Isoperimetric Theorems in the Binary Sequences of Finite Lengths

R. Ahlswede and N. Cai
Fakulfät für Mathematik, Universität Bielefeld
Postfach 100131, D-33501 Bielefeld, Germany

(Received April 1997; accepted June 1997)

Abstract

We solve the isoperimetric problem for subsets in the set \mathcal{X}^{*} of binary sequences of finite length for two cases: (1) the distance counting the minimal number of insertions and deletions transforming one sequence into another; (2) the distance, where in addition also exchanges of letters are allowed.

In the earlier work, the range of the competing subsets was limited to the sequences \mathcal{X}^{n} of length n. (c) 1998 Elsevier Science Ltd. All rights reserved.

Keywords-Isoperimetry, Sequence spaces, Deletions, Insertions, Hamming distance, H^{*}-order.

1. THE PROBLEMS

The present note continues our paper [1]. We keep our earlier notation. Familiarity with [1] is not necessary but certainly helpful for an understanding of this paper.
We recall some definitions. For $\mathcal{X}=\{0,1\}$ and $n \in \mathbb{N}, \mathcal{X}^{n}$ denotes the space of binary sequences of length n. The fundamental object in our investigation is

$$
\mathcal{X}^{*}=\bigcup_{n=0}^{\infty} \mathcal{X}^{n}
$$

the space of binary sequences of finite length. Here the sequence of length 0 is understood as the empty sequence ϕ.

Basic operations are deletions ∇ and insertions Δ. Here ∇ (respectively, Δ) means the deletion (respectively, insertion) of any letter.
We introduce again two distances, θ and δ, in \mathcal{X}^{*}. For $x^{m}, y^{m \prime} \in \mathcal{X}^{*}, \theta\left(x^{m}, y^{m \prime}\right)$ counts the minimal number of insertions and deletions which transform one sequence into the other and $\delta\left(x^{m}, y^{m \prime}\right)$ counts the minimal number of operations, if also exchanges of letters are allowed. For $\tau=\theta, \delta$, we define for $A \subset \mathcal{X}^{*}$

$$
\Gamma_{\tau}^{\ell}(A)=\left\{x^{m \prime}: \text { there exists an } a^{m} \in A \text { with } \tau\left(x^{m \prime}, a^{m}\right) \leq \ell\right\}
$$

We abbreviate $\Gamma_{\tau}^{1}=\Gamma_{\tau}$.
In [1], we showed that the initial segments of size u in Harper's order (introduced in [2]), or in short "the $u^{\text {th }}$ initial segments in H-order" minimizes $\left|\Gamma_{\theta}^{\ell}(A)\right|,\left|\Gamma_{\delta}^{\ell}(A)\right|,\left|\Delta^{\ell} A\right|$, and $\left|\Delta^{\ell} A\right|$ for
$A \subset \mathcal{X}^{n}$ with $|A|=u$, where $\Delta^{\ell} A$ is the subset of $\mathcal{X}^{n+\ell}$ obtained by inserting ℓ letters to the sequences in A and Δ^{ℓ} is defined analogously.
We introduce now $\Gamma_{\Delta}^{\ell}(A)=\left(\bigcup_{i=0}^{\ell} \Delta^{i} A\right)\left(\Gamma_{\Delta}^{1}=\Gamma_{\Delta}\right)$.
In this note, we change the range of A from subsets of \mathcal{X}^{n} to subsets of \mathcal{X}^{*}.
Clearly,

$$
\begin{equation*}
\Gamma_{\Delta}^{\ell}(A) \subset \Gamma_{\theta}^{\ell}(A) \subset \Gamma_{\delta}^{\ell}(A), \quad \text { for all } A \subset \mathcal{X}^{*} \tag{1.1}
\end{equation*}
$$

The role of the H-order for the former problems in [1] for the new isoperimetric problems is played by what we call H^{*}-order. Its definition follows next.

