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1. Introduction

There seems to be an ever increasing number of sometimes fascinating combinatorial
extremal problems. In particular Computer Science is a rich source of such problems.
Our observation is that several of the known basic problems and many new ones
can be formulated as parts of a transparent scheme of problems. It gives a certain
orientation in a substantial part of known combinatorial results and at the same time
it gives directions for new investigations (see section 9). Our present understanding
of the subject grew with our recent work, especially, the papers [17], [9], [18], [20].
We focus here on the most important poset in combinatorics, the power set P(Ω) of
a finite set Ω = {1, 2, . . . , n} , and we study problems involving the following binary
relations between its elements:

A ⊃⊂ B (comparable, that is, A ⊂ B or A ⊃ B),

A ⊃|⊂ B (incomparable), A ∩ B = ∅ (disjoint), (1.1)

A ∩ B 6= ∅ (intersecting).

The following problem, due to and solved by Sperner [12], has often been cited as a
prototype of an extremal problem.

A ⊂ P(Ω) is an antichain, if its members are incomparable. What is the maximal
cardinality of antichains? The problem is based on the relation “incomparable”.

If this relation is replaced by “intersecting” and we also impose the constraint A ⊂
Pk(Ω) ,

(

Ω
k

)

, then we arrive at the Erdös/Ko/Rado problem [13]. Analogous problems
for the relations “comparable” or “disjoint” turn out to be trivial.

Furthermore, in the sequel we speak of the unresricted case, if P(Ω) is the ground
set, and of the restricted case, if Pk(Ω) is the ground set.

A multitude of problems arises, if we go one step higher, that is, from sets to families
of sets etc.

To fix ideas let us recall the notion of a cloud–antichain from [9].

{Ai : 1 ≤ i ≤ N} with disjoint non–empty Ai ⊂ P(Ω) is a cloud–antichain (CAC),
if for all i 6= j and all Ai ∈ Ai , Aj ∈ Aj

Ai ⊃|⊂ Aj . (1.2)

Here not only the length N but also |Ai| (1 ≤ i ≤ N) are parameters of interest.
The case max

i
|Ai| = 1 is Sperner’s case.

Notice that for every (i, j) we require (1.2) for every Ai ∈ Ai and every Aj ∈ Aj .
We therefore refer to this problem as being of type (∀,∀) .

A weaker requirement is that there exists an Ai ∈ Ai such that for all Aj ∈ Aj (1.2)
holds. It is called of type (∃,∀) . An even weaker condition is that for all Ai ∈ Ai

there exists an Aj ∈ Aj with the property (1.2). We speak of type (∀,∃) . Finally,
the weakest condition is the type (∃,∃) , where again for every (i, j) there exists
Ai ∈ Ai and Aj ∈ Aj with (1.2).
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Analogously one can define families of clouds for the four types and for all the relations
in (1.1). Also one may or may not require disjointness of the clouds. Among the
extremal problems one might consider we emphasize two: For N = 2 , what are the
extremal pairs (|A1|, |A2|) ?

Disregarding the values of the |Ai|’s what is the maximal length N for the various
situations above?

The first question is adressed in the papers [9], [28] and the second question is analysed
in [29] for the relation “incomparable”.

In [20] we studied the second question for the relations “disjoint” and “intersecting”
in the restricted case for k = 2 .

The main topic of this paper are exact and asymptotic results for the restricted and
the unrestricted case for the relations “comparable”, “disjoint” and “intersecting”.

Key tools are results on related graph coloring problems (Theorem 1 in Section 2 and
Theorem 2 in Section 3).

Our results on families of “comparable” clouds, of clouds with the “disjoint” relation
and of clouds with the “intersecting” relation appear in Sections 4, 5, and 6.

The following chart is for the orientation of the reader about the present state of our
knowledge about the various problems. Here we make the Conventions:

T = trivial, S = solved exactly, A = asymptotic solution.

Previously known results are referred to by articles in our references. Further bounds
and conjectures are stated in Section 8.

Whereas here we consider only the canonical cases of disjoint clouds, in [29] also cases
of distinct clouds were analysed.

∀∀ ∃∀ ∀∃ ∃∃ ∀∀ ∃∀ ∀∃ ∃∃

incom- S A S S T T T T
parable [12]

compa- T ? A A T T T T
rable [31]

disjoint T ? A A T A(k=2) A A
[8]

inters. S S S S S S(k=2) A A
[13] [20] S(k=2)

[20]

unrestricted restricted
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In Section 8 we state 10 problems and 9 conjectures about their (complete or partial)
solutions.

In the last section of the paper a whole program of higher level extremal problems
is sketched. Obvious extensions of our work arise for instance if the ground space is
replaced by other lattices and other relations are incorporated.

As far as actual results go we draw attention to, what we call, excess problems.
Their study was initiated in [27]. We report in Section 7 on exact results and also on
asymptotic results which go considerably beyond the earlier work.

2. A graph coloring problem of type (∃,∃)

The family of sets P(Ω) or Pk(Ω) endowed with pairwise relations such as “intersect”,
“disjoint”, “comparable” etc. can be viewed as a graph G = (V, E) with V = P(Ω)
or V = Pk(Ω) , where for instance in case of “disjoint” the relation A ∩ B = ∅ is
represented by an edge.

The study of cloud families of the (∃,∃)–type naturally leads to the following
coloring concept. For any graph G = (V, E) a coloring of type (∃,∃) is a map

f : V → Mf = {1, 2, . . . ,mf} (2.1)

such that for any two colors, say, i, j ∈ Mf , an edge (a, b) ∈ E exists with f(a) = i
and f(b) = j .

We are interested in the quantity m(G) = max{mf : f is (∃,∃)–coloring of G} .

