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 General Edge-isoperimetric Inequalities , Part II :  a Local – Global
 Principle for Lexicographical Solutions

 R UDOLF  A HLSWEDE AND  N ING  C AI

 1 .  I NTRODUCTION

 The lexicographical order  +   on a sequence space  -  n  5  h 0 ,  1 ,  .  .  .  ,  a  j n ,  defined by
 x n  , +  y n   if f there exists a  t  such that  x t  ,  y t   and  x s  5  y s   for  s  ,  t ,  is one of the most
 important and frequently encountered orders in combinatorial extremal theory .  An
 early result in this area ,  Harper’s solution of an edge-isoperimetric problem (EIP) in
 binary Hamming space ([13]) (generalized in [16] to non-binary cases and rediscovered
 many times ;  see ,  e . g ,  [6] ,  [9] and [15]) says that first segments in  +   are optimal .

 There are two kinds of EIP .  They can be represented as extremal problems in graph
 theory .  Let  G  5  ( 9 ,  % ) be a graph .  For any  A  ’  9 ,  define the set  @ ( A ) of all boundary
 edges ,  that is ,

 @ ( A )  5  hh x ,  y j  P  % :  u h x ,  y j  >  A u  5  1 j  (1 . 1)

 and the set  +  ( A ) of all inner edges ;  that is ,

 ( ( A )  5  hh x ,  y j  P  % :  x ,  y  P  A j .  (1 . 2)

 1 .  B OUNDARY-EDGE-ISOPERIMETRIC  P ROBLEM  (BEIP) .  For a given graph and positive
 integer  m ,  find a set  A  ’  9   of cardinality  m  with minimal possible value of  u @ ( A ) u .

 2 .  I NNER-EDGE-ISOPERIMETRIC  P ROBLEM  (IEIP) .  For a given graph and positive integer
 m ,  find a set  A  ’  9   with maximal possible value of  u (  ( A ) u .

 Notice that ,  for regular graphs of degree  d ,

 u @ ( A ) u  1  2  u ( ( A ) u  5  d  u A u

 and that therefore the two problems are equivalent in the sense that a solution of one
 of these problems is at the some time a solution of the other .

 We concentrate here on EIP’s of the Cartesian sum graphs

 G n  5  G 1  3  G 2  3  ?  ?  ?  3  G n  5  ( -  n ,  % n )  (1 . 3)

 of graphs  G t  5  ( - t  ,  % t ) ;   t  5  1 ,  2 ,  .  .  .  ,  n ,  where  -  n  5  - 1  3  - 2  3  ?  ?  ?  3  - n   and for  x n  5
 ( x 1  ,  .  .  .  ,  x n ) , y n  5  (  y 1  ,  .  .  .  ,  t n )  P  -  n   h x n ,  y n j  P  % n   if f there exists a  t  P  h 1 ,  2 ,  .  .  .  ,  n j   such
 that ,  for all  t 9  ?  t , x t 9  5  y t 9  and  h x t  ,  y t j  P  % t  .  Then EIP’s in Hamming ,  Manhattan and Lee
 metrics can be understood as EIP’s of Cartesian sum graphs of complete graphs ,  paths
 and cycles ,  respectively .  We speak of an (optimal) order for an EIP if the initial
 segments of this order always achieve the extremal value .  Then Harper’s Theorem and
 its generalization show that  +   is an order for the EIP in Cartesian sums of complete
 graphs .  Notice that the regularity implies that the BEIP and the IEIP become the same
 here .  Of course ,   +   is not always optimal for these EIP’s ,  and for many of these
 problems there is no order at all .  One can find such examples for Manhattan and Lee
 spaces in [1] ,  [4] and [8] .

 On the other hand ,  one can ask

 ‘Is  +   optimal for an EIP in  G n ?’  (1 . 4)
 479
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 Since there are  p n
 t 5 1  u - t u   orders on  -  n ,  one might expect the complexity of an algorithm

 deciding this question to be very high .  Quite surprisingly ,  our main delivery ,   a
 local - global principle ,  shows that the problem is not NP-hard and not even P-hard .
 Actually ,  its complexity is independent of  n !

 For the convenience of the readers ,  we limit ourselves here in (1 . 3) to the case of
 identical factors ,  i . e .   G t  5  G  for  t  5  1 ,  2 ,  .  .  .  ,  n .  Here we call  G n   the  n th power of  G .  It
 is not very hard to extend our main result to general Cartesian sum graphs .  In another
 direction ,  our work is more general .  We introduce a fairly large family of set functions
 on  G n ,  including ‘boundary-edge’ and ‘inner-edge’ functions .  Our local – global prin-
 ciple says that  +   is an optimal order for the extremal problems of the functions of this
 family in  n th power space exactly if it is optimal in the first and the second power
 spaces .  This means that often the question (1 . 4) can be decided by a simple inspection!

 In Section 2 we give the necessary definitions ,  state known facts from [2] and present
 a generalization of a lemma from [2] .  Our main result (Theorem 1) is presented and
 proved in Section 3 .  Finally ,  as an example demonstrating the power of our
 local – global principle ,  we give an edge-isoperimetric theorem for the powers of
 complete bipartite graphs  C m ,m   (Theorem 2) in Section 4 .

