Some properties of Fix - Free Codes

R.Ahlswede
Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany

B.Balkenhol*
Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany

L.Khachatrian ${ }^{\dagger}$
Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany

Abstract

A (variable length) code is fix - free code if no codeword is a prefix or a suffix of any other. A database constructed by a fix - free code is instantaneously decodeable from both sides. We discuss the existence of fix - free codes, relations to the deBrujin Network and shadow problems. Particulary we draw attention to a remarkable conjecture: For numbers l_{1}, \ldots, l_{N} satisfying $\sum_{i=1}^{N} 2^{-l_{i}} \leq \frac{3}{4}$ a fix-free code with lengths $l_{1}, \ldots l_{N}$ exists.

 If true, this bound is best possible.[^0]
1 Basic Definitions

For a finite set $\mathcal{X}=\{0, \ldots, a-1\}$, called alphabet, we form $\mathcal{X}^{n}=\prod_{1}^{n} \mathcal{X}$, the words of length n, with letters from \mathcal{X} and $\mathcal{X}^{*}=\bigcup_{n=0}^{\infty} \mathcal{X}^{n}$, the set of all finite length words including the empty word e from $\mathcal{X}^{0}=\{e\}, \mathcal{X}^{*}$ is equipped with an associative operation, called concatenation, defined by

$$
\left(x_{1}, \ldots, x_{n}\right)\left(y_{1}, \ldots, y_{m}\right)=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
$$

We skip the brackets whenever this results in no confusion, in particular we write the letter x instead of (x). We also write $\mathcal{X}^{+}=\mathcal{X}^{*} \backslash\{e\}$ for the set of non-empty words.

The length $\left|x^{n}\right|$ of the word $x^{n}=x_{1} \ldots x_{n}$ is the number n of letters in x^{n}.
A word $w \in \mathcal{X}^{*}$ is a factor of a word $x \in \mathcal{X}^{*}$ if there exist $u, v \in \mathcal{X}^{*}$ such that $x=u w v$. A factor w of x is proper if $w \neq x$.
For subsets \mathcal{Y}, \mathcal{Z} of \mathcal{X}^{*} and a word $w \in \mathcal{X}^{*}$, we define

$$
\begin{gathered}
\mathcal{Y} w=\left\{y w \in \mathcal{X}^{*}: y \in \mathcal{Y}\right\} \\
\mathcal{Y} \mathcal{Z}=\left\{y z \in \mathcal{X}^{*}: y \in \mathcal{Y}, z \in \mathcal{Z}\right\}
\end{gathered}
$$

and

$$
\mathcal{Y} w^{-1}=\left\{z \in \mathcal{X}^{*}: z w \in \mathcal{Y}\right\}
$$

A set of words $\mathcal{C} \subset \mathcal{X}^{*}$ is called a code.
Recall that a code is called prefix-free (resp. suffix-free), if no codeword is beginning (resp. ending) of another one.

Definition 1 A code, which is simultaneously prefix-free and suffix-free, is called biprefix or fix-free. This can be expressed by the equations

$$
\mathcal{C X}^{+} \cap \mathcal{C}=\phi \text { and } \mathcal{X}^{+} \mathcal{C} \cap \mathcal{C}=\phi
$$

Definition $2 A$ code $\mathcal{C}=\left\{c_{1}, \ldots, c_{N}\right\}$ over an a-letter alphabet \mathcal{X} is said to be complete if it satisfies equality in Kraft's inequality, i.e. for $\ell_{i}=\left|c_{i}\right|$,

$$
\sum_{i=1}^{N} a^{-\ell_{i}}=1
$$

Definition 3 A fix-free code \mathcal{C} is called saturated, if it is not possible to find a fix-free code \mathcal{C}^{\prime} containing \mathcal{C} properly, that is, $\left|\mathcal{C}^{\prime}\right|>|\mathcal{C}|$.

2 The Existence

Lemma 1 A finite fix-free code $\mathcal{C}=\left\{c_{1}, \ldots, c_{N}\right\}$ over $\mathcal{X}=\{0, \ldots, a-1\}$ is saturated iff \mathcal{C} is complete.

Proof:

Let $\ell_{i}=\left|c_{i}\right|$ for all $1 \leq i \leq N$.

