

PII: S0893-9659(98)00091-3

Isoperimetric Theorems in the Binary Sequences of Finite Lengths

R. AHLSWEDE AND N. CAI Fakulfät für Mathematik, Universität Bielefeld Postfach 100131, D-33501 Bielefeld, Germany

(Received April 1997; accepted June 1997)

Abstract—We solve the isoperimetric problem for subsets in the set \mathcal{X}^* of binary sequences of finite length for two cases:

- (1) the distance counting the minimal number of insertions and deletions transforming one sequence into another;
- (2) the distance, where in addition also exchanges of letters are allowed.

In the earlier work, the range of the competing subsets was limited to the sequences \mathcal{X}^n of length n. © 1998 Elsevier Science Ltd. All rights reserved.

Keywords—Isoperimetry, Sequence spaces, Deletions, Insertions, Hamming distance, H*-order.

1. THE PROBLEMS

The present note continues our paper [1]. We keep our earlier notation. Familiarity with [1] is not necessary but certainly helpful for an understanding of this paper.

We recall some definitions. For $\mathcal{X} = \{0, 1\}$ and $n \in \mathbb{N}$, \mathcal{X}^n denotes the space of binary sequences of length n. The fundamental object in our investigation is

$$\mathcal{X}^* = \bigcup_{n=0}^{\infty} \mathcal{X}^n,$$

the space of binary sequences of finite length. Here the sequence of length 0 is understood as the empty sequence ϕ .

Basic operations are deletions ∇ and insertions Δ . Here ∇ (respectively, Δ) means the deletion (respectively, insertion) of any letter.

We introduce again two distances, θ and δ , in \mathcal{X}^* . For x^m , $y^{m'} \in \mathcal{X}^*$, $\theta(x^m, y^{m'})$ counts the minimal number of insertions and deletions which transform one sequence into the other and $\delta(x^m, y^{m'})$ counts the minimal number of operations, if also exchanges of letters are allowed. For $\tau = \theta$, δ , we define for $A \subset \mathcal{X}^*$

$$\Gamma^{\boldsymbol{\ell}}_{\tau}(A) = \left\{ x^{m\prime}: \text{ there exists an } a^m \in A \text{ with } \tau\left(x^{m\prime}, a^m\right) \leq \ell \right\}.$$

We abbreviate $\Gamma_{\tau}^{1} = \Gamma_{\tau}$.

In [1], we showed that the initial segments of size u in Harper's order (introduced in [2]), or in short "the u^{th} initial segments in *H*-order" minimizes $|\Gamma_{\theta}^{\ell}(A)|$, $|\Gamma_{\delta}^{\ell}(A)|$, $|\Delta^{\ell}A|$, and $|\Delta^{\ell}A|$ for

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -TEX

 $A \subset \mathcal{X}^n$ with |A| = u, where $\Delta^{\ell} A$ is the subset of $\mathcal{X}^{n+\ell}$ obtained by inserting ℓ letters to the sequences in A and Δ^{ℓ} is defined analogously.

We introduce now $\Gamma^{\ell}_{\Delta}(A) = (\bigcup_{i=0}^{\ell} \Delta^{i} A) \ (\Gamma^{1}_{\Delta} = \Gamma_{\Delta}).$

In this note, we change the range of A from subsets of \mathcal{X}^n to subsets of \mathcal{X}^* . Clearly,

$$\Gamma^{\ell}_{\Delta}(A) \subset \Gamma^{\ell}_{\theta}(A) \subset \Gamma^{\ell}_{\delta}(A), \quad \text{for all } A \subset \mathcal{X}^*.$$
(1.1)

The role of the *H*-order for the former problems in [1] for the new isoperimetric problems is played by what we call H^* -order. Its definition follows next.

2. THE H^* -ORDER

Recalling that x^n precedes y^n in the squashed order on $\{x^n \in \mathcal{X}^n : \sum_{i=1}^n x_i = k\}$ exactly if $x_t < y_t$, if t is the largest number s with $x_s \neq y_s$, and that x^n precedes y^n in the H-order on \mathcal{X}^n , exactly if $\sum_{t=1}^n x_t < \sum_{t=1}^n y_t$ or $\sum_{t=1}^n x_t = \sum_{t=1}^n y_t$ and $(1 - x_1, \ldots, 1 - x_n)$ precedes $(1 - y_1, \ldots, 1 - y_n)$ in the squashed order, we introduce the following H^* -order. For x^n , $x^{m'} \in \mathcal{X}^*$, x^m precedes $y^{m'}$, exactly if m < m' or m = m' and x^m precedes $y^{m'}$ in the H-order.