2. THE H^{*}-ORDER

Recalling that x^{n} precedes y^{n} in the squashed order on $\left\{x^{n} \in \mathcal{X}^{n}: \sum_{i=1}^{n} x_{i}=k\right\}$ exactly if $x_{t}<y_{t}$, if t is the largest number s with $x_{s} \neq y_{s}$, and that x^{n} precedes y^{n} in the H-order on \mathcal{X}^{n}, exactly if $\sum_{t=1}^{n} x_{t}<\sum_{t=1}^{n} y_{t}$ or $\sum_{t=1}^{n} x_{t}=\sum_{t=1}^{n} y_{t}$ and ($1-x_{1}, \ldots, 1-x_{n}$) precedes $\left(1-y_{1}, \ldots, 1-y_{n}\right)$ in the squashed order, we introduce the following H^{*}-order. For $x^{n}, x^{m \prime} \in \mathcal{X}^{*}$, x^{m} precedes $y^{m \prime}$, exactly if $m<m^{\prime}$ or $m=m^{\prime}$ and x^{m} precedes $y^{m \prime}$ in the H-order.

Katona [3] has shown that for any integers n and $u \in\left[0,2^{n}\right]$ there is a unique binomial representation

$$
\begin{equation*}
u=\binom{n}{n}+\cdots+\binom{n}{k+1}+\binom{\alpha_{k}}{k}+\cdots+\binom{\alpha_{t}}{t} \tag{2.1}
\end{equation*}
$$

(with $n>\alpha_{k}>\cdots>\alpha_{t} \geq t \geq 1$). He introduced the function

$$
\begin{equation*}
G(n, u)=\binom{n}{n}+\cdots+\binom{n}{k+1}+\binom{n}{k}+\binom{\alpha_{k}}{k-1}+\cdots+\binom{\alpha_{t}}{t-1} \tag{2.2}
\end{equation*}
$$

and proved that for $0 \leq u_{1} \leq u_{0}$ and $u \leq u_{0}+u_{1}$,

$$
\begin{equation*}
G(n, u) \leq \max \left(u_{0}, G\left(n-1, u_{1}\right)\right)+G\left(n-1, u_{0}\right) \tag{2.3}
\end{equation*}
$$

It immediately follows from the uniqueness of the representation (2.1) that every positive integer N can be uniquely represented as

$$
\begin{align*}
N & =1+2+\cdots+2^{n-1}+\binom{n}{n}+\cdots+\binom{n}{k+1}+\binom{\alpha_{k}}{k}+\cdots+\binom{\alpha_{t}}{t} \tag{2.4}\\
& =1+2+\cdots+2^{n-1}+u\left(0 \leq u<2^{n} \text { and } u \text { as in }(2.1)\right) .
\end{align*}
$$

We introduced in [1] (for u as in (2.1))

$$
\begin{equation*}
\stackrel{\Delta}{G}(n, u)=\binom{n+1}{n+1}+\cdots+\binom{n+1}{k+1}+\binom{\alpha_{k}+1}{k}+\cdots+\binom{\alpha_{t}+1}{t} \tag{2.5}
\end{equation*}
$$

and proved (in Lemma 6) that ΔS is the $\stackrel{\Delta}{G}(n,|S|)^{\text {th }}$ initial segment in the H-order on \mathcal{X}^{n+1}, if S is an initial segment in the H-order on \mathcal{X}^{n}.

Consequently, by the definition of our H^{*}-order,

$$
\begin{equation*}
\Gamma_{\Delta}\left(S^{\prime}\right)=\Gamma_{\theta}\left(S^{\prime}\right)=\Gamma_{\delta}\left(S^{\prime}\right) \tag{2.6}
\end{equation*}
$$

is the $G^{*}(N)^{\text {th }}$ initial segment in the H^{*}-order on \mathcal{X}^{*}, for the $N^{\text {th }}$ initial segment S^{\prime} in the H^{*}-order on \mathcal{X}^{*}, if we introduce

$$
\begin{equation*}
G^{*}(N)=1+2+\cdots+2^{n-1}+2^{n}+\stackrel{\Delta}{G}(n, u)=\left(2^{n+1}-1\right)+\stackrel{\Delta}{G}(n, u)(\text { for } N \text { in (2.4)). } \tag{2.7}
\end{equation*}
$$

