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Abstract

An intersecting system of type (∃,∀, k, n) is a collection F = {F1, . . . ,Fm} pf pair-
wise disjoint families of k–subsets of an n–element set satisfying the following condition.
For every ordered pair Fi and Fj of distinct members of F there exists an A ∈ Fi that
intersects every B ∈ Fj . Let In(∃,∀, k) denote the maximum possible cardinality of
an intersecting system of type (∃,∀, n). Ahlswede, Cai and Zhang conjectured that for
every k ≥ 1, there exists an n0(k) so that In(∃,∀, k) =

(

n−1
k−1

)

for all n > n0(k). Here
we show that this is true for k ≤ 3, but false for all k ≥ 8. We also prove some related
results.
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1 Introduction

One of the basic results in extremal set theory is the Erdős–Ko–Rado (EKR) theorem [4]:
if F is an intersecting family of k–element subsets of N = {1, 2, . . . , n} (i.e. every two
members of F have a non–empty intersection) and n ≥ 2k then |F| ≤

(

n−1
k−1

)

and this bound
is attained. Several subsequent results generalize and strengthen this result.

Recently Ahlswede, Cai and Zhang [1] considered various problems that study extremal
properties of a collection of families of the set N . They recognized that many classical prob-
lems dealing with families suggest interesting and challenging questions when one replaces
the notion of a family of sets by one of a collection of families of sets.

In the present note we consider the analogous problem of the EKR theorem for such systems.
Let F be a collection of pairwise disjoint families of k–subsets of N . We call F an intersecting
system of type (∃,∀, n) if any ordered pair of distinct families F and F ′ satisfies the following
condition:

∃F ∈ F such that ∀F ′ ∈ F ′ (F ∩ F ′ 6= ∅). (1.1)

With F as above, we say that F is a set in F responsible for the family F ′. Let In(∃,∀, k)
denote the maximum cardinality |F| of an intersecting system of type (∃,∀, k, n). It is easy
to see that

In(∃,∀, k) ≥

(

n − 1

k − 1

)

.

Indeed, the intersecting family F(1) of type (∃,∀, k, n), which contains each of the
(

n−1
k−1

)

k–subsets that contain 1 as a one element family shows it. From the other side the following
trivial upper bound holds.

Proposition 1.1.

In(∃,∀, k) ≤ j

(

n − 1

k − 1

)

. (1.2)

Proof. Let F be an intersecting system of type (∃,∀, k, n) and let F be the smallest family in
F. Then every edge of all other families must intersect at least one element of F . Therefore

∣

∣

∣

⋃

F

∣

∣

∣
≤ |F|k

(

n − 1

k − 1

)

,

and due to the minimality of |F|

|F| ≤
1

|F|
|F|k

(

n − 1

k − 1

)

.

¤

Ahlswede, Cai and Zhang [1] made the following conjecture.

Conjecture 1.1. There exists a function n0(k) such that for every n ≥ n0(k) the equality
In(∃,∀, k) =

(

n−1
k−1

)

holds.
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Our main result here is that the conjecture is false for all k ≥ 8. On the other hand, it holds
for all k ≤ 3. In addition, we prove the assertion of the conjecture in several special cases
for some value of n0(k).

2 Some special cases

Our goal in this section is to prove Conjecture 1.1 for k ≥ 3 and to clarify the basic properties
of the counterexample which will be given in the next section.

Proposition 2.1. Let F be an intersecting system of type (∃,∀, n) on an n ≥ k5–element
underlying set and suppose the family F1 ∈ F has empty total intersection, that is

⋂

F∈F1

F = ∅. (2.1)

Then |F| <
(

n−1
k−1

)

.

Proof. We apply a version of the so–called kernel method introduced by Hajnal and Roth-
schild [6]. It is easy to see that (2.1) implies that there exist at most k+1 elements F1, . . . , Fl

of F1 such that
F1 ∩ F2 ∩ · · · ∩ Fl = ∅. (2.2)

Indeed, let F1 = {i1, . . . , ik} be an arbitrary member of F1. By the assumption there exist
Fi1 , . . . , Fik in F1 such that ij /∈ Fij (i = 1, . . . , k), implying (2.2).

