=
∏

z

E

[

νd
∏

ν=1

∏

y∗∈Bν

2s·η
(d)
ij (y∗,z)

]

≤
∏

z

νd
∏

ν=1

E1/ντ

[

∏

y∗∈Bν

2sνd·η
(d)
ij (y∗,z)

]

,

where Hölder’s inequality was used.

Given ν, let Sd(y
∗), y ∈ Bν , be a set consisting of the vectors x∗, which do not belong to

the sets Sk
d(y

∗′), y∗′ ∈ Bν\{y
∗}. Then

η
(d)
ij (y∗, z) ≤ cdεd +

∑

x∗∈Sd(y∗)

χ{ fi(x
∗, z) ∈ Fj(y

∗) }

and

(A.2)

E

[

∏

y∗∈Bν

2sνd·η
(d)
ij (y∗,z)

]

≤ 2scdµdνdεd · E





∏

y∗∈Bν

∏

x∗∈Sd(y∗)

2sνd·η
(d)
ij (x∗|y∗,z)





= 2scdµdνdεd ·
∏

y∗∈Bν

∏

x∗∈Sd(y∗)

E
[

2sνd·η
(d)
ij (x∗|y∗,z)

]

,

where
η

(d)
ij (x∗|y∗, z) = χ{ fi(x

∗, z) ∈ Fj(y
∗) }.

Let us represent the expectation E[ ] as a concatenation of the expectation Ei[ ] taken on
all assignements of the codewords for the message i and the expectation Ej[ ] taken on
all assignements of the codewords for the message j, i.e.,

E [ (∗) ] = Ej [Ei [ (∗) ]] .

The codewords, which are used to encode the i-th message, are independent random
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vectors for different x∗. Therefore,

E
[

2sνd·η
(d)
ij (x∗|y∗,z)

]

= Ej

[

Ei

[

2sνd·η
(d)
ij (x∗|y∗,z)

] ]

(A.3)

= Ej

[

1 −
|Fj(y

∗)|

m
+

|Fj(y
∗)|

m
2sνd

]

≤ g(sνd),

where the inequality |Fj(y
∗)| ≤ Cτ2

l and notations (4.11) were used. Combining (A.1)-
(A.3) we complete the proof. Q.E.D.

2 Proof of Lemma 5.3

The proof of the first part of lemma 5.3 repeats the steps (A.1), (A.2) with the accuracy
to notations.

Let B0
ν , ν = 1, ..., ν

(a)
d , be a (d|a, µ

(a)
d × ν

(a)
d , ε

(a)
d )-decomposition of the set {0, 1}k

d. Then

Bν = y∗ + B0
ν , (A.4)

ν = 1, ..., ν
(a)
d , is a (d|a, µ

(a)
d ×ν

(a)
d , ε

(a)
d )-design of the set y∗ +{0, 1}k

d. For all x∗ ∈ Xk
d(y

∗),

let n′(x∗), be the number of occurences of x∗ in the collection Bν , ν = 1, ..., ν
(a)
d , i.e.,

n′(x∗) =

ν
(a)
d

∑

ν=1

χ{ x∗ ∈ Bν }. (A.5)

Then

ĝ(d)
α (s) = Eα

[

2s·η
(d)
ij (y∗)

]

(A.6)

= Eα





∏

x∗∈Sk
d
(y∗)

2s·η
(d)
ij (x∗|y∗)





= Eα





ν
(a)
d

∏

ν=1

∏

x∗∈Bν

2s·η
(d)
ij (x∗|y∗)/n′(x∗)





≤

ν
(a)
d

∏

ν=1

E
1/ν

(a)
d

α

[

∏

x∗∈Bν

2sν
(a)
d

·η
(d)
ij (x∗|y∗)/n′(x∗)

]

,

where
η

(d)
ij (x∗|y∗) = χ{ fi(x

∗) ∈ Fj(y
∗) }.

Given shift ∆x∗ ∈ Ak
a, the codewords of the j-th message are assigned for all vectors,

belonging to the set

F̂j(y
∗) =

{

x∗ ∈ A : (x∗ + ∆x∗ + Ak
a)

⋂

(y∗ + {0, 1}k
d) 6= ∅

}

. (A.7)
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It is known that
|F̂j(y

∗)| ∼ mα,β, (A.8)

where
mα,β = 2k(H(α∗β)−H(α)). (A.9)

Since we are dealing with an upper bound, we can set that all these codewords are different,
and since the codewords of the i-th message are independent random variables, fix these
codewords as c1, ..., cmα,β

. Thus,

Eα

[

∏

x∗∈Bν

2sν
(a)
d

·η
(d)
ij (x∗|y∗)/n′(x∗)

]

(A.10)

≤ Eα

[

∏

x∗∈Bν

2sν
(a)
d

/n′(x∗) · χ{ fi(x
∗) ∈ {c1, ..., cmα,β

} }

]

.

Using the symmetry properties of the code ensemble, defined by (3.5)-(3.8), we note

that, with the probability εα + ε
(a)
d , a codeword assigned to a vector x∗ ∈ Bν , is either

fixed or depends on the codewords assigned to the vectors belonging to the set Bν\{x
∗}.

Otherwise, this codeword is an independent random vector, and using (5.12) and (A.6)-
(A.10) we complete the proof of (5.11), where n(x∗) are replaced with n′(x∗). However,
the shifts (A.4) keep {n(x∗)} as the set of all possible values of n′(x∗), defined in (A.5).
Therefore, (5.11) is also valid with the values of n(x∗). Q.E.D.
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Figure 1: A model of identification over a channel W under a random process generated
by a binary symmetric source (Ek(1/2), Ek(p)).
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Figure 2: The ρ-achievable ID rate Rρ as a function of ρ for p = 0 and p = 1/2.
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Figure 3: A lower bound on the ρ-achievable ID rate Rρ as a function of ρ for p ∈ (0, 1/2).
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