Katona [3] has shown that for any integers n and $u \in [0, 2^n]$ there is a unique binomial representation

$$u = \binom{n}{n} + \dots + \binom{n}{k+1} + \binom{\alpha_k}{k} + \dots + \binom{\alpha_t}{t}$$
(2.1)

(with $n > \alpha_k > \cdots > \alpha_t \ge t \ge 1$). He introduced the function

$$G(n,u) = \binom{n}{n} + \dots + \binom{n}{k+1} + \binom{n}{k} + \binom{\alpha_k}{k-1} + \dots + \binom{\alpha_t}{t-1}, \quad (2.2)$$

and proved that for $0 \le u_1 \le u_0$ and $u \le u_0 + u_1$,

$$G(n, u) \le \max(u_0, G(n-1, u_1)) + G(n-1, u_0).$$
 (2.3)

It immediately follows from the uniqueness of the representation (2.1) that every positive integer N can be uniquely represented as

$$N = 1 + 2 + \dots + 2^{n-1} + \binom{n}{n} + \dots + \binom{n}{k+1} + \binom{\alpha_k}{k} + \dots + \binom{\alpha_t}{t}$$

= 1 + 2 + \dots + 2^{n-1} + u (0 \le u < 2^n and u as in (2.1)). (2.4)

We introduced in [1] (for u as in (2.1))

$$\overset{\Delta}{G}(n,u) = \binom{n+1}{n+1} + \dots + \binom{n+1}{k+1} + \binom{\alpha_k+1}{k} + \dots + \binom{\alpha_t+1}{t}, \quad (2.5)$$

and proved (in Lemma 6) that ΔS is the $\hat{G}(n, |S|)^{\text{th}}$ initial segment in the *H*-order on \mathcal{X}^{n+1} , if S is an initial segment in the *H*-order on \mathcal{X}^n .

Consequently, by the definition of our H^* -order,

$$\Gamma_{\Delta}\left(S'\right) = \Gamma_{\theta}\left(S'\right) = \Gamma_{\delta}\left(S'\right) \tag{2.6}$$

is the $G^*(N)^{\text{th}}$ initial segment in the H^* -order on \mathcal{X}^* , for the N^{th} initial segment S' in the H^* -order on \mathcal{X}^* , if we introduce

$$G^*(N) = 1 + 2 + \dots + 2^{n-1} + 2^n + \overset{\Delta}{G}(n, u) = (2^{n+1} - 1) + \overset{\Delta}{G}(n, u) \text{ (for } N \text{ in } (2.4)). \quad (2.7)$$

By (2.1), (2.4), and (2.5) (see, also, [1]),

$$G(n,u) + u = \overset{\Delta}{G}(n,u), \qquad (2.8)$$

and therefore, (2.7) imply that

$$G^*(N) = N + 2^n + G(n, u).$$
(2.9)

3. THE RESULTS

THEOREM 1. For all $A \subset \mathcal{X}^*$ with |A| = N,

$$G^*(N) \le |\Gamma_{\Delta}(A)| \le |\Gamma_{\theta}(A)| \le |\Gamma_{\delta}(A)|, \tag{3.1}$$

and all inequalities in (3.1) are equalities, if A is an initial segment in H^* -order on \mathcal{X}^* .

If S is an initial segment in the H^* -order, then so is $\Gamma_{\Delta}(S) = \Gamma_{\theta}(S) = \Gamma_{\delta}(S)$.

Therefore, Theorem 1 can be applied repeatedly and gives our general isoperimetric inequalities.

THEOREM 2. For every integer $N \in \mathbb{N}$, S_N , the N^{th} initial segment in H^* -order has for every $\ell \in \mathbb{N}$, the same ℓ^{th} boundaries in all three cases, that is,

$$\Gamma^{\ell}_{\Delta}(S_N) = \Gamma^{\ell}_{\theta}(S_N) = \Gamma^{\ell}_{\delta}(S_N),$$

and they are minimal among sets of cardinality N, that is,

$$\left|\Gamma_{\Delta}^{\ell}(S_{N})\right| = \min_{A \subset \mathcal{X}^{\bullet}, |A|=N} \left|\Gamma_{\Delta}^{\ell}(A)\right| = \min_{A \subset \mathcal{X}^{\bullet}, |A|=N} \left|\Gamma_{\tau}^{\ell}(A)\right|, \quad \tau = \theta, \delta.$$
(3.2)

4. TWO AUXILIARY RESULTS

To prove Theorem 1, we need the following inequalities.