1. If $\sum_{i=1}^{N} a^{-\ell_{i}}=1$, then \mathcal{C} is saturated, because otherwise we get a contradiction to Kraft's inequality.
2. Now we show that in case $\sum_{i=1}^{N} a^{-\ell_{i}}<1, \ell_{1} \leq \ldots \leq \ell_{N}$, we can add another codeword to \mathcal{C}.
Indeed, by the proof of Kraft's inequality there exists a word $x^{\ell_{N}} \in$ $\mathcal{X}^{\ell_{N}}$ such that no codeword of \mathcal{C} is prefix of $x^{\ell_{N}}$. Similarly, there exists a word $y^{\ell_{N}} \in \mathcal{X}^{\ell_{N}}$ such that no codeword of \mathcal{C} is suffix of $y^{\ell_{N}}$. Define now the new codeword

$$
c_{N+1}=x^{\ell_{N}} y^{\ell_{N}}
$$

Definition 4 We define the shadow of a word $w \in \mathcal{X}^{*}$ in level l as

$$
\begin{aligned}
\delta_{l}(w) & =\left\{x^{l} \in \mathcal{X}^{l}: w \text { is prefix or suffix of } x^{l}\right\} . \\
& =w^{-1} \mathcal{X}^{l} \cup \mathcal{X}^{l} w^{-1} .
\end{aligned}
$$

For a set \mathcal{Z} this notation is extended to

$$
\delta_{l}(\mathcal{Z})=\bigcup_{z \in \mathcal{Z}} \delta_{l}(z)
$$

We are next looking for Kraft-type inequalities.
Lemma $2 \sum_{i=1}^{N} a^{-\ell_{i}} \leq \frac{1}{2}$ implies that there exists a fix-free code \mathcal{C} over $\mathcal{X}=\{0, \ldots, a-1\}$ with $\ell_{1} \leq \ldots \leq \ell_{N}$ as lengths of codewords.

Proof: We proceed by induction in the number of codewords. The case $N=1$ being obvious we assume that we have found a fix-free code for $N-1$ codewords. We present these words as vertices of a tree, where a word of length ℓ corresponds to a certain vertex on the ℓ-th level (in the usual way).

We count now all leaves of this tree in the ℓ_{N} 'th level, which have one of the codewords as a prefix or as a suffix. (The shadow of the code in the ℓ_{N} 's level.)

For each codeword c_{i} of length ℓ_{i} we thus count $a^{\ell_{N}-\ell_{i}}$ leaves, which have c_{i} as a prefix and also $a^{\ell_{N}-\ell_{i}}$ leaves, which have c_{i} a suffix. These sets need not be distinct. However, their total number does not exceed $2 \sum_{i=1}^{N-1} a^{\ell_{N}-\ell_{i}}$. By our assumption this is smaller than $a^{\ell_{N}}$ and there is a leaf on the ℓ_{N} 's level, which was not counted. The corresponding word can serve as our N-th codeword.
We define now γ as the largest constant such that for every integral tuple $\left(\ell_{1}, \ell_{2}, \ldots, \ell_{N}\right) \sum_{i=1}^{N} 2^{-\ell_{i}}<\gamma$ implies the existence of a binary fix-free code with lengths $\ell_{1}, \ell_{2}, \ldots, \ell_{N}$.

Lemma $3 \gamma \leq \frac{3}{4}$.

Proof: For any $\gamma=\frac{3}{4}+\varepsilon, \varepsilon>0$, choose k such that $2^{-k}<\varepsilon$. For the vector $\left(\ell_{1}, \ldots, \ell_{N}\right)=(1, k, \ldots, k)$ with $N=2^{k-2}+2$ we have

$$
\sum_{i=1}^{N} 2^{-\ell_{i}}=\frac{1}{2}+2^{-k}\left(2^{k-2}+1\right)=\frac{3}{4}+2^{-k}<\frac{3}{4}+\varepsilon
$$

However, there are exactly 2^{k-2} words of length k without a codeword c_{1} as a prefix and a suffix and, since $1+2^{k-2}<N$, we have shown the nonexistence of a code with the desired parameters.

There is some evidence for the
Conjecture: $\gamma=\frac{3}{4}$.
For instance we have the following observation.

Lemma 4 Suppose that

$$
\begin{equation*}
\text { either } \ell_{i}=\ell_{i+1} \text { or } 2 \ell_{i} \leq \ell_{i+1} \text { for all } 1 \leq i \leq N \tag{2.1}
\end{equation*}
$$

Then $\sum_{i=1}^{N} 2^{-\ell_{i}} \leq \frac{3}{4}$ implies the existence of a binary fix-free code with these codeword lengths.

Proof: We go by induction on the number n of different lengths occurring in

$$
\ell_{1} \leq \ell_{2} \leq \ldots \leq \ell_{N}
$$

Obviously the result is true, if there is only one length, that is, $n=1$.
Assuming that we can construct a code with $n-1$ different codeword lengths we show that we can construct a code with n different codeword lengths. Let M be the largest index i with $\ell_{i}<\ell_{N}$. Thus $\sum_{i=1}^{M} 2^{-\ell_{i}} \leq \frac{3}{4}$
and by induction hypothesis we have a fix-free code \mathcal{C}^{\prime} with the lengths $\ell_{1}, \ldots, \ell_{M}$. We estimate now the shadow $\delta_{\ell_{N}}\left(\mathcal{C}^{\prime}\right)$. Actually, by 2.1 we get an exact formula:

$$
\begin{equation*}
\left|\delta_{\ell_{N}}\left(\mathcal{C}^{\prime}\right)\right|=2 \sum_{i=1}^{M} 2^{\ell_{N}-\ell_{i}}-\sum_{i=1}^{M} 2^{\ell_{N}-2 \ell_{i}}-2 \sum_{1 \leq i<j \leq M} 2^{\ell_{N}-\left(\ell_{i}+\ell_{j}\right)} . \tag{2.2}
\end{equation*}
$$