Let H = F1 ∪ · · · ∪ Fl. Then, by (2.2), for any family F2 6= F1 the set F ∈ F2 which is
responsible for the family F1 must intersect the set H in at least two vertices. Therefore

|F| ≤ 1 +

∣

∣

∣

∣

{

F ∈

(

N

k

)

: F can be responsible for F1

}∣

∣

∣

∣

≤ 1 +

(

|H|

2

)(

n − 2

k − 2

)

≤ 1 +

(

k(k + 1)

2

)(

n − 2

k − 2

)

≤ 1 + k4

(

n − 2

k − 2

)

<

(

n − 1

k − 1

)

,

where in the last step we applied the fact that k5 ≤ n. ¤

By the above proposition, we assume from now on that condition (2.1) does not apply to
any family F ∈ F. Let ker(F) denote the kernel of F , i.e. the non–empty intersection of all
its members.

Now we will show that each member of a ‘big’ intersecting system has to contain ‘many
elements’.

Call an intersecting system F of type (∃,∀, k, n) minimal if there is no ‘superfluous’ element
in any family. More precisely, for every set F ∈ F ∈ F there exists a family F ′ ∈ F such
that only F is responsible in F for the family F ′.
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Note that if a given intersecting system F is not minimal then one can get a minimal one
with the same cardinality by repeatedly deleting a superflous element as long as there is one.

Proposition 2.2. Let F be an intersecting system of type (∃,∀, k, n) and assume that there
is no family with empty total intersection. If F contains a family F satisfying 1 < |F| ≤ n/k3

and n ≥ 2k4 the |F| <
(

n−1
k−1

)

.

Proof. We may suppose that our system is minimal. For every F ∈ F there exists a set
F ′ ∈ F ′ such that F ∩ F ′ = ∅. Otherwise F can be responsible for every other family
in F, and therefore the system would not be minimal. Let the subsystem F(F ) contain all
the families for which F is responsible. Any family in F(F ) contains an element which is
responsible for the family F ′, and this set intersects F as well as F ′. hence the number of
k–sets in N intersecting F and F ′ is an upper bound for the cardinality of this subsystem.
Thus

|F(F )| ≤ k2

(

n − 2

k − 2

)

. (2.3)

Therefore

|F| ≤ 1 + |F|k2

(

n − 2

k − 2

)

<

(

n − 1

k − 1

)

, (2.4)

where we made use of the assumption on the size of the family F . ¤

Proposition 2.3. Let F be an intersecting system of type (∃,∀, k, n) and assume that there is
no family with empty total intersection. If n ≥ 2k4 and F contains a family F1 of cardinality
|F1| = 1 then |F| ≤

(

n−1
k−1

)

.

Proof. Again we suppose that our system is minimal and by Proposition 2.2 we may assume
that

if |F| > 1 then |F| > n/k3. (2.5)

We apply the well–known theorem of Hilton and Milner [5] about non–trivially intersecting
k–hypergraphs. Here we give a slightly weaker form of it which is useful for our purposes.

Theorem 2.1. Let k > 2 and n > 2k and let H be an intersecting k–uniform hypergraph
on the set N such that

⋂

F∈H

F = ∅.

Then

|H| < HM(n, k) := k

(

n − 2

k − 2

)

.

¤

Returning to the proof of Proposition 2.3 we consider two cases:

Case 1 1 ≤ |{F ∈ F : |F| = 1}| ≤ HM(n, k) (2.6)

Suppose F1 = {F}. Then F is responsible for every other family in F and hence intersects
every set in every other family. Using the fact that

∣

∣

∣

∣

{

H ∈

(

N

k

)

: H ∩ F 6= ∅

}
∣

∣

∣

∣

≤ k

(

n − 1

k − 1

)

,
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we get
∣

∣

∣

∣

∣

∣

⋃

|F|>1

F

∣

∣

∣

∣

∣

∣

≤ k

(

n − 1

k − 1

)

.