By (2.1), (2.4), and (2.5) (see, also, [1]),

$$
\begin{equation*}
G(n, u)+u=\stackrel{\Delta}{G}(n, u) \tag{2.8}
\end{equation*}
$$

and therefore, (2.7) imply that

$$
\begin{equation*}
G^{*}(N)=N+2^{n}+G(n, u) \tag{2.9}
\end{equation*}
$$

3. THE RESULTS

Theorem 1. For all $A \subset \mathcal{X}^{*}$ with $|A|=N$,

$$
\begin{equation*}
G^{*}(N) \leq\left|\Gamma_{\Delta}(A)\right| \leq\left|\Gamma_{\theta}(A)\right| \leq\left|\Gamma_{\delta}(A)\right|, \tag{3.1}
\end{equation*}
$$

and all inequalities in (3.1) are equalities, if A is an initial segment in H^{*}-order on \mathcal{X}^{*}.
If S is an initial segment in the H^{*}-order, then so is $\Gamma_{\Delta}(S)=\Gamma_{\theta}(S)=\Gamma_{\delta}(S)$.
Therefore, Theorem 1 can be applied repeatedly and gives our general isoperimetric inequalities.
Theorem 2. For every integer $N \in \mathbb{N}, S_{N}$, the $N^{\text {th }}$ initial segment in H^{*}-order has for every $\ell \in \mathbb{N}$, the same $\ell^{\text {th }}$ boundaries in all three cases, that is,

$$
\Gamma_{\Delta}^{\ell}\left(S_{N}\right)=\Gamma_{\theta}^{\ell}\left(S_{N}\right)=\Gamma_{\delta}^{\ell}\left(S_{N}\right)
$$

and they are minimal among sets of cardinality N, that is,

$$
\begin{equation*}
\left|\Gamma_{\Delta}^{\ell}\left(S_{N}\right)\right|=\min _{A \subset \mathcal{X}^{*},|A|=N}\left|\Gamma_{\Delta}^{\ell}(A)\right|=\min _{A \subset \mathcal{X}^{*},|A|=N}\left|\Gamma_{\tau}^{\ell}(A)\right|, \quad \tau=\theta, \delta \tag{3.2}
\end{equation*}
$$

4. TWO AUXILIARY RESULTS

To prove Theorem 1, we need the following inequalities.
Lemma 1. For $0 \leq N_{1} \leq N_{0}$,

$$
G^{*}\left(N_{0}+N_{1}+1\right) \leq \max \left(N_{0}+N_{1}+1, G^{*}\left(N_{1}\right)\right)+G^{*}\left(N_{0}\right)+1
$$

Lemma 2. For $0 \leq N_{1} \leq N_{0}$,

$$
G^{*}\left(N_{0}+N_{1}\right) \leq \max \left(N_{0}+N_{1}, G^{*}\left(N_{1}\right)\right)+G^{*}\left(N_{0}\right)
$$

In the proofs in Sections 5 and 6, we use simple properties of the function G.
Proposition. For $u \in\left[0,2^{n}\right]$ and $n \in \mathbb{N}, G$ is nondecreasing in u and

$$
\begin{equation*}
G(n, u) \leq 2^{n} \tag{4.1}
\end{equation*}
$$

Here, equality holds exactly if

$$
\begin{gather*}
u>2^{n}-n-1 \tag{4.2}\\
u<G(n, u), \quad\left(\text { for } 2^{n}>u>0\right) \tag{4.3}
\end{gather*}
$$

and

$$
\begin{equation*}
G(n, u) \leq u+G(n-1, u) \tag{4.4}
\end{equation*}
$$

Proof. Here (4.4) follows from (2.3), for $u_{1}=0$ and $u=u_{0}$. The other statements follow readily with definition (2.2).

The reader, who believes Lemmas 1 and 2, can immediately continue with Section 7.

5. PROOF OF LEMMA 1

Let $0 \leq N_{1} \leq N_{0}$ and

$$
\begin{equation*}
N=N_{0}+N_{1}+1=1+\cdots+2^{n-1}+u=2^{n}-1+u, \quad\left(0 \leq u<2^{n}\right) \tag{5.1}
\end{equation*}
$$

then $2^{n-1}-1 \leq N_{0}<2^{n+1}-1$.
Case 1.

$$
\begin{equation*}
2^{n-1}-1 \leq N_{1} \leq N_{0}<2^{n}-1 \tag{5.2}
\end{equation*}
$$

Here we can write

$$
\begin{equation*}
N_{0}=1+2+\cdots+2^{n-2}+u_{0}=2^{n-1}-1+u_{0}, \quad\left(0 \leq u_{0}<2^{n-1}\right) \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{1}=1+2+\cdots+2^{n-2}+u_{1}=2^{n-1}-1+u_{1}, \quad\left(0 \leq u_{1} \leq u_{0}\right) \tag{5.4}
\end{equation*}
$$