A code with lengths $\ell_{1}, \ldots, \ell_{N}$ is constructable exactly if

$$
\begin{equation*}
\left|\delta_{\ell_{N}}\left(\mathcal{C}^{\prime}\right)\right| \leq 2^{\ell_{N}}-(N-M) \tag{2.3}
\end{equation*}
$$

Writing $K=N-M$ and $\alpha=\sum_{i=1}^{M} 2^{-\ell_{i}}$ we get after division by $2^{\ell_{N}}$ from (2.2) and (2.3) that sufficient for constructability is

$$
2 \alpha-\alpha^{2} \leq 1-\frac{K}{2^{\ell_{N}}} .
$$

With the abbreviations $\beta=\sum_{i=1}^{N} 2^{-\ell_{i}}=\alpha+\frac{K}{2^{\ell_{N}}}$ and $\delta=\frac{K}{2^{\ell_{N}}}$ we get the equivalent inequality

$$
\beta \leq 1+\delta-\sqrt{\delta} .
$$

This is satisfied for $\beta \leq \frac{3}{4}$, because $1+\delta-\sqrt{\delta}$ has the minimal value $\frac{3}{4}$ (at $\delta=\frac{1}{4}$).

2.1 Minimal Average Codeword Lengths

The aim of data compression in Noiseless Coding Theory is to minimize the average length of the codewords (see $[2,5]$).

Theorem 1 For each probability distribution $P=(P(1), \ldots, P(N))$ there exists a binary fix - free code \mathcal{C} where the average length of the codewords satisfies

$$
H(P) \leq \bar{L}(\mathcal{C})<H(P)+2
$$

Proof: The left-hand side of the theorem is clearly true, because each fix - free code is a prefix code and for each prefix code the left-hand side of the theorem follows from the Noiseless Coding Theorem. It is also clear, that this lower bound is reached for $N=2^{m}(m \in \mathbb{N})$ and $P(i)=2^{-m}$ for all $1 \leq i \leq 2^{m}$.
The proof of the right-hand side of the Theorem is the same as the proof for alphabetic codes, which can be found in [1]:

We define $\ell_{i} \triangleq\lceil-\log (P(i))\rceil+1$. It follows that

$$
\sum_{i=1}^{N} 2^{-\ell_{i}} \leq \frac{1}{2} \sum_{i=1}^{N} 2^{\log (P(i))}=\frac{1}{2} \sum_{i=1}^{N} P(i)=\frac{1}{2}
$$

By Lemma 2 there exists a fix - free code \mathcal{C} with the codeword lengths $\ell_{1}, \ldots, \ell_{N}$.

The average length of this code is

$$
\begin{aligned}
\bar{L}(\mathcal{C}) & =\sum_{i=1}^{N} P(i) \ell_{i}<\sum_{i=1}^{N} P(i)(-\log (P(i))+2) \\
& =H(P)+2 \sum_{i=1}^{N} P(i)=H(P)+2
\end{aligned}
$$

where the logarithm is taken to the base 2 . For an arbitrary alphabet the proof follows the same lines.

3 On Complete Fix-Free-Codes

3.1 Auxiliary Results

In Chapter 3 of [3] the structure of complete fix-free codes is studied and methods for constructing finite codes are presented. To each complete fix free code two basic parameters are associated: its kernel and its degree. The kernel is the set of codewords which are proper factors of some codeword. The degree d is a positive integer which is defined as follows:
It is well known (see [3]) that for each finite complete fix - free code $\mathcal{C}=\left\{c_{1}, \ldots, c_{N}\right\}$ and for each $w \in \mathcal{X}^{+}$, there exists a positive integer $m<\max _{1 \leq i \leq N}\left|c_{i}\right|$ such that $\underbrace{w \ldots w}_{m} \in \mathcal{C}^{*}$. Now we define

$$
d \triangleq \max _{w \in \mathcal{X}^{+}} \min _{m \in \mathbb{N}}\{m: \underbrace{w \ldots w}_{m} \in \mathcal{C}^{*}\} .
$$

We need the following results of [3]:
Proposition 1 Let \mathcal{C} be a finite complete fix - free code over a finite alphabet \mathcal{X} and let d be its degree. Then we have the properties:
(i) For each letter $x \in \mathcal{X}$,

$$
\underbrace{x \ldots x}_{d} \in \mathcal{C} .
$$

(ii) There is only a finite number of finite complete fix-free codes over \mathcal{X} with degree d.
(iii) If the length of the shortest codeword is d, then the length of every codeword is d as well.

Lemma 5 For each finite complete fix-free code $\mathcal{C}=\left\{c_{1}, \ldots, c_{N}\right)$ over $\mathcal{X}=\{0, \ldots, a-1\}, a^{2}$ divides the number of codewords of maximal length.