 2 .  P RELIMINARIES

 2 . 1 .  Definitions and known facts .  We list all definitions and needed known facts in the
 first part of this section .  The proofs of these facts are not very hard and can be found in
 [2] .  For all  J  ’  N  5

 D  h 1 ,  2 ,  .  .  .  ,  n j , x n  P  -  n ,  denote by  x J   the subsequence of  x n   obtained
 by deleting components  x t   with  t  ̧  J .  -  J   is defined analogously .  Thus  x n   and  - n   can be
 rewritten as  x N   and  -  N ,  respectively .  Define ,  for any  A  ’  -  N ,  the general slices

 A J ( x N  \ J )  5
 D  h x J  P  -  J :  x N  P  A j  for  x N  \ J  P  -  N  \ J  (2 . 1)

 and the projections

 A J  5
 D

 !

 x N \ J P - N \ J
 A J ( x N  \ J ) .  (2 . 2)

 For  J  ’  N ,  write the set of the lexicographically first  m  elements in  -  J   as  + ( -  J ,  m ) .
 Then the general pushing down operations under  +   on  -  J   are defined by

 D J ( + ,  ! )  5  !

 x N \  J P A N \  J

 h  y N :  y N  \  J  5  x N  \  J  and  y J  P  + ( -  J ,  u A J ( x N  \  J ) u ) j  (2 . 3)

 for all  A  ’  -  N .
 When  J  5  h t j   we also write  D J  5  D t . A  ’  -  N   is a downset ,  if  y n  P  A  implies  x n  P  A  in

 the case  x t  <  y t   for all  t .  In other words ,  a downset  A  of  -  N   is a set with  D t ( A )  5  A  for
 all  t  P  N .  For a given graph  G ,  u @ ( ? ) u   in (1 . 1) and  u (  ( ? ) u   in (1 . 2) are functions on the
 subsets of the vertex set and we write them as  B ( G ,  ? ) and  I ( G ,  ? ) .  We shall state their
 essential properties and study them as abstract set functions .

 For this goal ,  we define the  n th power function  w  n   of a set function  w   on
 2 -  5

 D  h A :  A  ’  -  j   as a function on 2 -  n
 :

 w  n ( A )  5  O n
 t 5 1

 O
 x N  \  h t j P - N  \  h t j

 w ( A t ( x N  \  h t j )) ,  (2 . 4)

 where we abbreviate  A h t j ( ? ) as  A t h ? j .
 One readily verifies that for the  n th power  G n   of a graph  G  5  ( - ,  % ) in the sense of

 (1 . 3) ,   w n ( ? )  5  2 B ( G n ,  ? ) (or  I ( G n ,  ? )) ,  if we let  w ( ? )  5  2 B ( G ,  ? ) (or  I ( G ,  ? )) .  Thus
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 EIP’s are reduced to maximizing ,  for given  w ,  w n ( A ) over all  A  ’  -  n   with fixed  u A u .  The
 following properties were proved in [2] .

 (1)  max u A u 5 m  w n ( A ) is assumed on a downset of  -  n ,  if the following conditions are
 satisfied :
 I (nestedness)—for all  k  P  -  5  h 0 ,  1 ,  .  .  .  ,  a  j , A  ’  -   with  u A u  5  k  1  1 ,

 w ( A )  <  w ([ k ])  where  [ k ]  5  h 0 ,  1 ,  .  .  .  ,  k j ;  (2 . 5)

 II (submodularity)—for  A , B  ’  - ,

 w ( A )  1  w ( B )  <  w ( A  <  B )  1  w ( A  >  B ) ;  (2 . 6)

 III— w ( f  )  5  0 .
 (We can always assume that III holds by replacing  w   by  w 9 ,  where  w 9 ( A )  5

 w ( A )  2  w ( f  ) .  Furthermore ,  obviously III holds for  w ( ? )  5  2 B ( G ,  ? ) or  I ( G ,  ? ) for all
 G . )

 (2)  For all graphs  G ,  both  2 B ( G ,  ? ) and  I ( G ,  ? ) satisfy II .
 (3)  II implies that ,  for any family  h A i j m

 i 5 1  of subsets of  -  ,

 O m
 i 5 1

 w ( A i )  <  O m
 k 5 1

 w S  !

 1 < i 1 < i 2 , ??? , i k < m
 S "

 k

 j 5 1
 A i j D D  .  (2 . 7)

 (4)  Let

 D w ( k )  5  w ([ k ])  2  w [( k  2  1]) ,  (2 . 8)

 (where we set [ 2 1] as empty set . ) Then

 w n ( A )  5  O
 x n P A

 O n
 t 5 1

 D w ( x t ) ,  (2 . 9)

 if  A  is a downset .

 R EMARKS .  (1) Condition I (2 . 5) says exactly that  +   is an order for maximizing
 w n ( A )   for fixed  u A u ,  when  n  5  1 .  2 B ( G ,  ? ) ( I ( G ,  ? )) satisfies I ,  if  G  has nested solutions
 for BEIP (IEIP) after labeling the vertices properly .