By (5.1), (5.3), and (5.4), we have that

$$
\begin{equation*}
u=u_{0}+u_{1} . \tag{5.5}
\end{equation*}
$$

Thus, it follows from (5.3), (5.4), (2.9), (2.3), and (5.1) that the RHS in Lemma 1 equals $\max \left(u_{0}, G\left(n-1, u_{1}\right)\right)+\left(N_{1}+2^{n-1}\right)+N_{0}+2^{n-1}+G\left(n-1, u_{0}\right)+1$ (by (5.3), (5.4), and (2.9)) $\geq G\left(n, u_{0}+u_{1}\right)+\left(N_{0}+N_{1}+1\right)+2^{n}$ (by (2.3)) = LHS in Lemma 1 (by (2.9) and (5.1)).
Case 2.

$$
\begin{equation*}
N_{0} \geq 2^{n}-1 \tag{5.6}
\end{equation*}
$$

Here we write

$$
\begin{equation*}
N_{0}=1+\cdots+2^{n-1}+u_{0}, \quad\left(0 \leq u_{0}<2^{n}\right) . \tag{5.7}
\end{equation*}
$$

Thus by (5.1), (5.7), (2.9), (5.6), (4.1), and (5.1), RHS in Lemma $1 \geq N+N_{0}+2^{n}+G\left(n, u_{0}\right)+1$ (by (5.1), (5.7), and (2.9)) $\geq N+2^{n+1}+G\left(n, u_{0}\right)$ (by (5.6)) $\geq N+2^{n+1} \geq N+2^{n}+G(n, u)$ (by (4.1)) = LHS in Lemma 1 (by (5.1) and (2.9)).

Case 3.

$$
\begin{equation*}
N_{1}<2^{n-1}-1 \leq N_{0}<2^{n}-1 \tag{5.8}
\end{equation*}
$$

Here (5.3) holds, and by (5.1), (5.3), and (5.8),

$$
\begin{equation*}
u_{0}=N-N_{1}-1-\left(2^{n-1}-1\right)>N-2 \cdot\left(2^{n-1}-1\right)-1=u+\left(2^{n}-1\right)-1-2^{n}+2=u . \tag{5.9}
\end{equation*}
$$

So, we have, by (5.1), (5.3), (2.9), (5.9), and (4.4) that RHS in Lemma $1 \geq N+N_{0}+2^{n-1}+G(n-1$, $\left.u_{0}\right)+1\left(\right.$ by $(5.1),(5.3)$, and (2.9)) $=N+2^{n}+u_{0}+G\left(n-1, u_{0}\right)($ by $(5.3))>N+2^{n}+u+G(n-1, u)$ (by (5.9)) $\geq N+2^{n}+G(n, u)$ (by (4.4)) $=$ LHS in Lemma 1 (by (5.1) and (2.9)).

6. PROOF OF LEMMA 2

Let $0 \leq N_{1} \leq N_{0}$ and

$$
\begin{equation*}
N^{\prime}=N_{0}+N_{1}=1+2+\cdots+2^{n-1}+u^{\prime}=2^{n}-1+u^{\prime}\left(0 \leq u^{\prime}<2^{n}\right), \tag{6.1}
\end{equation*}
$$

then $2^{n-1} \leq N_{0}<2^{n+1}-1$.
Case 1. Equation (5.2) Holds. Then, also (5.3),(5.4) hold, and

$$
\begin{equation*}
u^{\prime}+1=u_{0}+u_{1} . \tag{6.2}
\end{equation*}
$$

Similarly, as in the same case in the proof of Lemma 1, we have now by (5.3), (5.4), (2.9), and (6.1), that the RHS in Lemma 2

$$
\begin{align*}
& =\max \left(u_{0}-1, G\left(n-1, u_{1}\right)\right)+N_{1}+2^{n-1}+N_{0}+2^{n-1}+G\left(n-1, u_{0}\right) \\
& =\max \left(u_{0}-1, G\left(n-1, u_{1}\right)\right)+N^{\prime}+2^{n}+G\left(n-1, u_{0}\right) \tag{6.3}
\end{align*}
$$

which together with (6.2), (2.3), (2.9), and (6.1) implies Lemma 2 for $u_{1} \leq u_{0}-1$, since $G(n-1$, $\left.u_{0}-1\right) \leq G\left(n-1, u_{0}\right)$.