Proof : From the definition of complete fix-free codes it follows that with every codeword $c \in \mathcal{C}$ of maximal length, there are also $a^{2}-1$ other codewords which differ from c only in the first and/or last components. Hence the set of codewords of maximal length is a disjoint union of equivalent classes each of cardinality a^{2}.

Lemma 6 For each binary complete fix - free code \mathcal{C} there is at most one codeword of length 2 or all codewords have length 2 .

Proof : By (i) in Proposition 1 we know that \mathcal{C} contains no codeword of length one. If \mathcal{C} contains a codeword c with $|c|>2$ then by (iii) of Proposition 1 the degree of \mathcal{C} is greater than 2, and by (i) of Proposition 1 $00 \notin \mathcal{C}$ and $11 \notin \mathcal{C}$. Hence if we have two codewords of length 2 then these two codewords are 01 and 10 . However, there is a codeword of maximal length starting with 01 or 10 (see Lemma 5).

3.2 Only Three Different Levels

Let \mathcal{C} be a finite binary complete fix-free code and let $\mathcal{C}_{i} \triangleq\{c \in \mathcal{C}:|c|=i\}$. Let $\operatorname{bin}^{-1}(c)$ be the natural number which corresponds to the binary representation of c (Note that the length of c is not fixed so that $\operatorname{bin}^{-1}(c)=$ $\left.b i n^{-1}(0 c)\right)$.

Lemma 7 Let $\mathcal{C}=\left(c_{1}, \ldots, c_{N}\right)$ be a finite binary complete fix-free code with codeword lengths $\ell_{1}, \ldots, \ell_{N}$ satisfying $\ell_{i} \in\{k, k+1, k+2\}$ for all $1 \leq i \leq N$ and some k. Then for every $\mathcal{E} \subset \mathcal{C}_{k}$
$\left|\delta_{k+1}(\mathcal{E})\right| \geq 2|\mathcal{E}|$ and equality holds exactly if $|\mathcal{E}|=2^{k}$.
Proof: The union of the sets $\mathcal{E} 0$ and $\mathcal{E} 1$ contains $2|\mathcal{E}|$ elements. Hence always $\left|\delta_{k+1}(\mathcal{E})\right| \geq 2|\mathcal{E}|$, if $|\mathcal{E}|<2^{k}$ then by (i) and (iii) of Proposition 1 , $(0, \ldots, 0) \notin \mathcal{E}$.
Let c be the element in \mathcal{E} with smallest $\operatorname{bin}^{-1}(c)$. We consider $0 c \in \delta_{k+1}(\mathcal{E})$ and let us show that $0 c \notin \mathcal{E} 0 \cup \mathcal{E} 1$. Assume in the opposite $0 c=c^{\prime} 0$ or $0 c=c^{\prime} 1$ for some $c^{\prime} \in \mathcal{E}$. However $\operatorname{bin}^{-1}(0 c)=\operatorname{bin}^{-1}(c)<2 b i n^{-1}\left(c^{\prime}\right)=$ $\operatorname{bin}^{-1}\left(c^{\prime} 0\right)$ and $\operatorname{bin}^{-1}(0 c)<1+2 b i n^{-1}\left(c^{\prime}\right)=\operatorname{bin}^{-1}\left(c^{\prime} 1\right)$ hold, since c is the element of \mathcal{E} with smallest $\operatorname{bin}^{-1}(c)$. Hence $\left|\delta_{k+1}(\mathcal{E})\right| \geq 2|\mathcal{E}|+1$ if $|\mathcal{E}|<2^{k}$.

Theorem 2 Let \mathcal{C} be a finite binary complete fix - free code with codeword lengths: $k=\ell_{1} \leq \ell_{2} \leq \ldots \leq \ell_{N}=k+2$. Then
(i) $x c y \in \mathcal{C}_{k+2}, x, y \in\{0,1\}$ if and only if $c \in \mathcal{C}_{k}$ and
(ii) $\left|\delta_{k+1}\left(\mathcal{C}_{k}\right)\right|=4\left|\mathcal{C}_{k}\right|$.

Proof :