Since obviously
(

m(G)
2

)

≤ |E| , we conclude that

m(G) ≤
(

2|E| + 1

4

)
1

2 +
1

2
≤

√
2|E| 12 + 1. (2.2)

We derive now a lower bound on m(G) for any graph G = (V, E) by the probabilistic
method. We set

D = max
v∈V

deg(v) and N = 2|E|, (2.3)

and we consider the set E∗ =
{

(a, b), (b, a) : {a, b} ∈ E
}

= {e1, e2, . . . , eN} of
directed edges. We say that the (ordered) pair (a, b) is colored by the (ordered) pair
(i, j) , if f(a) = i and f(b) = j .

Let now F1, . . . , FM , where {1, 2, . . . ,M} = V , be independent, identically distributed
random variables assuming values in {1, 2, . . . ,m} with equal probabilities. Then
F = (F1, . . . , FM ) defines a random coloring of the vertices. To analyse its performance
we consider the events

Eij = {no edge in E∗ is colored by (i, j)},

whose probability prob(Eij) is by symmetry independent of (i, j) , and the random
variable

S =
∣

∣

{

(i, j) : no edge in E∗ is colored by (i, j)
}∣

∣.
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Clearly,

E S =
∑

(i,j)

Pr(Eij) ≤ m2Pr(Eij), (2.4)

and if E S < 1 , then, with positive probability, every pair of colors occurs and thus
m(G) ≥ m .

We derive now conditions under which E S < 1 holds. For this we define first

E
(t)
ij =

{

et is not colored by (i, j)
}

, Et
ij =

{

e1, e2, . . . , et are not colored by (i, j)
}

=

t
⋃

s=1

E
(s)
ij ,

and write

Pr(Eij) = Pr(E
(1)
ij )Pr(E

(2)
ij |E1

ij) . . . P r(E
(n)
ij |En−1

ij ) . . . P r(E
(N)
ij |EN−1

ij ). (2.5)

We now estimate Pr(E
(n)
ij |En−1

ij ) from above.

With E
(n)

ij = {en is colored by (i, j)} we write

Pr(E
(n)
ij |En−1

ij ) = 1 − Pr(E
(n)

ij |En−1
ij ) = 1 −

Pr(E
(n)

ij ∩ En−1
ij )

Pr(En−1
ij )

.

First we estimate Pr(E
(n)

ij ∩ En−1
ij ) from below.

Write et = (at, bt) , 1 ≤ t ≤ N , and set

V ′
n = {at : 1 ≤ t < n, bt = bn},V ′′

n = {bt : 1 ≤ t < n, at = an}.

In the event E
(n)

ij ∩ En−1
ij we must have Fa 6= i , Fb 6= j for all a ∈ V ′

n and all

b ∈ V ′′
n . Consider the edges

E∗
n =

{

et : 1 ≤ t ≤ n − 1, {at, bt} ∩
(

V ′
n ∪ V ′′

n ∪ {an, bn}
)

= ∅
}

and the events
E∗

ij =
{

no et in E∗
n is colored by (i, j)

}

.

Then we have

Pr
(

E
(n)

ij ∩ En−1
ij

)

= Pr
(

En−1
ij |E(n)

ij

)

Pr
(

E
(n)

ij

)

= Pr
(

En−1
ij |E(n)

ij

) 1

m2
(2.6)

Now En−1
ij clearly occurs, if all vertices in V ′

n ∪ V ′′
n are not colored by either i

or j and if E∗
ij occurs. The last two events are, also conditionally on E

(n−1)

ij ,

independent and have probabilities
(

1 − 2
m

)|V′

n∪V′′

n |
and Pr

(

E∗
ij

)

, resp. Therefore
we conclude from (2.6)

Pr
(

E
n−1

ij ∩ En−1
ij

)

≥ 1

m2

(

1 − 2

m

)|V′

n∪V′′

n | · Pr
(

E∗
ij

)

. (2.7)
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Secondly we have obviously

Pr
(

En−1
ij

)

≤ Pr
(

E∗
ij

)

. (2.8)

The two inequalities imply Pr
(

E
(n)
ij |En−1

ij

)

≤ 1 − 1
m2

(

1 − 2
m

)|V′

n∪V′′

n | ≤ 1 − 1
m2

(

1 −
2
m

)2D
and thus by (2.5)

Pr(Eij) ≤
(

1 − 1

m2
(1 − 2

m
)2D

)N
.

Together with (2.4) this implies

E S ≤ m2
(

1 − 1

m2
(1 − 2

m
)2D

)N
.

We rewrite the right hand side expression and get

E S ≤ m2 exp
{

N log
(

1 − 1

m2
(1 − 2

m
)2D

)}

.

Since log(1 − x) ≤ −x for 0 ≤ x < 1 we continue with

E S ≤ m2 exp
{

− N

m2
(1 − 2

m
)2D

}

. (2.9)

There are general choices of the parameters N,D,m for which (2.9) implies the
desired E S < 1 .

For our purposes we can choose always m ≥ D . Then by definition of the exponential
function

E S ≤ m2 exp
{

− N

m2
e−4

}

and we get the sufficient condition

2 log m <
N

m2
e−4. (2.10)

If now m =
(

N
e4 log N

)
1

2 , then 2 log m = log N
e4 log N

< log N = N
m2 e−4 and the

condition (2.10) holds.

We summarize our findings.

Theorem 1. For any graph G = (V, E) we have with N = 2|E|

(a) m(G) ≤ N
1

2 + 1 .

Moreover, if

D = max
x∈V

deg(x) ≤
(

N

e4 log N

)
1

2

, (2.11)

then

(b) m(G) ≥
(

N
e4 log N

)
1

2

.

6



3. A graph coloring problem of type (∀,∃)

The study of cloud families of the (∀,∃)–type leads to the following coloring concept
for any graph G = (V, E) .

A coloring of type (∀,∃) is a map

g : V → Mg = {1, 2, . . . ,mg}
such that for any two colors, say, i, j ∈ Mg and for any a ∈ V with g(a) = i there
is an edge {a, b} ∈ E with g(b) = j .