LEMMA 1. For $0 \leq N_1 \leq N_0$,

$$G^*(N_0 + N_1 + 1) \le \max(N_0 + N_1 + 1, G^*(N_1)) + G^*(N_0) + 1.$$

LEMMA 2. For $0 \leq N_1 \leq N_0$,

$$G^*(N_0 + N_1) \le \max(N_0 + N_1, G^*(N_1)) + G^*(N_0).$$

In the proofs in Sections 5 and 6, we use simple properties of the function G.

PROPOSITION. For $u \in [0, 2^n]$ and $n \in \mathbb{N}$, G is nondecreasing in u and

$$G(n,u) \le 2^n. \tag{4.1}$$

Here, equality holds exactly if

$$u > 2^n - n - 1,$$
 (4.2)

$$u < G(n, u),$$
 (for $2^n > u > 0),$ (4.3)

and

$$G(n, u) \le u + G(n - 1, u).$$
 (4.4)

PROOF. Here (4.4) follows from (2.3), for $u_1 = 0$ and $u = u_0$. The other statements follow readily with definition (2.2).

The reader, who believes Lemmas 1 and 2, can immediately continue with Section 7.

5. PROOF OF LEMMA 1

Let $0 \leq N_1 \leq N_0$ and

$$N = N_0 + N_1 + 1 = 1 + \dots + 2^{n-1} + u = 2^n - 1 + u, \qquad (0 \le u < 2^n), \tag{5.1}$$

then $2^{n-1} - 1 \le N_0 < 2^{n+1} - 1$.

CASE 1.

$$2^{n-1} - 1 \le N_1 \le N_0 < 2^n - 1.$$
(5.2)

Here we can write

$$N_0 = 1 + 2 + \dots + 2^{n-2} + u_0 = 2^{n-1} - 1 + u_0, \qquad \left(0 \le u_0 < 2^{n-1}\right), \tag{5.3}$$

and

$$N_1 = 1 + 2 + \dots + 2^{n-2} + u_1 = 2^{n-1} - 1 + u_1, \qquad (0 \le u_1 \le u_0).$$
(5.4)

By (5.1), (5.3), and (5.4), we have that

$$u = u_0 + u_1. (5.5)$$

Thus, it follows from (5.3), (5.4), (2.9), (2.3), and (5.1) that the RHS in Lemma 1 equals $\max(u_0, G(n-1, u_1)) + (N_1 + 2^{n-1}) + N_0 + 2^{n-1} + G(n-1, u_0) + 1$ (by (5.3), (5.4), and (2.9)) $\geq G(n, u_0 + u_1) + (N_0 + N_1 + 1) + 2^n$ (by (2.3)) = LHS in Lemma 1 (by (2.9) and (5.1)). CASE 2.

$$N_0 \ge 2^n - 1. \tag{5.6}$$

Here we write

$$N_0 = 1 + \dots + 2^{n-1} + u_0, \qquad (0 \le u_0 < 2^n).$$
(5.7)

Thus by (5.1), (5.7), (2.9), (5.6), (4.1), and (5.1), RHS in Lemma $1 \ge N + N_0 + 2^n + G(n, u_0) + 1$ (by (5.1), (5.7), and (2.9)) $\ge N + 2^{n+1} + G(n, u_0)$ (by (5.6)) $\ge N + 2^{n+1} \ge N + 2^n + G(n, u)$ (by (4.1)) = LHS in Lemma 1 (by (5.1) and (2.9)). CASE 3.

$$N_1 < 2^{n-1} - 1 \le N_0 < 2^n - 1.$$
(5.8)

Here (5.3) holds, and by (5.1), (5.3), and (5.8),

$$u_0 = N - N_1 - 1 - (2^{n-1} - 1) > N - 2 \cdot (2^{n-1} - 1) - 1 = u + (2^n - 1) - 1 - 2^n + 2 = u.$$
(5.9)

So, we have, by (5.1), (5.3), (2.9), (5.9), and (4.4) that RHS in Lemma $1 \ge N + N_0 + 2^{n-1} + G(n-1, u_0) + 1$ (by (5.1), (5.3), and (2.9)) $= N + 2^n + u_0 + G(n-1, u_0)$ (by (5.3)) $> N + 2^n + u + G(n-1, u)$ (by (5.9)) $\ge N + 2^n + G(n, u)$ (by (4.4)) = LHS in Lemma 1 (by (5.1) and (2.9)).