(i) Let $\mathcal{C}_{k}^{0}=\left\{c \in\{0,1\}^{k} \backslash \mathcal{C}_{k}: x c y \in \mathcal{C}_{k+2}, x, y \in\{0,1\}\right\}$,
$\mathcal{C}_{k+2}^{0}=\left\{x c y \in \mathcal{C}_{k+2}, x, y \in\{0,1\}: c \in \mathcal{C}_{k}^{0}\right\}$ and let $\mathcal{D}=\delta_{k+1}\left(\mathcal{C}_{k}^{0}\right)=\left\{c 0, c 1,0 c, 1 c \in\{0,1\}^{k+1}: c \in \mathcal{C}_{k}^{0}\right\}$.
From Lemma 5 we know that $\left|\mathcal{C}_{k+2}^{0}\right|=4\left|\mathcal{C}_{k}^{0}\right|$. We consider new codes $\mathcal{C}_{1}^{\prime}=\left(\mathcal{C} \backslash \mathcal{C}_{k+2}^{0}\right) \cup \mathcal{C}_{k}^{0}$ and $\mathcal{C}_{2}^{\prime}=\left(\mathcal{C} \backslash \mathcal{C}_{k+2}^{0}\right) \cup \mathcal{D}$. It can be easely verified, that both \mathcal{C}_{1}^{\prime} and \mathcal{C}_{2}^{\prime} are fix-free codes. Moreover, \mathcal{C}_{1}^{\prime} is complete, since \mathcal{C} is complete. Therefore we can apply Lemma 7 with respect to $\mathcal{E}=\mathcal{C}_{k}^{0},\left|\mathcal{C}_{k}^{0}\right|<2^{k}$, to get $\left|\delta_{k+1}\left(\mathcal{C}_{k}^{0}\right)\right|=|\mathcal{D}|>2\left|\mathcal{C}_{k}^{0}\right|$. However this leads to the contradiction, because \mathcal{C}_{2}^{\prime} is a fix-free code, but

$$
\begin{aligned}
\sum_{c \in \mathcal{C}_{2}^{\prime}} 2^{-|c|} & =\sum_{c \in\left(\mathcal{C} \backslash C_{k+2}^{0}\right)} 2^{-|c|}+\sum_{c \in \mathcal{D}} 2^{-|c|} \\
& >\sum_{c \in\left(\mathcal{C} \backslash \mathcal{C}_{k+2}^{0}\right)} 2^{-|c|}+\sum_{c \in \mathcal{C}_{k+2}^{0}} 2^{-|c|} \\
& =\sum_{c \in \mathcal{C}} 2^{-|c|}=1 .
\end{aligned}
$$

(ii) We consider teh lower shadow of \mathcal{C}_{k+2} :

$$
\delta_{k+1}^{-}\left(\mathcal{C}_{k+2}\right) \triangleq\left\{c \in\{0,1\}^{k+1}: \delta_{k+2}(c) \cap \mathcal{C}_{k+2} \neq \emptyset\right\} .
$$

By (i) we have $\delta_{k+1}^{-}\left(\mathcal{C}_{k+2}\right)=\delta_{k+1}\left(\mathcal{C}_{k}\right)$.
Therefore $\mathcal{C}_{k+1}=\{0,1\}^{k+1} \backslash \delta_{k+1}\left(\mathcal{C}_{k}\right)$, since \mathcal{C} is complete.
Now $\left|\delta_{k+1}\left(\mathcal{C}_{k}\right)\right|<4\left|\mathcal{C}_{k}\right|$ would imply $\sum_{c \in \mathcal{C}} 2^{-|c|}>1$.

3.3 Relations to the deBruijn Network

The binary deBruijn Network of order n is an undirected graph $\mathcal{B}^{n}=$ $\left(\mathcal{V}^{n}, \mathcal{E}^{n}\right)$, where $\mathcal{V}^{n}=\mathcal{X}^{n}$ is the set of vertices and $\left(u^{n}, v^{n}\right) \in \mathcal{E}^{n}$ is an edge iff

$$
u^{n} \in\left\{\left(b, v_{1}, \ldots, v_{n-1}\right),\left(v_{2}, \ldots, v_{n}, b\right): b \in\{0,1\} .\right.
$$

The binary deBruijn Network \mathcal{B}^{4} is given as an example:

A subset $\mathcal{A} \subset \mathcal{V}^{n}$ is called independent, if no two vertices of \mathcal{A} are connected, and we denote by $\mathcal{I}\left(\mathcal{B}^{n}\right)$ the set of all independent subsets of the deBruijn network. We note, that for all $b \in\{0,1\},(b, b, \ldots b) \notin \mathcal{A} \in \mathcal{I}\left(\mathcal{B}^{n}\right)$, because ($b, b, \ldots b$) is dependent itself. The independence number $f(n)$ of \mathcal{B}^{n} is $f(n)=\max _{\mathcal{A} \in \mathcal{I}\left(\mathcal{B}^{n}\right)}|\mathcal{A}|$.

Lemma 8 Let \mathcal{C} be a binary complete fix - free code on three levels: $\mathcal{C}=\mathcal{C}_{n} \cup \mathcal{C}_{n+1} \cup \mathcal{C}_{n+2}, \mathcal{C}_{i} \neq \emptyset$. Then
(i) $\mathcal{C}_{n} \in \mathcal{I}\left(\mathcal{B}^{n}\right)$ and
(ii) for every $\mathcal{A} \in \mathcal{I}\left(\mathcal{B}^{n}\right)$ there exists a complete fix-free code on three levels $n, n+1, n+2$ for which $\mathcal{A}=\mathcal{C}_{n}$, and the code is unique.