We are interested in

m∗(G) = max{mg : g is (∀,∃)–coloring of G}.

Theorem 2. For any graph G = (V, E) we have

(a)
(

log |V|
)−1

(d + 1) ≤ m∗(G) ≤ d + 1 , where d = minx∈V deg(x) .

(b) m∗′

(G) , max
∣

∣

{

m∗(G′) : G′ is subgraph of G
}∣

∣ ≤ D + 1 .

In [18] we used a coloring concept for hypergraphs (V,F) . It is said to carry m
colors, if there is a vertex coloring with m colors such that all colors occur in every
edge F ∈ F . Let m(V,F) be the maximal number of colors carried by (V,F) .

Coloring Lemma. AZ([18]) For any hypergraph (V,F)

m(V,F) ≥
⌊

(log |F|)−1 min
F∈F

|F |
⌋

.

Proof of Theorem 2:

Associate with G = (V, E) the hypergraph H(G) = (V,F) , where F =
{

N (x) :

x ∈ V
}

and N (x) =
{

y ∈ V : {x, y} ∈ E
}

∪ {x} .

Clearly,
m(V,F) = m∗(G) and min

F∈F
|F | = d + 1.

Since obviously m∗(G) ≤ d + 1 and a fortiori (b) holds, Theorem 2 follows with
Coloring Lemma AZ.

Remark:

Finally we mention a notion corresponding to (∃,∀)–type families.

A coloring of type (∃,∀) is a map

h : V → Mh = {1, 2, . . . ,mh}
such that for any two colors i, j ∈ Mh an a ∈ V exists with h(a) = i and h(b) = j
for all b ∈ N (a) , b 6= a . The quantity

m∗∗(G) = max
{

mh : h is (∃,∀)–coloring of G
}

is hard to analyse in general.
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4. Asymptotic results via graph coloring of type (∃,∃)

The following Theorems are all obtained as consequences of Theorem 1. We solely
have to estimate D and N in the graphs associated with the various configurations.

For the maximal cardinality of families with the relations “comparable”, “disjoint”,
and “intersecting” we choose the letters C,D , and I , respectively. The types of
problems such as (∀,∀) etc. appear as an argument and the cardinality of Ω appears
as an index n . In addition, in the restricted case a k appears in the argument. It
indicates that the ground set is

(

Ω
k

)

.

We consider now Cn(∃,∃) and Dn(∃,∃) . In(·, ·) is determined exactly in all cases
in Section 6. Then we go to the restricted cases Dn(∃,∃, k) and In(∃,∃, k) . Trivially,
Cn(∃,∃, k) = 1 .

Theorem 3. For n sufficently large

(a) (n2 · e4 · log 3)−
1

2 (2 · 3n)
1

2 ≤ Cn(∃,∃) ≤ (2 · 3n)
1

2 (for all n ).

(b) lim
n→∞

1

n
log Cn(∃,∃) =

1

2
log 3 .

Proof: Define G = (V, E) as follows:

V = P(Ω), E =
{

{A,B} : A,B ∈ V, A 6= B,A ⊂ B
}

. (4.1)

Then N =
∑n

k=0

(

n
k

)

(2n−k − 1 + 2k − 1) = 2 · 3n − 2 · 2n and by (a) in Theorem 1

Cn(∃,∃) = m′(G) ≤ (2 · 3n)
1

2 . (4.2)

However, since D = max0≤k≤n(2n−k−1+2k−1) = 2n−1 , condition (2.11) does not
hold and (b) is not directly applicable. We circumvent this difficulty by restricting
the vertex set to Vk,ℓ = Pk(Ω) ∪ Pk+ℓ(Ω) for suitable k and ℓ , and by choosing
the edge set Ek,ℓ induced by E on Vk,ℓ . For the graph Gk,ℓ = (Vk,ℓ, Ek,ℓ) we have

N = 2

(

n

k

)(

n − k

ℓ

)

and D = max

((

n − k

ℓ

)

,

(

k + ℓ

k

))

. (4.3)

Not bothering about integrality we can choose k = ℓ = 1
3n and obtain

N = 2 ·
(

n
1
3n

)( 2
3n
1
3n

)

= 2
n!

(

( 1
3n)!

)3 ≥ 2

n
3n, (4.4)

D =

( 2
3n
1
3n

)

≤ 2
2

3
n. (4.5)

Since 2
2

3 ≤ 3
1

2 , (2.11) holds for n large enough and we get from (b) in Theorem 1

Cn(∃,∃) ≥ m(Gℓ,k) ≥
(

2 · 3n

n · e4 · n log 3

)
1

2

.

Thus (a) holds and a fortiori also (b).
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Theorem 4.

(a) (n2e4 · log 3)−
1

2 3
n
2 (for n large) ≤ Dn(∃,∃) ≤ 3

n
2 (for all n )

(b) lim
n→∞

1

n
log Dn(∃,∃) =

1

2
log 3 .

Proof: Define V = P(Ω) , E =
{

{A,B} : A,B ∈ V , A 6= B , A ∩ B = ∅
}

and
notice that

N = 2|E| =
n

∑

k=0

(

n

k

)

2n−k = 3n. (4.6)

The upper bound follows with Theorem 1 (a).

To get the lower bound with Theorem 1 (b) we choose the graph Gk =
(

Pk(Ω), Ek

)

,
where Ek is induced by E on Pk(Ω) .

Furthermore, we choose k = 1
3n and obtain

N =

(

n
1
3n

)( 2
3n
1
3n

)

>
1

n
3n, (4.7)

D =

( 2
3n
1
3n

)

≤ 2
2

3
n. (4.8)

Compairing these quantities with those in the proof of Theorem 3 we notice that only
N is decreased by a factor 2 and thus the result holds.