Applying assumptions (2.5) and (2.6) we conclude

|F| ≤ HM(n, k) +
k3

n
k

(

n − 1

k − 1

)

≤ k

(

n − 2

k − 2

)

+
k4

n

(

n − 1

k − 1

)

<
2k4

n

(

n − 1

k − 1

)

≤

(

n − 1

k − 1

)

.

Case 2 |{F ∈ F : |F| = 1}| > HM(n, k).

By the Hilton–Milner theorem [5] the system of all one–element families, as a set system,
is a trivially intersecting system, that is, there is a common vertex, say 1, in every set.
Furthermore, every set in a one element family is responsible for every other family, and
hence intersects every set in every other family. In particular, it meets every set in the
larger families, i.e. in the families with more than one member. Therefore the elements of
the larger families intersect every set in the one–element families, implying, by the Hilton–
Milner theorem, that they all contain the vertex 1. Hence

∣

∣

∣

∣

∣

⋃

F∈F

F

∣

∣

∣

∣

∣

≤

(

n − 1

k − 1

)

,

as claimed. ¤

Now we are rerady to prove Conjecture 1.1 for the case k ≤ 3. For k = 1 the conjecture is
trivial, and for k = 2 it is proved in [2]. Here we prove it for k = 3.

Theorem 2.2. There exists an integer n0 such that In(∃,∀, ε) =
(

n−1
2

)

for every n ≥ n0.

Proof. To simplify the presentation we assume, whenever this is needed, that n is sufficiently
large, and use the asymptotic o(1) notation. All our o(1)’s denote quantities that tend to 0
as n tends to infinity.

Let {F1, . . . ,Fm} be a minimal intersecting system of type (∃,∀, ε, n). Our objective is to
show that m ≤

(

n−1
2

)

. Suppose this is false. By Proposition 2.1, 2.2 and 2.3 we may assume
that |Fi| > n/27 and ker(Fi) is nonempty for all 1 ≤ i ≤ m.

Proposition 2.4. The number of families Fi whose kernel is of cardinality 1 is o(n2).

Proof. Suppose this is false and so for some ε > 0 there are arbitraly large n for which there
are εn2 families Fi with |ker(Fi)| = 1. By averaging, at least εn of these families have the
same kernel, say {1}. Each of these families contains more than n/27 triples that contain
1. Hence there are less than

(

n
2

)

− εn2/27 other families that contain a triple containing 1.
There are

(

n
2

)

−
((

n
2

)

− εn2/27
)

= Ω(n2) additional families; families that contain no triple
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that contains 1. Fix a family, say F1, whose kernel is {1}, and let F1, F2, F3 be three triples
of this family whose intersection is {1}. Each of the additional families must contain a triple
that intersects F1, F2 nd F3 and does not contain 1. There are only

(

6
2

)

n = O(n) such triples,
since they contain at least two vertices from F1 ∪F2 ∪F3 \ {1}. Therefore there can be only
O(n) additional families, contradicting the fact that there are Ω(n2) of them. This implies
the assertion of Proposition 2.4. ¤

Returning to the proof of Theorem 2.2, note, that by Proposition 2.4, there are (1/2−o(1))n2

families Fi whose kernels are of cardinality 2. Let us restrict our attention to the collection
G of these families. Note that since each family contains more than n/27 triples, no pair of
points of N can be the kernel of more than 26 families in G. Since every family in G contains
many triples, it is obvious that for every ordered pair of two distinct families Fi and Fj in
G there is an F ∈ Fi that intersects the kernel ker(Fj). Therefore, the union of elements
in the triples of each Fi ∈ G intersects all kernels of families in G. By averaging, there is a
family in G that contains at most

(

n
3

)