Proof :

(i) Immideately follows from Theorem 2 (ii).
(ii) For an $\mathcal{A} \in \mathcal{I}\left(\mathcal{B}^{n}\right)$ we construct a complete fix - free code $\mathcal{C}=\mathcal{C}_{n} \cup \mathcal{C}_{n+1} \cup \mathcal{C}_{n+2}$ as follows: $\mathcal{C}_{n+1}=\{0,1\}^{n+1} \backslash \delta_{n+1}(\mathcal{A})$, $\mathcal{C}_{n+2}=\left\{x c y \in\{0,1\}^{n+2}, x, y \in\{0,1\}: c \in \mathcal{A}\right\}$.
We note, that the exact value of the independence number $f(n)$ of \mathcal{B}^{n} in general is not known.
Clearly for any $x^{n}, y^{n} \in \mathcal{A} \in \mathcal{I}\left(\mathcal{B}^{n}\right), x^{n} \neq y^{n}$:

$$
\begin{gathered}
\operatorname{bin}^{-1}\left(x^{n}\right) \neq 2 b i n^{-1}\left(y^{n}\right), \operatorname{bin}^{-1}\left(x^{n}\right) \neq 2 b i n^{-1}\left(y^{n}\right)+1 \\
\operatorname{bin}^{-1}\left(x^{n}\right) \neq \operatorname{bin}^{-1}\left(y^{n}\right)+2^{n-1} \operatorname{bin}^{-1}\left(y^{n}\right) \neq 2 b i n^{-1}\left(x^{n}\right) \\
\operatorname{bin}^{-1}\left(y^{n}\right) \neq 2 b i n^{-1}\left(x^{n}\right)+1, \operatorname{bin}^{-1}\left(y^{n}\right) \neq \operatorname{bin}^{-1}\left(x^{n}\right)+2^{n-1}
\end{gathered}
$$

Hence, the determination of $f(n)$ is a special case of the following numbertheoretical problem:
For given $m \in \mathbb{N}$, find a set $\mathcal{S}=\left\{1 \leq a_{1}<\ldots<a_{s}<m\right\}$ of maximal cardinality, for which $\left\{a_{i}, 2 a_{i}, 2 a_{i}+1, a_{i}+m\right\} \cap\left\{a_{j}, 2 a_{j}, 2 a_{j}+1, a_{j}+m\right\}=\emptyset$ holds for all $1 \leq i<j \leq|\mathcal{S}|$.
In the case $m=2^{n}$ we have exactly the problem of finding a maximal independent set with cardinality $f(n)$ in the deBruijn network. Hence we solve this problem (for $m=2^{n}$) asymptotically.

Theorem 3

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{2^{n}}=\frac{1}{2}
$$

Proof : Let $\mathcal{A} \in \mathcal{I}\left(\mathcal{B}^{n}\right)$ with $|\mathcal{A}|=f(n)$. Clearly $f(n)<2^{n-1}$, because for an $x^{n} \in \mathcal{A}$:
$1 \leq \operatorname{bin}^{-1}\left(x^{n}\right)<2 b i n^{-1}\left(x^{n}\right)<2 b i n^{-1}\left(x^{n}\right)+1<\operatorname{bin}^{-1}\left(x^{n}\right)+2^{n} \leq 2^{n+1}-1$
and these integers are different for different elements of \mathcal{A}. It is easy to see, that always $f(n+1) \geq 2 f(n)$, and hence the $\lim _{n \rightarrow \infty} \frac{f(n)}{2^{n}}$ exists. To finish the proof, we have to construct a sequence of sets $\mathcal{A}_{n} \in \mathcal{I}\left(\mathcal{B}^{n}\right)$ with $\lim _{n \rightarrow \infty} \frac{\left|\mathcal{A}_{n}\right|}{2^{n}}=\frac{1}{2}$. For this it suffices to construct only for even values of n.
Let

$$
\mathcal{S}_{0}^{n}=\left\{x^{n} \in\{0,1\}^{n}: \sum_{i=1}^{\frac{n}{2}} x_{2 i}>\sum_{i=1}^{\frac{n}{2}} x_{2 i-1}\right\}
$$

and

$$
\mathcal{S}_{1}^{n}=\left\{x^{n} \in\{0,1\}^{n}: \sum_{i=1}^{\frac{n}{2}} x_{2 i}<\sum_{i=1}^{\frac{n}{2}} x_{2 i-1}\right\}
$$

Clearly $\left|\mathcal{S}_{0}^{n}\right|=\left|\mathcal{S}_{1}^{n}\right|$,

$$
\left|\{0,1\}^{n} \backslash\left(\mathcal{S}_{0}^{n} \cup \mathcal{S}_{1}^{n}\right)\right|=\sum_{i=0}^{\frac{n}{2}}\binom{\frac{n}{2}}{i}^{2}=\binom{n}{\frac{n}{2}}
$$

Hence $\left|\mathcal{S}_{0}^{n}\right|=\frac{2^{n}-\left(\frac{n}{2}\right)}{2}$, and $\lim _{n \rightarrow \infty} \frac{\left|\mathcal{S}_{n}^{n}\right|}{2^{n}}=\frac{1}{2}$.
It is easely seen that $\mathcal{S}_{0}^{n} \in \mathcal{I}\left(\mathcal{B}^{n}\right)$ and we set $\mathcal{A}_{n}=\mathcal{S}_{0}^{n}$.