Theorem 5. For k < n − k and
(

n
k

)

>
(

n−k
k

)

e4 · n log 3

(a) (n e4 log 3)−
1

2

[(

n
k

)(

n−k
k

)]
1

2 ≤ Dn(∃,∃, k) ≤
[(

n
k

)(

n−k
k

)]
1

2 (for all n )

(b) lim
n→∞

1

n
log Dn(∃,∃, εn) =

1

2

(

h(ε) + (1 − ε)h
( ε

1 − ε

))

.

Proof: For the “canonical” graph (Pk, Ek) N =
(

n
k

)(

n−k
k

)

and thus the upper

bound follows in the usual way. Since D =
(

n−k
k

)

and N ≤ 3n we conclude with

Theorem 1 that Dn(∃,∃, k) ≥
(

N
e4 log N

)
1

2 ≥ (n e4 log 3)−
1

2

[(

n
k

)(

n−k
k

)]
1

2 provided

that (2.11) holds. But that is guaranteed by our assumption. An elementary calculation
gives also (b).

Theorem 6.

(a) log−1
(

n
k

)[(

n
k

)

−
(

n−k
k

)]

≤ In(∃,∃, k) ≤
[(

n
k

)((

n
k

)

−
(

n−k
k

))]
1

2

(b) lim
n→∞

1

n
log In(∃,∃, εn) = h(ε) .
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Proof: In the canonical graph

N =

(

n

k

)((

n

k

)

−
(

n − k

k

)

− 1

)

, D =

(

n

k

)

−
(

n − k

k

)

− 1.

Condition (2.11) does not hold!

Since In(∃,∃, k) ≥ In(∀,∃, k) we get the lower bound in (a) from Theorem 8 in the
next Section.

5. Asymptotic results via graph coloring of type (∀,∃)

Theorem 7.

(a) max
(

(k log n)−1, n−1
)(

n−k
k

)

≤ Dn(∀,∃, k) ≤
(

n−k
k

)

+ 1

(b) limn→∞
1
n

log Dn(∀,∃, εn) = (1 − ε)h
(

ε
1−ε

)

.

Proof: In the associated graph we have d = minx∈Pk
deg(x) = D =

(

n−k
k

)

. Since
Dn(∀,∃, k) ≥ m∗(Gk) , Theorem 2 implies

Dn(∀,∃, k) ≥ max
(

(k log n)−1, n−1
)

(

n − k

k

)

.

From (b) in Theorem 2 we conclude that

Dn(∀,∃, k) ≤ D + 1 =

(

n − k

k

)

+ 1.

Theorem 8.

(a) log−1
(

n
k

)[(

n
k

)

−
(

n−k
k

)]

≤ In(∀,∃, k) ≤
(

n
k

)

−
(

n−k
k

)

(b) limn→∞
1
n
In(∀,∃, εn) = h(ε) .

Proof: In the associated graph we have d = D =
(

n
k

)

−
(

n−k
k

)

− 1 and again the
results follow from Theorem 2.
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6. Exact solutions for intersecting systems

Recall the definitions of Section 4. The following equations are easy to derive.

Theorem 9.

(i) In(∀,∀) = 2n−1

(ii) In(∃,∀) = 2n−1

(iii) In(∀,∃) = 2n−1

(iv) In(∃,∃) = 2n−1 + 2n−2 − 1

Proof of (i), (ii), and (iii):

Consider the family of clouds
{

{A} : x ∈ A
}

for some fixed x ∈ Ω . It has the

(∀,∀, I)–property . Therefore In(∀,∃) ≥ In(∃,∀) ≥ In(∀,∀) ≥ 2n−1 . Conversely,

suppose that for a family of clouds (Ai)
In(∀,∃)
i=1 for some j |Aj | = 1 , i.e. Aj =

{Aj} . Then Ac
j cannot occur in any other cloud, so we may as well count it for

Aj . Thus all clouds can be counted with at least two elements and In(∀,∃) ≤ 2n−1 .

Proof of (iv): Observe that the empty set can be ignored, because it does not add
anything to any cloud. Also, by the foregoing arguments at most 2n−1 clouds can
have exactly one element.

Therefore

In(∃,∃) ≤ 2n−1 +

⌊

2n−1 − 1

2

⌋

= 2n−1 + 2n−2 − 1.

On the other hand the following construction shows that the upper bound is tight.

In case n = 2m+1 use the elements in
⋃n

k=m+1 Pk as the single members of clouds.

The elements in
⋃m

k=1 Pk can be paired to clouds, so that in every cloud {A,A′}
we have |A ∪ A′| ≥ m + 1 and exactly one element is left over. Since 2(m + 1) > n
we have the (∃,∃, I)–property . Notice that |⋃n

k=m+1 Pk| + 1
2

(

|⋃m
k=1 Pk| − 1

)

=

2n−1 + 1
2 (2n−1 − 2) = 2n−1 + 2n−2 − 1 . In case n = 2m choose the singletons from

⋃n
k=m+1 Pk and from Pm , but without choosing complementary sets. Pair then the

remaining sets such that again |A ∪ A′| ≥ m + 1 .

7. Excess problems

A prototype of an excess problem is the determination of

max
A⊂P(Ωn),|A|=N

∣

∣

{

(A,B) : A,B ∈ A with |A△B| = 1
}∣

∣. (7.1)

It was conjectured by Harper [23] and proved by Lindsey [30] that generalized
cylinders are optimal.
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Another excess problem is the determination of

I1(n,N, k) = max
A⊂Pk(Ωn),|A|=N

∣

∣I(A,A)
∣

∣, (7.2)

where here and later we use the notation

I(A,B) =
∣

∣

{

(A,B) : A ∈ A, B ∈ B, A ∩ B 6= ∅
}∣

∣, (7.3)

D(A,B) =
∣

∣

{

(A,B) : A ∈ A, B ∈ B, A ∩ B = ∅
}∣

∣. (7.4)

I1(n,N, 2) was characterized by Ahlswede and Katona [27]. The quantity

I1(n,N) = max
A⊂P(Ωn),|A|=N

∣

∣I(A,A)
∣

∣ (7.5)

is assumed for a certain quasi–sphere (Ahlswede [26]).