 (2)  Condition II (2 . 6) is a key issue for pushing down to work .  (2 . 7) is an extension
 of condition II to more than two sets .

 (3)  By known facts (1) ,  (2) and (4) ,  the EIP’s of power graph  G n   have been reduced
 to maximizing  o x n P A  f  ( x n ) over all downsets  A  of  -  n   for a sum-type function
 f  ( x n )  5

 D  o n
 t 5 1  D w ( x t )   (if  G  has nested solutions for the corresponding EIP’s) .  The

 importance of the extremal values of  o x n P A  f  ( x n ) over the downsets of  -  n   was known
 to Ahlswede and Katona [3] 20 years ago ,  and the problems for  -  5  h 0 ,  1 j   were well
 studied there .  In the sequel ,  we always assume that  u - u  >  3 .  Actually ,  comparing
 Theorem 1 in Section 3 of the present paper with the solutions of the corresponding
 problems in the binary case in [3] ,  one may immediately notice that the local – global
 principle does not extend to a binary alphabet .  In the sequel ,  we consider maximizing
 w n ( A )   (or  w ( A )) for  A  of a given size ,  and speak of an order for  w  n   (or  w ) .

 2 . 2 .  A lemma concerning general pushing down operations .  In this subsection we
 generalize Lemma 2 of [2] to general pushing down operations .  In the following
 lemma ,   +   can be replaced by any order .  For any  J  ‘  N  5  h 1 ,  2 ,  .  .  .  ,  n j , A  P  -  J   and  w ,
 we write

 w J ( A )  5  O
 j P J

 O
 x J  \  h j j P - J  \  h j j

 w ( A j ( x J  \  h  j j )) ,  (2 . 10)
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 where  A j ( ? )  5  A h  j j ( ? ) is defined by (2 . 1) .

 L EMMA  1 .  If  w   satisfies II and if  +   is an order for  w  J   ( J  ’  N )  then , for all A  ’  - N ,

 u D J ( + ,  A ) u  5  u A u  (2 . 11)

 and

 w  N ( A )  <  w N ( D J ( + ,  A )) ,  (2 . 12)

 where D J ( + ,  ? )  is defined by  (2 . 3)  and  w n  is written as  w  N .

 P ROOF .  (2 . 11) follows from the definition of  D J ( + ,  ? ) .  Let  B  5  D J ( + ,  A ) .  Then ,  by
 (2 . 1) ,  (2 . 4) and (2 . 10) ,  for all  C  ’  -  N   (in particular ,  for  C  5  A  or  B ) ,

 w N ( C )  5  O
 t P J

 O
 x N  \  h t j P - N  \  h t j

 w ( C t ( x N  \  h t j ))  1  O
 t P N  \  J

 O
 x N  \  h t j P - N  \  h t j

 w ( C t ( x N  \  h t j ))

 5  O
 x N  \  J P - N  \  J

 w  J ( C J ( x N  \  J ))  1  O
 x J P -  J

 w N  \  J ( C N  \  J ( x J )) .  (2 . 13)

 By the definition of  D J ( + ,  ? ) in (2 . 3) and  B  5  D J ( + ,  A ) ,  we have  B J ( x N  \  J )  5
 + ( -  J ,  u A J ( x N  \  J ) u )   for all  x N  \  J  P  - N  \  J .  Thus ,   +   being an (optimal) order for  w J   implies ,
 for all  x N  \  J  P  - N  \  J ,

 w  J ( A J ( x N  \  J ))  <  w J ( B J ( x N  \  J )) .  (2 . 14)

 Denote  A N  \  J ( x J ) ( B N  \  J ( x J )) by  A k   ( B k ) if  x J   is the lexicographically  k th sequence in  - J .
 We have for all  y N  \  J  P  - N  \  J , y N  \  J  P  B k   exactly if there are at least  k A l ’s containing
 y N  \ J ;   or ,  in other words ,

 B k  5  !

 1 < i 1 , i 2 , ?  ?  ? , i k < u - u u J u
 S "

 k

 j 5 1
 A i j D  .  (2 . 15)

 Furthermore ,  we observe that by (2 . 10) the submodularity II of  w   implies the
 submodularity of  w J 9 ,  and therefore  w   and  -   in (2 . 7) can be replaced by  w  J 9  and  -  J 9  for
 all  J 9  ’  N .  Applying the resulting inequality and (2 . 15) to  J 9  5  N  \  J , m  5  u - u u  J u ,
 o x J P - J  w  N  \  J ( A N  \  J ( x J )) ,  which equals  o m

 i 5 1  w N  \  J ( A k ) ,  and  o x J P - J  w  N  \  J ( B N  \  J ( x J )) ,  which
 equals  o m

 k 5 1  w N  \  J ( B k ) ,  we obtain

 O
 x J P - J

 w  N  \  J ( A N  \  J ( x J ))  <  O
 x J P - J

 w  N  \  J ( B N  \  J ( x J )) ,  (2 . 16)

 which ,  together with (2 . 13) and (2 . 14) ,  implies (2 . 12) .  h

 3 .  A N ECCESSARY AND  S UFFICIENT  C ONDITION FOR THE  L EXICOGRAPHICAL  O RDER TO BE

 O PTIMAL FOR  E DGE-ISOPERIMETRIC  P ROBLEMS  S ATISFYING  I – III

 Before we state and prove our main result (Theorem 1) ,  here we first derive two
 auxiliary results (Lemmas 2 and 3) .