4 Computer Results

1.) For $2 \leq n \leq 6$ we have calculated the independent number $(f(n))$ of the binary deBruijn network of order n via a computer program. A maximal independent set $\mathcal{S}=\left\{1 \leq a_{1}<\ldots<a_{s}<2^{n}\right\}$ is greedy constructable as follows:
If n is odd we take $a_{1}=1$ and $a_{1}=2$ otherwise. Now if a_{i} is choosen in a step we take in the next one a_{i+1} as the smallest possible number greater than a_{i}.
From this constructions we obtain that
$f(n)=\frac{4}{9} 2^{n}-\frac{4}{9}-\frac{n}{6}$ and $f(n)=2 f(n-1)+\frac{n}{2}$, if n is even and $f(n)=\frac{4}{9} 2^{n}-\frac{5}{9}-\frac{n}{3}$ and $f(n)=2 f(n-1)$, if n is odd.
For even n the set $|\mathcal{S}|<\left|\mathcal{S}_{0}^{n}\right|$ (see Theorem 3) for $n=8$ and for all $n \geq 52$.
2.) In [4] one finds an example of a complete fix - free code with the codeword lengths

$$
2,3,3,3,3,4,4,4,4
$$

We know from (i) of Proposition 1 that it is not possible to choose 00 or 11 as codeword of length 2 for this code.
This result suggests the question: "Suppose there is a fix - free code with codeword lengths $\ell_{1} \leq \ldots \leq \ell_{t}, l_{1}>1$. Is it possible to construct a fix-free code with these length, where the codewords of smallest length are not the all-zero vector and the all-one vector ?"
The following fix - free code $\{11,000,100,010,001,10110\}$ with lengths $2,3,3,3,3,5$ shows that the answer is negative. Indeed, assume that the codeword of length 2 is 01 . There are exactly 4 codewords of length 3 which are prefix - and suffix free with $01: 000,100,110,111$.
Suppose there is a codeword abcde of length 5 . Let us show that it is impossible.

Necessary $d=1$, because in case $d=0$, we have $e=0$, for otherwise, the codeword 01 would be suffix. However, 00 is excluded, because otherwise 000 or 100 would be suffix.
$c=0, \quad$ because for $c=1$ we get 110 or 111 as suffix.
$b=1$, because for $b=0$ we get 000 or 100 as prefix.
Finally $a \neq 0, \quad$ because for $a=0$ we get 01 as prefix. and $a \neq 1, \quad$ because for $a=1$ we get 110 as prefix.
This is a contradiction.
3.) We present an example of a complete binary fix - free code for each possible length-distribution \mathcal{L} with $|\mathcal{L}| \leq 29$:

```
0 1
```

2: 2 x 1

$$
\begin{array}{llll}
01 & 00 & 10 & 11
\end{array}
$$

4: 4x2

$$
\begin{array}{llllllll}
000 & 001 & 010 & 011 & 100 & 101 & 110 & 111
\end{array}
$$

$8: 8 \times 3$

01	000	100	110	111

$0010 \quad 1010 \quad 0011 \quad 1011$

9: $1 \times 2+4 \times 3+4 \times 4$

0000	1000	0100	1100	0010	1010	0110	1110
0001	1001	0101	1101	0011	1011	0111	1111

16: 16×4

001	0000	1000	0100	1100	1010	0110	1110
0101	1101	1011	0111	1111	00010	10010	00011
10011							
$17: 1 \times$							$\times 4+4 \times 5$

001	110	0000	1000	0100	1010	0101	1011
0111	1111	01100	11100	00010	10010	01101	11101
00011	10011						

18: $2 \times 3+8 \times 4+8 \times 5$

001	100	0000	1010	0110	1110	0101	1101
1011	0111	1111	01000	11000	00010	00011	010010
110010	010011	110011					

001	100	101	0000	0110	1110	0111	1111
01000	11000	00010	01010	11010	00011	01011	11011
010010	110010	010011	110011				

$20: 3 \times 3+5 \times 4+8 \times 5+4 \times 6$

001	010	011	0000	1000	1100	1110	1101
1111	10100	10110	10101	10111	000100	100100	000110
100110	000101	100101	000111	100111			
$21: 3 \times$	$3+6 \times 4+4 \times 5+8 \times 6$						

```
01 0000
00010}100010 11010 00110 10110 00011 10011 11011
00111 10111 001010 101010 001011 101011
    22: 1 x 2 + 5 x 4 + 12 x 5 + 4 x 6
```

001	100	110	0000	1010	0101	1011	0111
1111	01000	00010	01101	11101	00011	011000	111000