Otherwise, $u_{1}=u_{0}$, and therefore, by (4.3)

$$
\begin{equation*}
u_{0}-1<u_{0} \leq G\left(n-1, u_{1}\right) \tag{6.4}
\end{equation*}
$$

Thus, by (6.2), (2.3), and (6.1), again RHS of (6.3) $=\max \left(u_{0}, G\left(n-1, u_{1}\right)\right)+N^{\prime}+2^{n}+G(n-1$, $\left.u_{0}\right) \geq N^{\prime}+2^{n}+G\left(n, u_{0}+u_{1}\right) \geq N^{\prime}+2^{n}+G\left(n, u^{\prime}\right)=$ LHS in Lemma 2.
Case 2. Equation (5.6) Holds. Hence, also (5.7) holds. By (6.1), (5.7), and (2.9),

$$
\begin{equation*}
\text { RHS of Lemma } 2 \geq N^{\prime}+N_{0}+2^{n}+G\left(n, u_{0}\right) \geq N^{\prime}+2^{n+1}-1+u_{0}+G\left(n, u_{0}\right) \tag{6.5}
\end{equation*}
$$

By (6.1), (4.1), and (2.9), the RHS in (6.5) is not smaller than the LHS in Lemma 2 unless $u_{0}=0$ and $G\left(n, u^{\prime}\right)=2^{n}$.

Assume that $u_{0}=0$ and $G\left(n, u^{\prime}\right)=2^{n}$. Then by (4.1) and (4.2), $u^{\prime}>2^{n}-n-1$. So, in this case, by (5.7) and (6.1),

$$
\begin{equation*}
N_{1}=N^{\prime}-N_{0}=u^{\prime}-u_{0}>2^{n}-n-1 \tag{6.6}
\end{equation*}
$$

This implies that N_{1} can be represented as

$$
\begin{equation*}
N_{1}=1+2+\cdots+2^{n-2}+u_{1}, u_{1}>2^{n-1}-n\left(=2^{n-1}-(n-1)-1\right) \tag{6.7}
\end{equation*}
$$

Then, by (6.7), (5.7), (6.1), (2.9), (4.1), and (4.2), we have RHS Lemma $2 \geq N_{1}+2^{n-1}+G(n-1$, $\left.u_{1}\right)+N_{0}+2^{n}+G\left(n, u_{0}\right)=N^{\prime}+2^{n+1}=$ LHS in Lemma 2, again.
Case 3. Equation (5.8) Holds. Here, similarly to (5.9), by (6.1) and (5.8), we have that

$$
\begin{equation*}
u_{0}=N^{\prime}-N_{1}-\left(2^{n-1}-1\right)=\left(2^{n}-1\right)+u^{\prime}-N_{1}-\left(2^{n-1}-1\right)>u^{\prime}+1 \tag{6.8}
\end{equation*}
$$

Thus, since $G(n-1, \cdot)$ is nonincreasing, by (2.9), (6.8), and (4.4), RHS in Lemma $2 \geq N^{\prime}+N_{0}+$ $2^{n-1}+G\left(n-1, u_{0}\right)=N^{\prime}+\left(2^{n-1}-1\right)+u_{0}+2^{n-1}+G\left(n-1, u_{0}\right) \geq N^{\prime}+2^{n}+\left(u_{0}-1\right)+G\left(n-1, u_{0}-1\right) \geq$ LHS in Lemma 2.

7. PROOF OF THEOREM 1

By (1.1) and (2.6), it is sufficient to show that for all $A \subset \mathcal{X}^{*}$ with $|A|=N$,

$$
\begin{equation*}
G^{*}(N) \leq\left|\Gamma_{\Delta}(A)\right| \tag{7.1}
\end{equation*}
$$

We show it by induction on N. For $N=1$, (7.1) obviously holds.
For $B \subset \mathcal{X}^{*}$ and $i=0,1$, we define

$$
\begin{align*}
B_{i} & =\left\{\left(b_{1}, \ldots, b_{\ell}\right):\left(b_{1}, \ldots, b_{\ell}, i\right) \in B\right\} \tag{7.2}\\
B * i & =\left\{\left(b_{1}, \ldots, b_{m}, i\right):\left(b_{1}, \ldots, b_{m}\right) \in B\right\} \tag{7.3}
\end{align*}
$$

and

$$
\begin{equation*}
\hat{B}_{i}=\left\{\left(b_{1}, \ldots, b_{j}\right): B_{j}=i \text { and }\left(b_{1}, \ldots, b_{j}\right) \in B\right\} \tag{7.4}
\end{equation*}
$$