 L EMMA  2 .  Assume that  -  5  h 0 ,  1 ,  .  .  .  ,  a  j ,  a  >  2 , and that n  .  2 . Now suppose that
 A  ’  - N  and that , for all J  ’  N  5  h 1 ,  2 ,  .  .  .  ,  n j , J  ?  N ,

 D J ( + ,  A )  5  A ,  (3 . 1)

 then , for a N  P  A , the following sequences belong to A :



 Edge - isoperimetric inequalities , II  483

 (i)  all x N  P  -  N  with x 1  5  a 1   and x N  \  h 1 j  , +  a N  \  h 1 j ;
 (ii)  b N  5  ( a 1  2  1 ,  a  ,  .  .  .  ,  a  ,  a n ) , if a 1  >  1 , and all x N  with x 1  5  a 1  2  1  and x N  \  h 1 j  ,  +  b N  \  h 1 j ;
 (iii)  in case a 1  >  2  all x N  with x 1  <  a 1  2  2 .

 P ROOF .  Since  D N  \  h 1 j ( + ,  A )  5  A ,  (i) holds .  Thus ,  by (i) ,  for (ii) and (iii) it is suf ficient
 to show that

 b N  P  A ,  if  a 1  2  1  >  0  (3 . 2)

 and

 c N  5  ( a 1  2  2 ,  a  ,  .  .  .  ,  a  )  P  A ,  if  a 1  2  2  >  0 .  (3 . 3)

 Now (3 . 2) follows from  a N  P  A , D N  \  h n j ( A )  5  A  and ( a 1  2  1 ,  a  ,  .  .  .  ,  a  )( P  -  N  \  h n j )  ,  +

 a N  \  h n j .
 Finally ,  (3 . 3) follows from (3 . 2) ,   D N  \  h 2 j ( A )  5  A  and ,  for ( a 1  2  2 ,  a  ,  .  .  .  ,  a  ) ,  ( a 1  2

 1 ,  a  ,  .  .  .  ,  a  ,  a n )  P  -  N  \  h 2 j   ( a 1  2  2 ,  a  ,  .  .  .  ,  a  )  , +  ( a 1  2  1 ,  a  ,  .  .  .  ,  a  ,  a n ) (the second com-
 ponents are deleted from both  b N   and  c N ,  and this is possible because  n  .  2) .

 L EMMA  3 .  Assume that  u - u  >  3  and let  w   satisfy I  – III in Section  2 . Then :
 (i)  If  +   is the optimal order for  w 2 , then

 D w (1)  <  D w (2)  (3 . 4)

 and , for a , b , i  P  -  5  h 0 ,  1 ,  .  .  .  ,  a  j   with a  ,  b  <  b  1  i  <  a   and either a  5  0  or b  1  i  5  a  ,

 O i

 j 5 0
 D w ( a  1  j )  <  O i

 j 5 0
 D w ( b  1  j ) .  (3 . 5)

 (ii)  If  +   is the order for  w m , then , for a  P  - 9 , a  >  1  and x i  P  -   ( i  5  2 ,  .  .  .  ,  m )  not all
 equal to  a  ,

 O m
 i 5 2

 D w ( x i )  1  D w ( a )  <  ( m  2  1) D w ( a  )  1  D w ( a  2  1) .  (3 . 6)

 P ROOF .  (i) If  +   is the order for  w  2 ,  then ,  in particular ,

 w 2 ( h 00 ,  01 ,  10 j )  <  w  2 ( h 00 ,  01 ,  02 j )  (3 . 7)

 and therefore (2 . 9) in property (4) of Section 2 gives (3 . 4) .
 While showing (3 . 5) we can assume that

 a  1  i  ,  b ,  (3 . 8)

 because otherwise we can delete the common terms on both sides of (3 . 5) .
 Now define the interval

 ( x l ,  y l )  5  h z l  P  -  l  :  x l  < +  z l  < +  y l j ,  k y l l  5  k 0 l ,  y l l .  (3 . 9)

 Case a  5  0 .  By (3 . 8) ,  ( k (1 ,  b  1  i l \ k 1 ,  b ) ,  (1 ,  b  1  i ) l )  <  k (2 ,  0) ,  (2 ,  i ) l  5  h (0 ,  0) ,
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 (0 ,  1) ,  .  .  .  ,  (0 ,  a  ) ,  (1 ,  0) ,  .  .  .  ,  (1 ,  b  2  1) ,  (2 ,  0) ,  .  .  .  ,  (2 ,  i ) j  5  B ,  say ,  is a downset and
 u B u  5  u k (1 ,  b  1  i ) l u .  Since  +   is the order for  w 2 ,  we conclude with (2 . 9) that

 0  <  w ( k (1 ,  b  1  i ) l )  2  w ( B )