For A ⊂ Pk(Ωn) we use the complement

Ack = Pk(Ωn) r A (7.6)

and analyse here the quantities

I(n, k) = max
A⊂Pk(Ωn)

∣

∣I(A,Ack)
∣

∣, (7.7)

D(n, k) = max
A⊂Pk(Ωn)

∣

∣D(A,Ack)
∣

∣. (7.8)

Since
∣

∣I(A,Ack)
∣

∣ +
∣

∣D(A,Ack)
∣

∣ = |A|
(

(

n

k

)

− |A|
)

there are relations between these quantities. However, they are not obvious, because
|A| is not fixed. Our first result is of asymptotic nature.

Theorem 10. For fixed k ≥ 2

lim
n→∞

1

n2k−1
I(n, k) =

1

4

(

1

(k − 1)!

)2

.

Next we give exact answers for k = 2 .

Theorem 11. For n = 4m + ℓ > 2

I(n, 2) =

{

n
⌊

n−1
2

⌋ ⌈

n−1
2

⌉

; ℓ = 0, 1, 2

n
⌊

n−1
2

⌋ ⌈

n−1
2

⌉

− 1; ℓ = 3.

12



Theorem 12.

D(n, 2) =

(

a∗

2

)

(n − a∗)(n + a∗ − 5)

2
,

where a∗ is the largest integer a with

(

a − 2

2

)

≤ 1

2

(

n − 2

2

)

.

Proof of Thoerem 10:

We establish first auxiliary results concerning approximations of graphs by bipartite
graphs.

For a graph G = (V, E) and a vertex coloring (or bipartition) ϕ : V → {0, 1} let
L(G,ϕ) be the number of edges in E connecting vertices differently coloured under
ϕ . We study L(G) = maxϕ L(G,ϕ) .

It is convenient to use the abbreviation α =
⌊

α
2

⌋ ⌈

α
2

⌉

.

Lemma 1. (Folklore) For any graph G = (V, E)

1

4

∑

v∈V
deg(v) ≤ L(G).

Proof: Let {Xv : v ∈ V} be independent, identically distributed random variables
with Prob(Xv = 0) = Prob(Xv = 1) = 1

2 .

Define

Yv,v′ =

{

Xv + Xv′ mod 2 , if (v, v′) ∈ E
0 , if (v, v′) /∈ E

and

Z =
1

2

∑

v

∑

v′

Yv,v′ =
∑

(v,v′)∈E
Yv,v′ , that is,

the number of edges with differently colored vertices in the “random coloring {Xv :
v ∈ V} ”. Therefore

L(G) ≥ E Z =
1

2

∑

v∈V

∑

v′:(v,v′)∈E
E Yv,v′

=
1

2

∑

v∈V

∑

v′:(v,v′)∈E

1

2
=

1

4

∑

v∈V
deg(v).

Now we derive an upper bound on L(G) . A family of graphs
{

Gj = (Vj , Ej) : j ∈ J
}

covers G = (V, E) , if V =
⋃

j∈J Vj and E ⊂ ⋃

j∈J Ej .

13



Now clearly

L(G) ≤
∑

j

L(Gj)

and since

L(Gj , ϕj) ≤ |ϕ−1
j (0)||ϕ−1

j (1)| ≤ |Vj |
2

,

we have

L(G) ≤
∑

j

|Vj |
2

.

We state this for the ease of reference.

Lemma 2. For any graph G = (V, E)

L(G) ≤ min
{Gj :j∈J} covers G

∑

j

⌈ |Vj |
2

⌉⌊ |Vj |
2

⌋

.

We show first that

limn→∞
1

n2k−1
I(n, k) ≥ 1

4

(

1

(k − 1)!

)2

. (7.9)

For this we define a graph G with vertex–set V = Pk(Ωn) and edge–set E =
{

(A,B) : A,B ∈ V, A ∩ B 6= ∅
}

. By Lemma 1

I(n, k) = L(G) ≥ 1

4

∑

v∈V

deg(v) =
1

4

(

n

k

)[(

n

k

)

−
(

n − k

k

)

− 1

]

=
1

4

(

n

k

)

[ 1

k!

[

n(n − 1) . . . (n − k + 1) − (n − k)(n − k − 1) · (n − 2k + 1)
]

− 1
]

=
1

4

(

n

k

)

1

k!

[(

nk − nk−1
k−1
∑

i=0

i
)

−
(

nk − nk−1
2k−1
∑

j=k

j
)

+ o(nk−1)
]

and therefore

1

n2k−1
I(n, k) ≥ 1

4

(

n
k

)

nk

nk−1

nk−1 · k!





2k−1
∑

j=k

j −
k−1
∑

i=0

i



 + o(1)

=
1

4

(

1

k!

)2 [

k(3k − 1)

2
− k(k − 1)

2

]

+ o(1)

=
1

4

(

1

k!

)2

k2 + o(1).
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Finally, define for all j ∈ Ωn Gj as the complete graph with the vertex set Vj =
{

A ⊂ Pk(Ωn) : j ∈ A
}

. Then {Gj : j = 1, 2, . . . , n} covers G and by Lemma 2,

applied with |Vj | =
(

n−1
k−1

)

,

I(n, k) = L(g) ≤ n

⌊

1

2

(

n − 1

k − 1

)⌋⌈

1

2

(

n − 1

k − 1

)⌉

(7.10)

and therefore

lim
n→∞

1

n2k−1
I(n, k) ≤ 1

4

(

1

(k − 1)!

)2

.