(1/2 − o(1))n2
= (1/3 + o(1))n

triples, and as they have a common kernel of size 2, the size of their union is at most
(1/3 + o(1))n. This union intersects all kernels of the families in G, implying that there are
at most (5/18 + o(1))n2 distinct kernels. Therefore, there is a kernel, say {1, 2}, which is
the kernel of two distinct families, say F1 and F2, of G. However, these two families do
not contain a common triple, implying that the intersection of their unions is precisely their
common kernel {1, 2}. Let X1 be the union of all triples of F1, and let X2 be the union of
all triples of F2. As |X1| + |X2| ≤ n + 2 and |X1 ∩ X2| = 2 it follows that there are only
(1/4 + o(1))n2 pairs of elements of N that intersect both X1 and X2 (and are thus potential
kernels to the other families of G). Moreover, all the triples of those families contain one of
these kernels, showing that no family of G contains a triple contained in X1 − {1, 2} or in
X2−{1, 2}. Hence, the total number of triples in all the families in G is at most (1/8+o(1))n2,
implying that there is a family containing at most (1/4 + o(1))n triples whose union is of
size at most (1/4 + o(1))n. This union intersects all kernels of families in G, showing that
there are only at most (7/32 + o(1))n2 such kernels. Since no kernel is the kernel of more
than 26 families, and since there are at least (1/2− o(1))n2 families, we conclude that there
are to pariwise disjoint kernels, say {a, b} and {c, d}, where {a, b} is a kernel of a family and
{c, d} is a kernel of at least three distinct families. However, each of these three families
must contain a triple that intersects {a, b} and hence must be either {a, c, d} or {b, c, d}.
This is a contradiction, as the three families are pairwise disjoint. Therefore, the assertion
of the conjecture holds for k = 3. ¤

The counterexample we shall present in the next section consists of families whose kernels
contain (at least) two elements. The following proposition shows that this is essential for
any example (like the one we present in the next section) that has substantially more than
(

n−1
k−1

)

families.

Proposition 2.5. Let k ≥ 1 be a fixed integer, let F be an intersecting system of type
(∃,∀, k, n), and suppose it contains a family F1 whose kernel consists of a single element.
Then |F| < (1 + o(1))

(

n−1
k−1

)

.
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Proof. Let {1} be the kernel of F1. Then, as in the proof of Proposition 2.1, there are
F1, . . . , Fk ∈ F1 whose intersection is {1}. Define H =

⋃k
i=1 Fi, and observe that |H| ≤ k2

and that every family F in F that does not contain any k–set that contains 1 must contain
a k–set that intersects H by at least two elements. Therefore,

|F| ≤

(

n − 1

k − 1

)

+

(

k2

2

)(

n − 2

k − 2

)

≤ (1 + o(1))

(

n − 1

k − 1

)

,

as needed. ¤

3 A counterexample

In this section we show that Conjecture 1.1 is false for all k ≥ 8. More precisely, we prove
the following.

Theorem 3.1. For every integer k and every ε > 0 there exists an n0 so that for every
n > n0

In(∃,∀, k) ≥ (1 − ε)
(k − 2)2k−1 + k

(

k−1
⌊k/2⌋

)

− 2k + 2

k2k−1

(

n − 1

k − 1

)

.

In particular, for all k ≥ 8 and n > n0(k)

In(∃,∀, k) >

(

n − 1

k − 1

)

.

The proof of this theorem combines some simple conbinatorial and probabilistic arguments
with a result of Pippenger and Spencer [7] on coverings in uniform hypergraphs. If H =
(V,E) is an r–uniform hypergraph, which may contain multiple edges, let D(H) denote the
maximum degree of a vertex of H and let d(H) denote the minimum degree of a vertex of
H. Let C(H) denote the maximum number of edges of H whose total intersection is of
cardinality at least 2. A covering in H is a collection of edges whose union covers all vertices
of H. Let φ(H) denote the maximum possible number of coverings into shich the edges of H
may be partitioned. Here is then the theorem of Pippenger and Spencer [7] we shall need.

Theorem 3.2. For every r ≥ 2 and δ > 0 there exists a δ′ > 0 such that if H is an r–uniform
hypergraph satisfying d(H) ≥ (1− δ′)D(H) and C(H) ≤ δ′D(H) then φ(H) ≥ (1− δ)D(H).

We note that in [7] the theorem is stated with the additional assumption that the number
of vertices of H is sufficiently large (as a function of δ and k), but this assumption is not
needed, as the result for any hypergraph H follows from the result for a hypergraph with
many vertices by applying it to a disjoint union of sufficiently many copies of H.