$010010 \quad 0100110110010 \quad 1110010 \quad 0110011 \quad 1110011$
$22: 3 \times 3+6 \times 4+5 \times 5+4 \times 6+4 \times 7$
$\begin{array}{llllllll}01 & 0000 & 1000 & 1100 & 1110 & 0011 & 1111 & 00100\end{array}$
$\begin{array}{llllllll}10100 & 00010 & 10010 & 11010 & 10110 & 11011 & 10111 & 001010\end{array}$
$101010000110 \quad 100110 \quad 001011 \quad 101011 \quad 000111 \quad 100111$
$23: 1 \times 2+6 \times 4+8 \times 5+8 \times 6$

01	0000	1000	1100	0010	1110	1111	10100
11010	00110	10110	00011	10011	11011	00111	10111
000100	100100	101010	101011	0001010	1001010	0001011	100101

 \(24: 1 \times 2+6 \times 4+9 \times 5+4 \times 6+4 \times 7\)
 $\begin{array}{llllllll}001 & 100 & 110 & 101 & 0000 & 0111 & 1111 & 01000\end{array}$
$\begin{array}{lllllllll}00010 & 01010 & 00011 & 01011 & 011000 & 111000 & 010010 & 011010\end{array}$
$1110100100110011011 \quad 11101100110010 \quad 111001000110011 \quad 1110011$
$24: 4 \times 3+3 \times 4+5 \times 5+8 \times 6+4 \times 7$
$\begin{array}{llllllll}01 & 0000 & 1000 & 1100 & 0010 & 1110 & 0011 & 1111\end{array}$
$\begin{array}{lllllllll}10100 & 11010 & 10110 & 11011 & 10111 & 000100 & 100100 & 101010\end{array}$
$000110100110 \quad 101011 \quad 000111 \quad 100111 \quad 0001010 \quad 1001010 \quad 0001011$
1001011
$25: 1 \times 2+7 \times 4+5 \times 5+8 \times 6+4 \times 7$
$\begin{array}{llllllll}01 & 100 & 0000 & 1110 & 1111 & 11000 & 00010 & 11010\end{array}$
$\begin{array}{llllllll}00110 & 10110 & 00011 & 11011 & 00111 & 10111 & 001000 & 101000\end{array}$
$110010 \quad 001010 \quad 101010 \quad 110011 \quad 001011 \quad 101011 \quad 0010010 \quad 1010010$
00100111010011
$26: 1 \times 2+1 \times 3+3 \times 4+9 \times 5+8 \times 6+4 \times 7$

10	0000	0100	0001	1101	0011	0111	1111
11000	01100	11100	11001	00101	01011	001000	001001
010101	011011	111011	0101000	0101001	0110101	1110101	01101000
11101000	01101001	11101001					

 \(27: 1 \times 2+7 \times 4+6 \times 5+5 \times 6+4 \times 7+4 \times 8\)
 | 10 | 001 | 0000 | 1101 | 0111 | 1111 | 01000 | 11000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 01100 | 11100 | 00011 | 01011 | 000100 | 010100 | 000101 | 010101 |
| 010011 | 110011 | 011011 | 111011 | 0100100 | 1100100 | 0110100 | 1110100 |
| 0100101 | 1100101 | 0110101 | 1110101 | | | | |
| $28:$ | $1 \times 2+1 \times 3+4 \times 5+6 \times 5+8 \times 6+8 \times 7$ | | | | | | |

10	0000	0100	1100	0001	1101	0011	0111
1111	00101	01011	001000	011000	111000	001001	011001
111001	010101	011011	111011	0101000	0101001	0110101	1110101
01101000	11101000	01101001	1110100				
$28: 1 \times 2+8 \times 4+2 \times 5+9 \times 6+4 \times 7+4 \times 8$							
10	001	0000	1100	0111	1111	01000	01101
11101	00011	01011	11011	011000	111000	000100	010100
110100	000101	010101	110101	010011	0100100	0100101	0110011
1110011	01100100	11100100	01100101	11100101			
$29: 1 \times 2+1 \times 3+4 \times 4+6 \times 5+9 \times 6+4 \times 7+4 \times 8$							

References

[1] R. Ahlswede and I. Wegener, Suchprobleme, Teubner, Stuttgart, 1979.
[2] R.B. Ash, Information theory, Interscience Tracts in Pure and Applied Mathematics 19, Interscience, New York, 1965.
[3] Jean Berstel and Dominique Perrin, Theory of codes, Pure and Applied Mathematics, 1985.
[4] David Gillman and Ronald L. Rivest, Complete variable - length fix - free - codes, Designs, Codes and Cryptography, 5, 109-114, 1995. 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.
[5] C.E. Shannon, Prediction and entropy of printed English, Bell Systems Technical Journal 30, 50-64, 1951.

[^0]: *email:bernhard@mathematik.uni-bielefeld.de
 ${ }^{\dagger}$ email:1k@mathematik.uni-bielefeld.de