Proof of Theorem 11:

From (7.10) we conclude for k = 2

I(n, 2) ≤ n

⌊

n − 1

2

⌋⌈

n − 1

2

⌉

. (7.11)

In case n = 4m + 3 we can do slightly better. The bound (7.11) is based on the
inequality

I(n, 2) ≤
∑

j

∣

∣

{

(A,A′) : A,A′ ∈ P2(Ωn), A ∩ A′ = {j}
}∣

∣

= n

⌊

n − 1

2

⌋⌈

n − 1

2

⌉

.

However, when n = 2m + 3 , for any A there is at least one element of Ωn , say
j0 , with

∣

∣

{

A : A ∈ A, jo ∈ A
}∣

∣ 6= 2m + 1 =
n − 1

2
, (7.12)

because otherwise we would have

|A| =
1

2
n
(n − 1

2

)

=
1

2
(4m + 3)(2m + 1)

in contradiction to the fact that |A| is integral. Since
⌊

n−1
2

⌋

=
⌈

n−1
2

⌉

= 2m + 1 ,
we conclude that

I(4m + 3, 2) ≤ (n − 1)
(n − 1

2

)2
+

(n − 1

2
− 1

)(n − 1

2
+ 1

)

= n
(n − 1

2

)2 − 1 = (4m + 3)(2m + 1)2 − 1.

We turn now to the proof of achievability of the bound. We need a very special case
(k = 2) of a well–known result.
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General form of Baranyai’s Theorem.

Let n1, n2, . . . , nt be natural numbers such that
∑t

i=1 ni =
(

n
k

)

. Then Pk(Ωn) can
be partitioned into disjoint sets P1, . . . , Pt such that |Pi| = ni and each ℓ ∈ Ωn is
contained in exactly

⌈

ni·k
n

⌉

or
⌊

ni·k
n

⌋

members of Pi .

Choose t = 2 , k = 2 , n1 =
⌊

n(n−1)
4

⌋

, n2 =
⌈

n(n−1)
4

⌉

, A = P1 and Ac2 = P2 .

Now one verifies that

⌊

n(n−1)
4

⌋

· 2
n

=

{ n−1
2 , if n = 4m or 4m + 2

n−1
2 − 1

n
, if n = 4m + 2 or 4m + 3,

which implies
⌈

2|A|
n

⌉

=
⌈

n−1
2

⌉

,
⌊

2|A|
n

⌋

=
⌊

n−1
2

⌋

, where n 6= 4m + 3 .

Thus there are exactly
⌊

n−1
2

⌋ ⌈

n−1
2

⌉

pairs (A,B) ∈ A×Ac2 with A∩B = {j} for

all j ∈ Ωn . That means, I(n, 2) ≥ n
⌊

n−1
2

⌋ ⌈

n−1
2

⌉

when n ≡ 0, 1, 2 mod 4 . On the
other hand, when n = 4m+3 , again by Baranyai’s Theorem ([34]), one can partition

P2(Ωn) into {A,Ac2} such that |A| = (4m+3)(2m+1)−1
2 and there exists a j0 ∈ Ωn

with |{A ∈ A : j0 ∈ A}| = 2m =
⌊

2|A|
n

⌋

and |{A ∈ A : j ∈ A}| = 2m + 1 =
⌈

2|A|
n

⌉

for j ∈ Ωn r {j0} . Thus

I(4m + 3, 2) ≥ (4m + 2)(2m + 1)2 + 2m(2m + 2)

= (4m + 3)(2m + 1)2 − 1.

Proof of Theorem 12:

First we provide auxiliary results.

Lemma 3. If A,A′ ⊂ P2(Ωn) has the properties

(i) |A| = |A′| = N

(ii) I(A,A) ≥ I(A′,A′)

then

(iii) D(A,Ac2) ≥ D(A′,A′c2) .

Proof: Observe that

N · 2(n − 2) = I(A,A) + I(A,Ac2) = I(A′,A′) + I(A′,A′c2) (7.13)

and that

N ·
(

(

n

2

)

− N
)

= D(A,Ac2) + I(A,Ac2) = D(A′,A′c2) + I(A′,A′c2). (7.14)

Clearly, (ii), (7.13) and (7.14) imply (iii).
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As in [27] we define the quasi–complete graph CN
n with N edges and n vertices in

the following way: i and j are connected for i, j ≤ s(i 6= j) and s+1 is connected
with 1, 2, . . . , t , where s and t are determined by the unique representation

N =

(

s

2

)

+ t, 0 ≤ t < s.

Now notice that

D(n, 2) = max
A⊂P2(Ωn)

|D(A,Ac2)| = max
N

D(n,N, 2), (7.15)

where
D(n,N, 2) = max

A⊂P2(Ωn),|A|=N
|D(A,Ac2)|.

By Lemma 3 here the maximum is assumed for a family C assuming the maximum
in maxA:|A|=N |I(A,A)| and, since |D(A,Ac2)| = |D(Ac2 ,A)| , also Cc2 assumes

D(n,
(

n
2

)

−N, 2) = D(n,N, 2) . By Theorem 2 of [27] we can restrict the maximization
to quasi–complete graphs, that is, C is the family of edges of such a graph. With
the next Lemma it readily follows that the “quasi” can be dropped.

Lemma 4. Let C be the edge set of a quasi–complete graph CN
n with N =

(

s
2

)

+t ,
1 ≤ t ≤ s . Then with A = {s + 1, t + 1} , B = {s + 1, t} we have

∣

∣D
(

C∪{A}, (C∪{A})c
)∣

∣−
∣

∣D(C, Cc)
∣

∣ =
∣

∣D(C, Cc)
∣

∣−
∣

∣D
(

Cr{B}, (Cr{B})c
)∣

∣. (7.16)

Proof:

Since
∣

∣D(A,Ac)
∣

∣ = |A|
(

n−2
2

)

−
∣

∣D(A,A)
∣

∣ the equation (7.16) is equivalent to

∣

∣D
(

C ∪ {A}, C ∪ {A}
)∣

∣ −
∣

∣D(C, C)
∣

∣ =
∣

∣D(C, C)
∣

∣ −
∣

∣D
(

C r {B}, C r {B}
)∣

∣. (7.17)

This, however, is equivalent to

2
∣

∣D({A}, C)
∣

∣ = 2
∣

∣D({B}, C)
∣

∣,

which obviously is true by the definitions of C , A , and B .