Proof of Theorem 3.1. Let k be a fixed integer. Throughout this proof, the notation
f = (1 + o(1))g will always mean that the ratio f/g tends to 1 as n tends to infinity (when
all the other parameters are fixed). Let N = {1, 2, . . . , n} = N1 ∪ N2 be a partition of N
into two disjoint subsets of cardinalities |N1| = n1 = ⌊n/2⌋ and |N2| = n2 = ⌈n/2⌉. Each
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family in the system F that we construct will have a kernel of cardinality two containing an
element in N1 and another one in N2. In addition, the union of the members of each family
will either contain the whole of N1 or the whole of N2. Clearly, these two properties ensure
that F is an intersecting system of the type we need. It thus remains to show that there
exists such an F containing sufficiently many families.

Let us choose, for each k–subset F of N that intersects both N1 and N2, randomly and
independently, a member a = a(F ) ∈ N1 ∩ F and a member b = b(F ) ∈ N2 ∩ F , where a is
chosen according to a uniform distribution among the elements in N1 ∩F and b is chosen in
a similar manner. For each integer i, 1 ≤ i ≤ k − 1 and for each a ∈ N1, and b ∈ N2, define
F(i, a, b) to be the set of all k–subsets F for which |F ∩N1| = i, a(F ) = a and b(F ) = b. The
families of our system F will be obtained by splitting each of the sets F(i, a, b) into disjoint
families, so that the union of each will cover either N1 or N2. The crucial idea is to cover
N1 if i ≥ k/2 and to cover N2 otherwise. In this way, we are always using the bigger part of
each k–set to cover the corresponding Ni and hence obtain a large number of families. The
precise argument requires an application of Theorem 3.2 and the following lemma.

Lemma 3.1. The following statements hold almost surely (that is, with probability that
approaches 1 as n tends to infinity):

(i) For every i satisfying k/2 ≤ i ≤ k − 1 and for every two distinct elements a, a1 ∈ N1

and every b ∈ N2, the number of members of F(i, a, b) that contain a1 is

(1 + o(1))

(

n1−2
i−2

)(

n2−1
k−i−1

)

i(k − i)
.

(ii) For every i satisfying k/2 ≤ i ≤ k−1 and for every three distinct elements a, a1, a2 ∈ N1

and every b ∈ N2, the number of members of F(i, a, b) that contain a1 and a2 is

(1 + o(1))

(

n1−3
i−3

)(

n2−1
k−i−1

)

i(k − i)
.

Proof. We describe the proof of (i). The Proof of (ii) is similar. There are precisely

(

n1 − 2

i − 2

)(

n2 − 1

k − i − 1

)

k–subsets F of N satisfying |F ∩N1| = i and containing a, a1 and b. Foreach such subset F
the probability that it lies in F(i, a, b), that is, the probability that F (a) = a and F (b) = b
is 1

i(k−1)
. It follows that the expected number of members of F(i, a, b) containing a1 is

g =

(

n1−2
i−2

)(

n2−1
k−i−1

)

i(k − i)
.

Notice that since k is fixed g = Θ(nk−3). Since the value in (i) is a binomial random
variable, the standard tail estimates for the distribution of such a variable (see, for example,
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[3, Appendix A, Theorem A.4]) imply that the probability that it deviates from its expection
g by at least, say, n(k−3)/2+1, is at most exp{−cn2}, where c > 0 is a constant depending
only on k. Since there are less than kn3 choices for i, a, a1 and b, the probability that there
exist i, a, a1 and b for which the corresponding number deviates from its expectation g by at
least n(k−3)/2+1 tends to 0 as n tends to infinity, as needed. ¤