 5  O
 x 2 P k (1 ,b 1 i ) l  \  B

 ( D w ( x 1 )  1  D w ( x 2 ))  2  O
 x 2 P B  \  k 1 ,b 1 i ) l

 ( D w (  y 1 )  1  D w (  y 2 ))

 5 S ( i  1  1) D w (1)  1  O i

 j 5 0
 D w ( b  1  j ) D  2 S ( i  1  1) D w (2)  1  O i

 j 5 0
 D w (  j ) D

 or ,  equivalently ,

 O i

 j 5 0
 D w ( b  1  j )  2  O i

 j 5 0
 D w (  j )  >  ( i  1  1)( D w (2)  2  D w (1)) .  (3 . 10)

 In this case ,  this and (3 . 4) imply (3 . 5) .
 Case a  ?  0  and b  1  i  5  a .  Instead of  k (1 ,  b  1  i ) l   and  B ,  we now consider  k (2 ,  a  2  1) l

 and

 B 9  5  ( k (2 ,  a  2  1) l \ k (1 ,  b ) ,  (1 ,  a  ) l )  <  k (2 ,  a ) ,  (2 ,  a  1  1) l

 5  h (0 ,  0) ,  .  .  .  ,  (0 ,  a  ) ,  (1 ,  0) ,  .  .  .  ,  (1 ,  b  2  1) ,  (2 ,  0) ,  .  .  .  ,  (2 ,  a  2  1) ,  .  .  .  ,  (2 ,  a  1  i ) j

 and by the previous argument we also obtain (3 . 5) in this case .
 (ii)  For  x l , y l  P  -  l ,  now define the half-open interval

 ( x l ,  y l )  5  k x l ,  y l l \ h  y l j .  (3 . 11)

 Then ,  for  x m  5  ( a ,  x 2  ,  .  .  .  ,  x m ) , y m  5  ( a  2  1 ,  a  ,  .  .  .  ,  a  ) ,

 w ( k 0 m ,  x m ))  >  w ( k x m l \ h  y m j ) .  (3 . 12)

 Since both arguments in (3 . 12) are downsets ,  we can use (2 . 9) to estimate them .  Then
 we delete the common terms on both sides and obtain (3 . 6) .  h

 Quite surprisingly ,  we found the following result .

 T HEOREM  1 .  If  u - u  >  3 , then for any set function  w  :  2 -
 5  R   satisfying I  – III and any

 integer n  >  2 ,  +   on X n  is optimal for  w n  if f  +   on  - 2   is optimal for  w  2 .  ( Condition I says
 that  +   is an optimal order for  w . )

 P ROOF .  Assume to the contrary that  +   is optimal for  w  2  but not for  w n   and that
 n  >  3   is smallest with this property .

 By Lemma 1 in Section 2 we can assume that ,  for all  J  ?  N ,

 D J ( + ,  A )  5  A  (3 . 13)

 for an optimal set  A ,  and therefore  A  is a downset .
 Moreover ,  among all optimal sets satisfying (3 . 13) we choose as  A  one which

 achieves the minimal value of  u A D k θ  ( u A u ) l u ,  where  θ  ( u A u ) is the  u A u th smallest element in
 -  n   in lexicographical order (i . e .   θ  ( A )  5  + ( -  n ,  u A u l ) .  Since ,  by assumption ,   +   is not the
 order of  w n ,  we have

 u A D k θ  ( u A u ) l u  .  0  or  A  ?  k θ  ( u A u ) l .  (3 . 14)

 Now let  a n   be the lexicographically last element of  A .  Then ,  obviously ,

 A  ‘ u  k a n l .  (3 . 15)
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 Since  +   is optimal for  w  n 2 1 , a 1  ?  0 .
 It immediately follows from Lemma 2 that all elements in  k a n l \  A  are of the form

 ( a 1  2  1 ,  a  ,  .  .  .  ,  a  ,  x ) ,  x  .  a n .  (3 . 16)

 Moreover ,  by (3 . 13) ,  none of the  a i ’s equals  a .  Thus ,  by (3 . 16) ,

 k a n l \  A  5  h ( a 1  2  1) ,  a  ,  .  .  .  ,  a  ,  x ) :  b  <  x  <  a  j  (3 . 17)

 for some  a  >  b  .  a n .
 Since  A  is a downset ,

 h ( a 1  ,  .  .  .  ,  a n 2 1  ,  y ) :  0  <  y  <  a n j  ’  A .  (3 . 18)

 Considering  a n  ,  b  ,  one can choose  a , b  and  i  such that

 a  5  0 ,  a  1  i  5  a n  ,  b  5  b  and  b  1  i  <  a  (3 . 19)

 or

 a  .  0 ,  a  1  i  5  a n  ,  b  5  b  and  b  1  i  5  a  .  (3 . 20)

 In both cases ,  we have  a  .  b .  When  a n  <  a  2  b  ,  we choose (3 . 19) and otherwise (3 . 20) .
 Now we remove the ‘top part’

 h ( a 1  ,  a 2  ,  .  .  .  ,  a n 2 1  ,  y ) :  y  5  a ,  a  1  1 ,  .  .  .  ,  a  1  i j  ’  A

 from  A  and add

 h ( a 1  2  1 ,  a  ,  .  .  .  ,  a  ,  x ) :  x  5  b , b  1  1 ,  .  .  .  ,  b  1  i j ,

 which is disjoint from  A ,  to  A  and obtain a set  A 9 ,  with  u A 9 u  5  u A u   and  u A 9 D θ  ( u A u ) u  ,
 u A D θ  ( u A u ) u .