Let now C be of maximal cardinality among the quasi–complete graphs with
∣

∣D(C, Cc)
∣

∣ =
D(n, 2) .

Then clearly
∣

∣D(C, Cc)
∣

∣ ≥
∣

∣D(C r {B}, (C r {B})c)
∣

∣

and (7.16) implies
∣

∣D
(

C ∪ {A}, (C ∪ {A}c
)∣

∣ ≥
∣

∣D(C, Cc)
∣

∣.
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We can assume therefore that C is a complete graph and therefore necessarily for
some s

|C| = N =

(

s

2

)

(7.18)

and
∣

∣D(C, Cc)
∣

∣ =
(

s
2

)[(

n−2
2

)

−
(

s−2
2

)]

.

Notice that for C ∈ C
∣

∣D({C}, C)
∣

∣ ≤ 1
2

(

n−2
2

)

, because otherwise D
(

C r {C}, (C r

{C})c
)

> D(C, Cc) . Therefore

∣

∣D(C, Cc)
∣

∣ ≥ |C|1
2

(

n − 2

n

)

=

(

s

2

)

1

2

(

n − 2

2

)

and hence 1
2

(

n−2
2

)

≥
(

s−2
2

)

. If now also
(

s−1
2

)

≤ 1
2

(

n−2
2

)

, then

(

s + 1

2

)[(

n − 2

2

)

−
(

s − 1

2

)]

−
(

s

2

)[(

n − 2

2

)

−
(

s − 2

2

)]

= s

(

n − 2

2

)

− (s + 1 − (s − 3))s(s − 1)(s − 2)

4

= s

(

n − 2

2

)

− 2s

(

s − 1

2

)

≥ 0

and this proves that the choice in Theorem 12 is best.

8. Open problems and conjectures

The reader can see at the chart in the Introduction where there are open problems.
Systems of type (∃,∀) are understood the least.

The famous Erdös/Ko/Rado Theorem says that

In(∀,∀, k) =

(

n − 1

k − 1

)

for n ≥ 2k. (8.1)

The determination of In(∃,∀, k) seems to be a formidable task. In [20] it was shown
that

In(∃,∀, 2) =

{

n − 1 for n ∈ N − {3, 5}
n for n = 3, 5.

(8.2)

In the range n ≥ 2k only for n = 5 we have In(∃,∀, 2) > In(∀,∀, 2) . There we
can partition P2(Ω5) into {P1, P2, . . . , P5} with two disjoint two element sets in
each Pi . The partition has the (∃,∀)–property and therefore I5(∃,∀, 2) ≥ 5 > 4 =
In(∀,∀, 2) .
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This construction can be generalized. By Baranyai’s Theorem (stated in Section 7)
for n = 2k + m , 0 ≤ m < 2 , we can let Pi(1 ≤ i ≤ M) have two disjoint k
element sets. Here M = 1

2

(

n
k

)

and

I2k+m(∃,∀, k) =
1

2

(

n

k

)

=
1

2

[(

n − 1

k

)

+

(

n − 1

k − 1

)]

≥
(

n − 1

k − 1

)

for m ≥ 0 and equality holds exactly if m = 0 .

Problem 1: Determine In(∃,∀, k) . We conjecture that In(∃,∀, k) =
(

n−1
k−1

)

for n ≥
3k . This would, if true, be a stronger statement than the Erdös/Ko/Rado Theorem
in the range specified.

For the (∀,∃, I)–problem Baranyai’s partition can be used even more generally for
all n = ℓ k + m, m < k . There obviously

In(∀,∃, k) ≥ 1

ℓ

(

n

k

)

. (8.3)

Notice that 1
ℓ

(

n
k

)

= 1
ℓ

n
k

(

n−1
k−1

)

≥
(

n−1
k−1

)

, with equality iff m = 0 .

We know from [20] that

In(∀,∃, 2) =

{

n for n ∈ N − {1, 2, 4}
n − 1 for n = 1, 2, 4.

In the range n ≥ 2k = 4 for n = 2ℓ + 1 the bound (8.3) gives In(∀,∃, 2) ≥ 2ℓ + 1 ;

so it is tight for odd n . However, for even n we get 1
ℓ

(

2ℓ
2

)

= 2ℓ − 1 = n − 1 ; so
here the bound is not tight.

Problem 2: Determine In(∀,∃, k) . We conjecture that limn→∞ In(∀,∃, 3)
(

n
2

)−1
=

5
4 . We also have the lower bound

In(∃,∃, k) ≥
(

n − 1

k − 1

)

+
1

ℓ

(

n − 1

k

)

. (8.4)

This bound is obtained by choosing as clouds Baranyai partitions of Pk(Ωn−1) and
in addition all clouds containing exactly one k–element subset of Ωn containing
the element n .

However, the result of [20]

In(∃,∃, 2) ∼ n
3

2 (8.5)

shows that for k = 2 the linear bound (8.4) is far from being optimal even in growth.

Problem 3: Determine In(∃,∃, k) .

We conjecture that limn→∞ In(∃,∃, k)
(

n
k−1

)−1
n− 1

2 = 1 .
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In [20] we proved that

lim
n→∞

Dn(∃,∃, 2)n−2 = lim
n→∞

Dn(∀,∃, 2)n−2 =
1

4

and that limn→∞ Dn(∃,∀, 2)n−2 = 1
6 .

Problems 4–6:1 Determine Dn(∃,∀, k) , Dn(∀,∃, k) , and Dn(∃,∃, k) . We conjecture

that limn→∞ Dn(∃,∀, k)
(

n
k

)−1
= 1

k+1 and that limn→∞ Dn(∀,∃, k)
(

n
k

)−1
= 1

2 .

