NOTE

COUNTEZEXEXAMPLE TO TḢE FRANKL-PACH CONJECTURE FOR UNIFORM, DENSE FAMILIES

R. AHLSWEDE and L. H. KHACHATRIAN

Received January 15, 1996
\mathbb{N} denotes the set of positive integers and for $\ell, n \in \mathbb{N}, \ell \leq n$ we set

$$
2^{[n]}=\{F: F \subset[1, n]\}, \quad\binom{[n]}{\ell}=\left\{F \in 2^{[n]}:|F|=\ell\right\}
$$

A family $\mathscr{F} \subset 2^{[n]}$ is called ℓ-dense, $\ell \in \mathbb{N}$, if there exists an ℓ-element subset $D \in\binom{[n]}{\ell}$ with $\mathscr{F}(D)=\{F \cap D: F \in \mathscr{F}\}$ satisfying

$$
\begin{equation*}
|\mathscr{F}(D)|=2^{\ell} \tag{1}
\end{equation*}
$$

A well-known result of Sauer [1], Shelah-Perles [2], and Vapnik-Ĉervonenkis [3] says that any $\mathscr{F} \subset 2^{[n]}$ is ℓ-dense, if

$$
\begin{equation*}
|\mathcal{F}|>\sum_{i<\ell}\binom{n}{i} . \tag{2}
\end{equation*}
$$

Frankl-Pach [4] proved that any ℓ-uniform \mathscr{F}, that is $\mathscr{F} \subset\binom{[n]}{\ell}$, is ℓ-dense, if

$$
\begin{equation*}
|\mathscr{F}|>\binom{n}{\ell-1} \tag{3}
\end{equation*}
$$

and they conjectured that for every ℓ-uniform, but not ℓ-dense, \mathscr{F} with $n>2 \ell$ necessarily

$$
\begin{equation*}
|\mathscr{F}| \leq\binom{ n-1}{\ell-1} \tag{4}
\end{equation*}
$$

Mathematics Subject Classification (1991): 05D05

It was pointed out in [4], [5], and also by Erdős [6] that the truth of this conjecture would mean a sharpening of the Erdös-Ko-Rado Theorem [7]. While (4) holds for $\ell=2$, it is unfortunately false for $\ell \geq 3$ and $n \geq 2 \ell$.

Example. Let $\mathscr{F}=\mathscr{F}_{1} \cup \dot{F}_{2} \cup \dot{F}_{3} \dot{\cup} \mathscr{F}_{4} \subset\left(\begin{array}{c}{\left[\begin{array}{c}n] \\ \ell\end{array}\right) \text {, where }{ }^{\prime} \text {. }}\end{array}\right.$

$$
\begin{aligned}
& \mathscr{F}_{1}=\left\{F \in\binom{[n]}{\ell}: 1 \in F, 2 \notin F\right\}, \quad \mathscr{F}_{2}=\left\{F \in\binom{[n]}{\ell}: 1,2,3 \in F\right\}, \\
& \mathscr{F}_{3}=\left\{F \in\binom{[n]}{\ell}: 1,2,4 \in F, 3 \notin F\right\}, \quad \mathscr{F}_{4}=\left\{F \in\binom{[n]}{\ell}: 1 \notin F, 2,3, \in F\right\} .
\end{aligned}
$$

It remains to be seen that for no $D \in\binom{[n]}{\ell}$ (1) holds.
Obviously, a candidate $D=\left\{d_{1}, \ldots, d_{\ell}\right\}$ must satisfy $D \in \mathscr{F}$.
It is convenient to use also the sequence representation $\left(f_{1}, \ldots, f_{\ell}\right)$ for $D \cap F$, where

$$
f_{t}= \begin{cases}1 & \text { if } d_{t} \in D \cap F \\ 0 & \text { if } d_{t} \notin D \cap F\end{cases}
$$