 From the structure of  A ,  as described in Lemma 2 ,  it is not hard to see that  A 9  also
 satisfies (3 . 13) .

 On the other hand ,  by (2 . 9) and Lemma 3 ,

 w n ( A )  2  w n ( A 9 )  5  O i

 j 5 0
 D w ( a  1  j )  1  ( i  1  1) S O n 2 1

 j 5 2
 D w ( a j )  1  D w ( a 1 ) D

 2  O i

 j 5 0
 D w ( b  1  j )  1  (( n  2  2) D w ( a  )  1  D w ( a 1  2  1))( i  1  1)

 5 S O i

 j 5 0
 D w ( a  1  j )  2  O i

 j 5 0
 D w ( b  1  j ) D

 1  ( i  1  1) S S O n 2 1

 j 5 2
 D w ( a j )  1  D w ( a 1 ) D  2  (( n  2  2) D w ( a  )  1  D w ( a 1  2  )1) D  <  0 ,

 in contradiction to the definition of  A .  h

 4 .  A N  A PPLICATION OF  T HEOREM  1  TO  C OMPLETE  B IPARTITE  G RAPHS

 This last section demonstrates how useful the  local  – global principle  of Theorem 1 is .
 We begin with the simple  C 4  and then consider all complete bipartite graphs .

 4 . 1 .  The lexicographical order  +   is optimal for I ( C n
 4  ,  ? )  or , by regularity , equi y  alently

 for B ( C n
 4 ,  ? ) .  We know from Theorem 1 that it suf fices to show the property for

 I ( C  2
 4 ,  ? ) .  This in turn is readily done by the following simple observation .
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 For all  A  ’  h 0 ,  1 ,  2 ,  3 j 2 ,  u A u  <  8  5  1 – 2 u h 0 ,  1 ,  2 ,  3 j 2 u ,

 I ( C  2
 4 ,  A )  < 5 u A u  2  1

 2  u A u  2  4
 2  u A u  2  5

 if  u A u  ,  4 ,

 if  4  3  u A u ,
 otherwise .

 4 . 2 .  The complete bipartite graph C m , m .  Let  -  5  h 0 ,  1 ,  .  .  .  ,  2 m  2  1 j   be the vertex set
 with edges exactly between even and odd numbers .  This defines  C m ,m ,  which is a
 regular graph ,  so that boundary- and inner isoperimetric problems are equivalent .

 We set  w ( ? )  5  I ( C m ,m ,  ? ) and readily verify that I – III hold ,  and that

 D w ( l )  5    l
 2    for  l  5  0 ,  1 ,  .  .  .  ,  2 m  2  1 .  (4 . 1)

 T HEOREM  2 .  The first segments in lexicographical order  +   gi y  e optimal sets for the
 ( inner and boundary )  edge - isoperimetric problems for C 2

 m ,m , and therefore for C n
 m ,m .

 P ROOF .  Let us consider  C 2
 m ,m .  In order to proceed by induction on  m ,  we introduce

 the notation    m  5  D w  .

 Case m  5  2 .  Notice that  C 4  5  C 2 , 2  and that the result was established above .

 Case m  5  m  1  1 .  For any  A  ’  [2 m  1  1] 2 ,  we have to show that replacement of  A  by
 the first  u A u -segment of [2 m  1  1] 2  under  +   cannot decrease  w 2 ( A ) .  We shall make use of
 the fact that the following three properties are equivalent :
 ( a  )  A  ’  [2 m  1  1] 2  5  -  2  is optimal among the subsets of cardinality  u A u .
 ( b  )  A c  5  - 2 \  A  is optimal among the subsets of cardinality  u A c u  5  u -  2 u  2  u A u .
 ( g  )  The set  A ̃  5  h (2 m  1  1  2  x ,  2 m  1  1  2  y ) :  ( x ,  y )  P  A c j   is optimal among the subsets of
 cardinality  u - 2 u  2  u A u .
 Notice that  A  is a downset if f  A ̃    is a downset .

 Case  1 .  There is  no  ( x ,  y )  P  A  with  x  >  2 m .  Therefore we are able to rule out the last
 two columns  h ( x ,  y ) :  x  5  2 m ,  2 m  1  1 j ,  which are useless .

 Let ‘top’ and ‘bottom’ of the part remaining be

 T  5  h ( x ,  y ) :  0  <  x  <  2 m  2  1 ,  2  <  y  <  2 m  1  1 j  (4 . 2)

 and

 B  5  h ( x ,  y ) :  0  <  x  <  2 m  2  1 ,  0  <  y  <  2 m  2  1 j  (4 . 3)

 respectively .
 Define  O T   (resp .   O B ) as the operator keeping the  A \ T  (resp .   A \  B ) part unchanged

 and changing  A T  5
 D  A  >  T  (resp .   A B  5

 D  A  >  B ) to the first  u A T  u   (resp .   u A B u ) elements of  T
 (resp .   B ) in order  +  .