We turn now to comparable systems. It is easy to show that Cn(∀,∀) = n + 1 .
Here maximal chains in P(Ωn) are optimal, that is, for any such chain every cloud
contains exactly one of its members.

Borden [31] proved that

lim
n→∞

1

n
log Cn(∀,∃) = log

√
5 + 1

2
. (8.6)

Problem 7: Determine Cn(∃,∀) .

There is an easier problem. Suppose that for any two clouds Ai,Aj the requirement
is that there is an Aij ∈ Ai with Aij ⊂ Aj for all Aj ∈ Aj or Aij ⊃ Aj for all
Aj ∈ Aj .

If C∗
n(∃,∀) denotes the maximal cardinality of such a system, then clearly

n + 1 ≤ C∗
n(∃,∀) ≤ Cn(∃,∀) (8.7)

and it is not hard to show that actually C∗
n(∃,∀) = n + 1 .

An important relation is that of Hamming distance δ for two words. We have shown
via Theorem 1 that, in obvious notation, for a constant c , any ε > 0 and n large

c

n
1

2
+ε

2
n
2

(

n

δ

)
1

2

≤ Hn(∀,∀, δ) ≤ 2
n
2

(

n

δ

)
1

2

. (8.8)

Problem 8: Determine Hn(∃,∃, k, δ) . We conjecture that Hn(∃,∃, 3, 2)n−2 = 1√
2

.

Problem 9: Determine Hn(∀,∃, k, δ) . We conjecture that Hn(∀,∃, 3, 2)n−1 = 2 .

1These conjectures have been proved by N. Alon and B. Sudakov in their paper “Disjoint Systems”,

which is to appear in Random Structures & Algorithms.
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9. Discussion of further directions

for higher level extremal problems

We mention now some directions of research. There are various combinations of these
directions, which are left to the imagination of the reader.

I. The binary relations in (1.1) of the Introduction can be replaced by basic
functions such as

h(A,B) = |A△B|, m(A,B) = |ArB|, u(A,B) = |A∪B| or i(A,B) = |A∧B|.
(9.1)

In particular the Hamming distance h can be studied under constraints such
as in case (∀,∀)

h(A,B) = δ for all A,B ∈ A (9.2)

(equidistant code) or

h(A,B) ≥ δ for all A,B ∈ A (9.3)

(code) or
h(A,B) ≤ δ for all A,B ∈ A (9.4)

(specified diameter).

We get a new chart by allowing other types of cloud families with binary
relations specified in (9.2) or (9.3) or (9.4).

Also, in the spirit of our first question in the Introduction one can fix N = 2
and look at extremal

(

|A1|, |A2|
)

. Then we come via (9.2) in case (∀,∀) to
the constant distance code pairs ([1], [2], [3], [4], [5], [6], [7]). Furthermore, via
(9.4) we come to the vertex isoperimetric theorem in Hamming space (see [15],
[25]).

Instead of binary relations one can study for instance the 4–words property of
[32]. It includes the parity function for the Hamming distance. As in [20] one
can also consider 1–sided conditions.

II. In all cases the conditions on clouds can be distinctness or disjointness.

III. A global condition can be replaced by local conditions. Viewing sets as 0–1–
sequences one can introduce

— k–codes as set of words with pairwise distance ≥ ℓ in any k components

— a k–diameter problem in a similar spirit

— k–antichains as set of words such that any two words are incomparable
already on suitable k components

— there is a similar notion for chains.
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IV. We have worked in the Boolean lattice. The work should be extended to other
lattices such as

— multi sets

— the cubical poset

— the lattice of subspaces over GF (q)

— the projective space lattice

— the modular geometric lattice.

V. In case N = 2 their are 2 family problems, where A1 and A2 are in different
sets. For instance A1 ⊂

(

Ω
k

)

and A2 ⊂
(

Ω
k−1

)

.

It seems that (∀,∃)–type problems are interesting here. Let us require a 1–
sided condition, that is, for all A ∈ A2 there is a B ∈ A1 in proper relation
with A . Let this relation be “incomparable”. For fixed cardinality N1 of A1

we maximize the cardinality N2 of A2 . This is equivalent to minimizing |A2|
for the relation “comparable”. Kruskal [14] and subsequently Katona solved this
problem. Notice that our maximization problem has the same answer for the
2–sided condition.

Now we choose the relation “intersect” or, equivalently, the relation “disjoint”
with minimization. This in turn is equivalent for minimization under the relation
“Containment” on the n − (k − 1)’s level. Again we arrived at the classical
Kruskal shadow problem. Now we maximize under the relation “comparable”
or minimize under the relation “incomparable”. This is a new shadow problem!
The last case, maximization under “disjoint”, is equivalent to maximization
under “comparable” on level n − (k − 1) again.

VI. There are many excess problems. For instance as an extension of Sperner’s
Lemma, for N >

(

n

⌊n
2 ⌋

)

find A ⊂ P(Ω) with |A| = N and maximal

cardinality
∣

∣

{

(A,A′) : A,A′ ∈ A, A ⊃|⊂ A′}∣

∣.

One can ask analogous questions for this problem and those in Section 7 for
two families. In particular for N1, N2 fixed

max
A⊂Pk,B⊂Pk−1

|A|=N1,|B|=N2

∣

∣

{

(A,B) : A ∈ A, B ∈ B, A ⊃|⊂ B
}∣

∣.

VII. We have introduced notions of colorings for graphs in Sections 2,3. These
notions are parallelled by new notions of independence (or stability) numbers. In
particular they can be studied for product graphs occuring in Shannon’s zero
error capacity problem. For instance the pentagon has (∃,∃)–independence
number 3 for disjoint clouds.

VIII. We wonder whether our work has any bearing on non–determinism in computing.
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