Now let $\mathscr{F}_{1}=\mathscr{F}_{1}^{1} \dot{\cup} \mathscr{F}_{1}^{2}$, where

$$
\mathscr{F}_{1}^{1}=\left\{F \in \mathscr{F}_{1}: 3 \in F\right\} \text { and } \mathscr{F}_{1}^{2}=\mathscr{F}_{1} \backslash \mathscr{F}_{1}^{1} .
$$

Notice that $D \notin \mathscr{F}{ }_{1}^{1}$, because $(0,0, \ldots, 0) \notin \mathscr{F}(D)$.
Also, $D \notin \mathscr{F}_{1}^{2}$, because $(0,1,1, \ldots, 1) \notin \mathscr{F}(D)$. Hence $D \notin \mathscr{F}_{1}$.
Furthermore, $D \notin \mathscr{F}_{2} \cup \mathscr{F}_{3}$, because $(0,0, \ldots, 0) \notin \mathscr{F}(D)$.
Finally, let. $\mathscr{F}_{4}=\mathscr{F}_{4}^{1} \cup \mathscr{F}_{4}^{2}$, where $\mathscr{F}_{4}^{1}=\left\{F \in \mathscr{F}_{4}: 4 \in F\right\}$ and $\mathscr{F}_{4}^{2}=\mathscr{F}_{4} \backslash \mathscr{F}_{4}^{1}$.
Now we have $D \notin \mathscr{F}_{4}^{1}$, because $(1,0,0, \ldots, 0) \notin \mathscr{F}(D)$, and $D \notin \mathscr{F}_{4}^{2}$, because $(1,0,1,1, \ldots, 1) \notin \mathscr{F}(D)$. Thus \mathscr{F} is not ℓ-dense, however,

$$
\begin{gathered}
|\mathscr{F}|=\left|\mathscr{F}_{1}\right|+\left|\mathscr{F}_{2}\right|+\left|\mathscr{F}_{3}\right|+\left|\mathscr{F}_{4}\right|= \\
=\binom{n-2}{\ell-1}+\binom{n-3}{\ell-3}+\binom{n-4}{\ell-3}+\binom{n-3}{\ell-2}=\binom{n-1}{\ell-1}+\binom{n-4}{\ell-3}>\binom{n-1}{\ell-1} .
\end{gathered}
$$

Remark. Frankl-Watanabe [5] even conjectured that for every k-uniform, but not ℓ-dense, \mathscr{F} for $k>\ell>2$ necessarily

$$
\begin{equation*}
|\mathscr{F}| \leq\binom{ n-k+\ell-1}{\ell-1} \quad \text { for } \quad n>n_{0}(k) . \tag{5}
\end{equation*}
$$

Of course, our example can be used to disprove this for every $k, \ell, n ; n>k>\ell>2$.

References

[1] N. Sauer: On the density of families of sets, J. Comb. Th. (A) 13 (1972), 145-147.
[2] S. Shelah: A combinatorial problem, Pacific J. Math. 41 (1972), 247-261.
[3] V. N. Vapnik, and A. J. Cervonenkis: The uniform convergence of frequencies of the apperance of events to their probabilities, (in Russian), Teor. Veroyatn. Primen., 16 (1971), 267-279.
[4] P. Frankl, and J. Pach: On disjointly representable sets, Combinatorica 4 (1984), 39-45.
[5] P. Frankl, and M. Watanabe: Density results for uniform families, Combinatorica 14 (1) (1994), 115-119.
[6] P. Erdős: On some problems in graph theory, combinatorial analysis and combinatorial number theory, in: Graph theory and combinatorics (Cambridge, 1983), 1-17. B. Bollobás ed., Academic Press, London, 1984.
[7] P. Erdős, C. Ko, and R. Rado: Intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 12 (1961), 313-320.
R. Ahlswede

Fakultät Mathematik
Universität Bielefeld
POB 100131
33501 Bielefeld, Germany
hollmann@mathematik.uni-bielefeld.de
L. H. Khachatarian

Fakultät Mathematik
Universität Bielefeld
POB 100131
33501 Bielefeld, Germany