6. PROOF OF LEMMA 2

Let $0 \leq N_1 \leq N_0$ and

$$N' = N_0 + N_1 = 1 + 2 + \dots + 2^{n-1} + u' = 2^n - 1 + u' (0 \le u' < 2^n),$$
(6.1)

then $2^{n-1} \leq N_0 < 2^{n+1} - 1$.

CASE 1. EQUATION (5.2) HOLDS. Then, also (5.3), (5.4) hold, and

$$u' + 1 = u_0 + u_1. \tag{6.2}$$

Similarly, as in the same case in the proof of Lemma 1, we have now by (5.3), (5.4), (2.9), and (6.1), that the RHS in Lemma 2

$$= \max (u_0 - 1, G(n - 1, u_1)) + N_1 + 2^{n-1} + N_0 + 2^{n-1} + G(n - 1, u_0)$$

= $\max (u_0 - 1, G(n - 1, u_1)) + N' + 2^n + G(n - 1, u_0),$ (6.3)

which together with (6.2), (2.3), (2.9), and (6.1) implies Lemma 2 for $u_1 \le u_0 - 1$, since $G(n-1, u_0 - 1) \le G(n-1, u_0)$.

Otherwise, $u_1 = u_0$, and therefore, by (4.3)

$$u_0 - 1 < u_0 \le G(n - 1, u_1). \tag{6.4}$$

Thus, by (6.2), (2.3), and (6.1), again RHS of (6.3) = max $(u_0, G(n-1, u_1)) + N' + 2^n + G(n-1, u_0) \ge N' + 2^n + G(n, u_0) = N' + 2^n + G(n, u') = LHS$ in Lemma 2.

CASE 2. EQUATION (5.6) HOLDS. Hence, also (5.7) holds. By (6.1), (5.7), and (2.9),

RHS of Lemma 2
$$\geq N' + N_0 + 2^n + G(n, u_0) \geq N' + 2^{n+1} - 1 + u_0 + G(n, u_0).$$
 (6.5)

By (6.1), (4.1), and (2.9), the RHS in (6.5) is not smaller than the LHS in Lemma 2 unless $u_0 = 0$ and $G(n, u') = 2^n$.

Assume that $u_0 = 0$ and $G(n, u') = 2^n$. Then by (4.1) and (4.2), $u' > 2^n - n - 1$. So, in this case, by (5.7) and (6.1),

$$N_1 = N' - N_0 = u' - u_0 > 2^n - n - 1.$$
(6.6)

This implies that N_1 can be represented as

$$N_1 = 1 + 2 + \dots + 2^{n-2} + u_1, u_1 > 2^{n-1} - n \left(= 2^{n-1} - (n-1) - 1 \right).$$
 (6.7)

Then, by (6.7), (5.7), (6.1), (2.9), (4.1), and (4.2), we have RHS Lemma $2 \ge N_1 + 2^{n-1} + G(n-1, u_1) + N_0 + 2^n + G(n, u_0) = N' + 2^{n+1} = LHS$ in Lemma 2, again.

CASE 3. EQUATION (5.8) HOLDS. Here, similarly to (5.9), by (6.1) and (5.8), we have that

$$u_0 = N' - N_1 - (2^{n-1} - 1) = (2^n - 1) + u' - N_1 - (2^{n-1} - 1) > u' + 1.$$
 (6.8)

Thus, since $G(n-1, \cdot)$ is nonincreasing, by (2.9), (6.8), and (4.4), RHS in Lemma $2 \ge N' + N_0 + 2^{n-1} + G(n-1, u_0) = N' + (2^{n-1}-1) + u_0 + 2^{n-1} + G(n-1, u_0) \ge N' + 2^n + (u_0-1) + G(n-1, u_0-1) \ge LHS$ in Lemma 2.