Returning to the proof of Theorem 3.1, fix a choice for the various families F(i, a, b) satisfying
the assertion of the lemma. Define for every i ≥ k/2 and for every a ∈ N1 and b ∈ N2, an
(i− 1)–uniform hypergraph H = H(i, a, b) as follows. The set of vertices of H is N1 − a and
for each F ∈ F(i, a, b), (F ∩N1)−a is an edge of H. (Note that H may have multiple edges,
as F(i, a, b) may have members that differ only on the elements of N2). Let D(i, a, b) denote
the maximum degree of H, d(i, a, b) the minimum degree and C(i, a, b) the maximum number
of edges of H containing a pair of vertices. By Part (i) of Lemma 3.1 for all admissible i, a, b,
and for every δ′ > 0

d(i, a, b) ≥ (1 − δ′)D(i, a, b),

provided n is sufficiently large. Similarly, By Lemma 3.2, part (ii),

C(i, a, b) ≤ δ′D(i, a, b)

for all sufficiently large n. Therefore, by Theorem 3.2 we conclude that for every δ > 0 the
set of edges of H(i, a, b) can be partitioned into at least (1− δ)D(i, a, b) coverings, provided
n is sufficiently large. The original k–subsets F correponding to the members of each such
covering supply a family of k–subsets, all of which contain a and b, whose union covers N1.
This, together with the symmetric argument obtained by replacing the roles of N1 and N2

imply the following.

Lemma 3.2. For every δ > 0, n > n0(δ) and for every i satisfying k/2 ≤ i ≤ k − 1 and
every a ∈ N1 and b ∈ N2 one can split the collection F(i, a, b) into at least

(1 − δ)

(

n1−2
i−2

)(

n2−1
k−i−1

)

i(k − i)

families, so that the union of each family covers N1 and its intersection contains a and b.
Similarly, for every 1 ≤ i < k/2 and every a ∈ N1 and b ∈ N2, it is possible to partition the
collection F(i, a, b) into at least

(1 − δ)

(

n1−1
i−1

)(

n2−2
k−i−2

)

i(k − i)

families, so that the union of each family covers N2 and its intersection contains the elements
a and b. ¤

9



Therefore,

In(∃,∀, k) ≥ (1 − δ)
k−1
∑

i=k/2

(

n1−2
i−2

)(

n2−1
k−i−1

)

i(k − i)
+ (1 − δ)

∑

1≤i<k/2

(

n1−1
i−1

)(

n2−2
k−i−2

)

i(k − i)

= (1 + o(1))
(n

2

)2

(1 − δ)
k−1
∑

i=1

nk−3 max{i − 1, k − i − 1}

2k−3i!(k − i)!

= (1 + o(1))(1 − δ)
k−1
∑

i=1

nk−1 max{i − 1, k − i − 1}

2k−1i!(k − i)!

= (1 + o(1))(1 − δ)

(

n − 1

k − 1

) k−1
∑

i=1

max{i − 1, k − i − 1}
(

k
i

)

k2k−1
.

To complete the proof we need the following simple fact.

Lemma 3.3. For every integer k ≥ 2

k−1
∑

i=1

max{i, k − 1}

(

k

i

)

= k2k−1 + k

(

k − 1

⌊k/2⌋

)

− 2k.

Proof. In the even case k = 2m,

k−1
∑

i=1

max{i, k − 1}

(

k

i

)

= k

{(

k − 1

1

)

+

(

k − 1

2

)

+ · · · +

(

k − 1

m − 1

)

+ 2

(

k − 1

m

)

+

(

k − 1

m + 1

)

+ · · · +

(

k − 1

k − 2

)}

= k

{

2k−1 +

(

k − 1

m

)

− 2

}

.

The proof of the case when k is odd is similar. ¤

By substituting the formula in Lemma 3.3 into the estimation following Lemma 3.2 the
assertion of Theorem 3.1 follows. ¤

Remark. The construction in the proof above can be modified to the case of families
with larger kernels, simply by splitting N into r nearly equal classes N1, . . . , Nr and by
constructing families with kernels that contain one element from each Ni, so that the union
of the sets in each family covers at least one set Nj. By taking, say, r = ⌊k/10/logk⌋ one
can prove that there exists an absolute constant µ > 0 so that for every k ≥ 8

In(∃,∀, k) ≥ (1 + µ)

(

n − 1

k − 1

)

.

We omit the detailed computation.
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