 Obviously ,  both  O T  ( A ) and  O B ( A ) are downsets whenever  A  is a downset .
 Furthermore ,  by the induction hypothesis ,  for  B  ’  h 0 ,  1 ,  .  .  .  ,  2 m  2  1 j 2 ,

 w  2 ( O B ( A ))  >  w  2 ( A ) .  (4 . 4)

 In fact ,  the induction hypothesis also implies that  w 2 ( O T  ( A ))  >  w 2 ( A ) ,  since by (4 . 1) ,
 for 2  <  y  <  2 m  1  1 ,    m 1 1 (  y )  5  1  1    m (  y  2  2) holds ,  so that we can shift two units
 down and transform  T  to  h ( x ,  y ) :  0  <  x  <  2 m  2  1 ,  0  <  y  <  2 m  2  1 j   and apply the
 induction hypothesis .  However ,   O T  ( A )  ?  A  (resp .   O B ( A )  ?  A ) implies that the
 operator  O T   (resp .   O B )) strictly decreases the maximal element in the order  +   of  A T
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 (resp .   A B ) .  Thus one can use  O T   and  O B   repeatedly finitely often ,  and obtain as
 resulting set  A 9  a downset with

 w  2 ( A 9 )  >  w 2 ( A ) ,  O T  ( A 9 )  5  A 9  and  O B ( A 9 )  5  A 9 .  (4 . 5)

 Thus ,   A 9 T   and  A 9 B   must have the following forms :

 A 9 T  5  h ( x ,  y ) :  0  <  x  <  a  2  1 ,  2  <  y  <  2 m  1  1 j  <  h ( a ,  y ) :  2  <  y  <  u j

 for some 0  <  t  <  2 m  2  1  and  2  <  u  <  2 m  1  1 ,

 and

 A 9 B  5  h ( x ,  y ) :  0  <  x  <  b  2  1 ,  0  <  y  <  2 m  2  1 j  <  h ( x ,  b ) :  0  <  y  <  y  j

 for some  t  <  b  <  2 m  2  1  and  0  <  y  <  min( u ,  2 m  2  1) .

 Now ,  considering that  A 9  is a downset and  A 9  5  A 9 T  <  A 9 B ,  a simple calculation shows
 that in case  A 9  is not the first segment of  -  2  5  [2 m  1  1] 2 ,  we have  a  5  b  2  1 ,
 u  P  h 2 m  2  1 ,  2 m j ,  y  P  h 0 ,  1 j ,  and  A 9  must be one of the following four subsets
 described in (a) – (d) below .  Write

 A *  5  h ( x ,  y ) :  0  <  x  <  a  2  1 ,  0  <  y  <  2 m  1  1 j .

 Then :

 (a)  A 9  5  A *  <  h ( a ,  y ) :  0  <  y  <  2 m  2  1 j  <  h ( a  1  1 ,  y ) :  y  5  0 , 1 j ;
 (b)  A 9  5  A *  <  h ( a ,  y ) :  0  <  y  <  2 m j  <  h ( a  1  1 ,  y ) :  y  5  0 , 1 j ;
 (c)  A 9  5  A *  <  h ( a ,  y ) :  0  <  y  <  2 m  2  1 j  <  h ( a  1  1 ,  0) j ;
 (d)  A 9  5  A *  <  h ( a ,  y ) :  0  <  y  <  2 m j  <  h ( a  1  1 ,  0) j .

 Now let  K 1  5  ( a ,  2 m  1  1) , K 2  5  ( a ,  2 m ) , K 3  5  ( a  1  1 ,  1) and  K 4  5  ( a  1  1 ,  0) .  We make
 the following operations ,  which change  A 9  to the first segment in  +  :
 case (a)—remove  K 3  and  K 4  from  A 9  and add  K 1  and  K 2  to it ;
 case (b)—remove  K 3  from  A 9  and add  K 1  to it ;
 case (c)—remove  K 4  from  A 9  and add  K 2  to it ;
 case (d)—remove  K 4  from  A 9  and add  K 1  to it .
 Now the value of    m 1 1  ( 5 D w ) at  K i   ( i  5  1 ,  2 ,  3 ,  4) is ,  by (4 . 1) ,

 K 1 :    m 1 1 ( a )  1    2 m 1 1 (2 m  1  1)  5    a

 2    1  m  1  1 ,

 K 2 :    2 m 1 1 ( a )  1    2 m 1 1 (2 m )  5    a

 2    1  m ,

 K 3 :    2 m 1 1 ( a  1  1)  1    2 m 1 1 (1)  5    a  1  1
 2    1  1 ,

 K 4 :    2 m 1 1 ( a  1  1)  1    2 m 1 1 (0)  5    a  1  1
 2   .

 Remember that we assumed that  m  >  2 .  The operations in (a) – (d) cannot make things
 worse .  This concludes the proof in the first case .