7. PROOF OF THEOREM 1

By (1.1) and (2.6), it is sufficient to show that for all $A \subset \mathcal{X}^*$ with |A| = N,

$$G^*(N) \le |\Gamma_{\Delta}(A)|. \tag{7.1}$$

We show it by induction on N. For N = 1, (7.1) obviously holds.

For $B \subset \mathcal{X}^*$ and i = 0, 1, we define

$$B_i = \{(b_1, \ldots, b_\ell) : (b_1, \ldots, b_\ell, i) \in B\},$$
(7.2)

$$B * i = \{(b_1, \ldots, b_m, i) : (b_1, \ldots, b_m) \in B\},$$
(7.3)

and

$$B_i = \{(b_1, \ldots, b_j) : B_j = i \text{ and } (b_1, \ldots, b_j) \in B\}.$$
(7.4)

Now fix $A \subset \mathcal{X}^*$ and assume w.l.o.g. that $|\hat{A}_1| \leq |\hat{A}_0|$. Write $|\hat{A}_i| = N_i$ for i = 0, 1. With these notions, if $N_0 \neq N$, then

$$\left(\widehat{\Gamma_{\Delta}A}\right)_{i} \ge \max\left(N, G^{*}(N_{i})\right), \quad \text{for } i = 0, 1,$$
(7.5)

because $A * i \subset (\widehat{\Gamma_{\Delta}A})_i$, $(\Gamma_{\Delta}A_i) * i \subset (\widehat{\Gamma_{\Delta}A})_i$ and by the induction hypothesis $|\Gamma_{\Delta}A_i| \geq G^*(N_i)$. CASE 1. $\phi \in A$. Then,

$$N = |A| = N_0 + N_1 + 1 \tag{7.6}$$

and

$$\Gamma_{\Delta}(A) = \left(\widehat{\Gamma_{\Delta}(A)}\right)_{0} \cup \left(\widehat{\Gamma_{\Delta}A}\right)_{1} \cup \{\phi\}.$$
(7.7)

Thus by (7.5),

 $|\Gamma_{\Delta}(A)| \ge \max(N_0 + N_1 + 1, G^*(N_1)) + G^*(N_0) + 1.$

Therefore, Theorem 1 follows from Lemma 1 in this case.

CASE 2. $\phi \notin A$. Then

$$N = N_0 + N_1, (7.8)$$

and we can assume that $N_0 \neq N_1$, because otherwise we can replace A by A_0 without changing the size of the set, and this change does not increase the size of " Γ_{Δ} ". We are now able to use (7.5) to obtain that

$$|\Gamma_{\Delta}(A)| \ge \max(N_0 + N_1, G^*(N_1)) + G^*(N_0),$$

because in this case $\Gamma_{\Delta}(A) = (\widehat{\Gamma_{\Delta}A})_0 \cup (\widehat{\Gamma_{\Delta}A})_1$. Finally, Theorem 1 follows from Lemma 2.

REMARK. Inspection of the proof of the theorem shows that initial segments in H^* -order may not be the only minimal sets (of course in the isomorphic sense) for which we have equality in Lemma 2 in our "extremal problems of Γ_{Δ} ". Indeed, when |A| = N = 4, $G^*(4) = 11$, the 4th initial segment in the H^* -order is $S = \{\phi, 0, 1, 00\}$ and $\Gamma_{\Delta}(S)$ contains 11 sequences, namely, $\phi, 0, 1, 00, 01, 10, 11, 000, 001, 010$, and 100. If $N_0 = 3$ and $N_1 = 1$, then both sides in Lemma 2 equal 11. If $A = \{0, 00, 01, 10\}$, then $\Gamma_{\Delta}(A)$ contains 0, 00, 01, 10, 000, 001, 010, 100, 011, 101, and 110, that is also 11 sequences. This example shows that Lemma 2 is really necessary.

REFERENCES

- 1. R. Ahlswede and N. Cai, Shadows and isoperimetry under the sequence-subsequence relation, *Combinatorica* 17 (1), 11-29, (1997).
- L.H. Harper, Optimal numberings and isoperimetric problems on graphs, J. Combin. Theory 1, 385-393, (1966).
- 3. G. Katona, The Hamming shere has minimum boundary, Studia Sci. Math. Hungar. 10, 131-140, (1975).