Now fix $A \subset \mathcal{X}^{*}$ and assume w.l.o.g. that $\left|\hat{A}_{1}\right| \leq\left|\hat{A}_{0}\right|$. Write $\left|\hat{A}_{i}\right|=N_{i}$ for $i=0,1$. With these notions, if $N_{0} \neq N$, then

$$
\begin{equation*}
\left|\left(\widehat{\Gamma_{\Delta} A}\right)_{i}\right| \geq \max \left(N, G^{*}\left(N_{i}\right)\right), \quad \text { for } i=0,1 \tag{7.5}
\end{equation*}
$$

because $A * i \subset\left(\widehat{\Gamma_{\Delta} A}\right)_{i},\left(\Gamma_{\Delta} A_{i}\right) * i \subset\left(\widehat{\Gamma_{\Delta} A}\right)_{i}$ and by the induction hypothesis $\left|\Gamma_{\Delta} A_{i}\right| \geq G^{*}\left(N_{i}\right)$. Case 1. $\phi \in A$. Then,

$$
\begin{equation*}
N=|A|=N_{0}+N_{1}+1 \tag{7.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{\Delta}(A)=\left(\widehat{\Gamma_{\Delta}(A)}\right)_{0} \cup\left(\widehat{\Gamma_{\Delta} A}\right)_{1} \cup\{\phi\} \tag{7.7}
\end{equation*}
$$

Thus by (7.5),

$$
\left|\Gamma_{\Delta}(A)\right| \geq \max \left(N_{0}+N_{1}+1, G^{*}\left(N_{1}\right)\right)+G^{*}\left(N_{0}\right)+1
$$

Therefore, Theorem 1 follows from Lemma 1 in this case.
Case 2. $\phi \notin A$. Then

$$
\begin{equation*}
N=N_{0}+N_{1} \tag{7.8}
\end{equation*}
$$

and we can assume that $N_{0} \neq N_{1}$, because otherwise we can replace A by A_{0} without changing the size of the set, and this change does not increase the size of " Γ_{Δ} ". We are now able to use (7.5) to obtain that

$$
\left|\Gamma_{\Delta}(A)\right| \geq \max \left(N_{0}+N_{1}, G^{*}\left(N_{1}\right)\right)+G^{*}\left(N_{0}\right),
$$

because in this case $\Gamma_{\Delta}(A)=\left(\widehat{\Gamma_{\Delta A}}\right)_{0} \cup\left(\widehat{\Gamma_{\Delta A} A}\right)_{1}$. Finally, Theorem 1 follows from Lemma 2.
REMARK. Inspection of the proof of the theorem shows that initial segments in H^{*}-order may not be the only minimal sets (of course in the isomorphic sense) for which we have equality in Lemma 2 in our "extremal problems of Γ_{Δ} ". Indeed, when $|A|=N=4, G^{*}(4)=11$, the $4^{\text {th }}$ initial segment in the H^{*}-order is $S=\{\phi, 0,1,00\}$ and $\Gamma_{\Delta}(S)$ contains 11 sequences, namely, $\phi, 0,1,00,01,10,11,000,001,010$, and 100 . If $N_{0}=3$ and $N_{1}=1$, then both sides in Lemma 2 equal 11. If $A=\{0,00,01,10\}$, then $\Gamma_{\Delta}(A)$ contains $0,00,01,10,000,001,010,100,011,101$, and 110 , that is also 11 sequences. This example shows that Lemma 2 is really necessary.

REFERENCES

1. R. Ahlswede and N. Cai, Shadows and isoperimetry under the sequence-subsequence relation, Combinatorica 17 (1), 11-29, (1997).
2. L.H. Harper, Optimal numberings and isoperimetric problems on graphs, J. Combin. Theory 1, 385-393, (1966).
3. G. Katona, The Hamming shere has minimum boundary, Studia Sci. Math. Hungar. 10, 131-140, (1975).