 Moreover ,  by symmetry and the equivalences ( a  ) – ( g  ) ,  the following cases can be
 excluded too :

 h ( x ,  y ) :  0  <  x  <  2 m  1  1 , y  >  2 m j  >  A  5  [ ,  h ( x ,  y ) :  x  <  1 ,  0  <  y  <  2 m  1  1 j  ’  A ,

 and  h ( x ,  y ) :  0  <  x  <  2 m  1  1 , y  <  1 j  ’  A .  (4 . 6)
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 Thus we can always assume that

 (0 ,  2 m ) ,  (2 m ,  0)  P  A  and  (1 ,  2 m  1  1) ,  (2 m  1  1 ,  1)  ̧  A .  (4 . 7)

 Case  2 .  (4 . 7) holds ,  and at least one of the elements (0 ,  2 m  1  1) and (2 m  1  1 ,  0) is
 not in  A .  Assume that (2 m  1  1 ,  0)  ̧  A  and ,  consequently ,  that  A  >  h ( x ,  y ) :  x  5  2 m  1
 1 j  5  [ .  Let  Cl 2 m  5  h ( x ,  y )  P  A :  x  5  2 m j   and  R 2 m  5  h ( x ,  y )  P  A :  y  5  2 m j .

 Then (4 . 7) implies that  Cl 2 m  ?  [   and  R 2 m  ?  [ .
 W . l . o . g .,  we can assume that

 u Cl 2 m u  5
 D  c  <  u R 2 m u ,  (4 . 8)

 because otherwise we can exchange the roles of rows and columns and ,  if necessary ,
 move the (2 m  1  1)st column to the (2 m  1  1)st row .

 When (0 ,  2 m  1  1)  ̧  A ,  i . e .  there is no element of  A  in the last row at all ,  we remove
 Cl 2 m  5  h (2 m ,  0) ,  (2 m ,  1)  ?  ?  ?  (2 m ,  c  2  1) j   from  A  and add  h (0 ,  2 m  1  1) ,  (1 ,  2 m  1
 1)  ?  ?  ?  ( c  2  1 ,  2 m  1  1) j   to  A .

 By (4 . 8) ,  the resulting set is a downset and (4 . 1) shows that it has a larger value of
 w 2 .  If (0 ,  2 m  1  1)  P  A  and  u Cl 2 m u  ,  u B 2 m u ,  one can also remvoe  Cl 2 m   from  A ,  but add
 h (1 ,  2 m  1  1)  ?  ?  ?  ( c ,  2 m  1  1) j   to  A .  When (0 ,  2 m  1  1)  P  A  and  c  5  u Cl 2 m u  5  u R 2 m u  ?  1 ,  we
 remove  h (2 m ,  1) ,  (2 m ,  2)  ?  ?  ?  (2 m ,  c  2  1) j   from  A  and add  h (1 ,  2 m  1  1)  ?  ?  ?  ( c  2  1 ,  1) j   to
 it .

 For all of the three subcases above ,  we change our  A  to a downset in Case 1 or a set
 of type (4 . 6) for Case 1 .  Finally ,  we assume that

 (0 ,  2 m  1  1)  P  A ,  Cl 2 m  5  h (2 m ,  0) j ,  R 2 m  5  h 0 ,  2 m ) j .  (4 . 9)

 Thus (0 ,  2 m  1  1)  P  A  implies (2 m  1  1 ,  0)  ̧  A ̃  ,  where  A ̃    is defined in ( g  ) .
 Now (2 m ,  1)  ̧  A  and  A  is a downset .  This ,  together ,  implies that (2 m  1  1 ,  1)  ̧  A

 and therefore (1 ,  2 m ) ,  (0 ,  2 m )  P  A ̃  .  Similarly ,  since (1 ,  2 m )  ̧  A ,  (2 m ,  1) ,  (2 m ,  0)  P  A ̃  .
 Therefore ,  both the (2 m )th row and the (2 m )th column of  A ̃    have at least two

 elements .  By ( a  ) – ( g  ) ,  instead of  A  we can consider  A ̃  ,  which has been settled in the
 previous subcases of this case .

 Case  3 .  (0 ,  2 m  1  1) ,  (2 m  1  1 ,  0)  P  A .  Here (2 m  1  1 ,  0)  ̧  A ̃    and (0 ,  2 m  1  1)  ̧  A ̃  .  By
 ( g  ) ,  we can consider  A ̃    and reduce our problem to Case 2 .

 Finally ,  the theorem now follows from Theorem 1 .

 R EMARK  4 .  The result does not extend to general  C m , m .  Already ,  for  C 2 m , 2 m 2 1 ,  +   is
 not optimal for the inner isoperimetric problem .  The first 4 m  2  4 elements of
 [2 m  2  1]  3  [2 m  2  2]   in the order  +   are

 h (0 ,  0) ,  (0 ,  1) ,  .  .  .  ,  (0 ,  2 m  2  1) ,  (1 ,  0) ,  .  .  .  ,  (1 ,  2 m  2  3) j .

 However ,   h (0 ,  0) ,  .  .  .  ,  (0 ,  2 m  2  2) ,  (1 ,  0) ,  .  .  .  ,  (1 ,  2 m  2  2) j   has more inner edges .
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