Applied Mathematics
Letters

A Counterexample in Rate-Distortion Theory for Correlated Sources

R. Ahlswede and N. Cai
Fakultät für Mathematik, Universität Bielefeld
D-33501 Bielefeld, Germany

(Received March 1999; accepted April 1999)
Keywords-Correlated sources, Fidelity criteria, Rate region, Two helper problem.

In the forthcoming paper "Multi-terminal source coding-achievable rates and reliability" Haroutunian claims the solution of an outstanding problem in source coding, namely, a characterisation of the rate region for discrete memoryless correlated sources with two separate encoders and one decoder under two fidelity criteria.

Such a source model is specified by a sequence $\left(X^{n}, Y^{n}\right)_{n=1}^{\infty}$ with generic random variables (X, Y) taking values in $\mathcal{X} \times \mathcal{Y}$ and having joint distribution $P_{X Y}=P^{*} \times W^{*}$ and (sum-type) distortion measures with per letter distortions $d_{\mathcal{X}}: \mathcal{X} \times \mathcal{U} \rightarrow \mathbb{R}^{+}$and $d_{\mathcal{Y}}: \mathcal{Y} \times \mathcal{V} \rightarrow \mathbb{R}^{+}$.

For a given pair of nonnegative numbers $\Delta=\left(\Delta_{\mathcal{X}}, \Delta_{y}\right)$ and $E>0$ denote by $\mathcal{R}(E, \Delta)$ the set of nonnegative pairs of numbers ($R_{\mathcal{X}}, R_{\mathcal{Y}}$) such that for all $\varepsilon>0$ and sufficiently large n there exists (encoding) functions $f_{\mathcal{X}}: \mathcal{X}^{n} \rightarrow \mathbb{N}, f_{\mathcal{Y}}: \mathcal{X}^{n} \rightarrow \mathbb{N}$, and a (decoding) function $F: \mathbb{N} \times \mathbb{N} \rightarrow \mathcal{U}^{n} \times \mathcal{V}^{n}$ with rate $\left(f_{\mathcal{X}}\right) \leq R_{\mathcal{X}}+\varepsilon$, rate $\left(f_{\mathcal{Y}}\right) \leq R_{\mathcal{Y}}+\varepsilon$ such that for $\left(U^{n}, V^{n}\right) \triangleq F\left(f_{\mathcal{X}}\left(X^{n}\right), f_{\mathcal{Y}}\left(Y^{n}\right)\right)$

$$
1-\operatorname{Pr}\left(\left\{\frac{1}{n} d_{\mathcal{X}}\left(X^{n}, Y^{n}\right) \leq \Delta_{\mathcal{X}}, \frac{1}{n} d_{\mathcal{Y}}\left(Y^{n}, V^{n}\right) \leq \Delta_{\mathcal{Y}}\right\}\right) \leq \exp \{-n E\} .
$$

Now, the paper presents an inner bound on $\mathcal{R}(E, \Delta)$ and an outer bound, called $\mathcal{R}_{s p}(E, \Delta)$. By passing with E to 0 those bounds coincide. Unfortunately the outer bound $\mathcal{R}_{s p}(E, \Delta)$ is incorrect.

We recall first its definition and then we give our counterexample.
For any $E>0$ define

$$
\alpha(E)=\left\{P \times W \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}): D\left(P \times W \| P^{*} \times W^{*}\right) \leq E\right\} .
$$

Denote by $\varphi=\left(\varphi_{\mathcal{X}}, \varphi_{\mathcal{y}}\right)$ a function which associates pairs of PDs $(P, P W)$ with pairs of conditional PDs $\left(Q_{P}, G_{P W}\right)$, i.e., $\varphi(P, P W)=\left(\varphi_{\mathcal{X}}(P), \varphi_{\mathcal{Y}}(P W)\right)=\left(Q_{P}, G_{P W}\right)$, such that

$$
\begin{equation*}
\mathbb{E}_{P, Q_{P}} d_{\mathcal{X}}(X, U) \triangleq \sum_{x, u} P(x) Q_{P}(u \mid x) d_{\mathcal{X}}(x, u) \leq \Delta_{\mathcal{X}} \tag{1}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\mathbb{E}_{P W, G_{P W}} d y(Y, V) \triangleq \sum_{y, v} P W(y) G_{P W}(v \mid y) d y(y, v) \leq \Delta_{y} \tag{2}
\end{equation*}
$$

\]

Here the RVs (X, Y, U, V) have the joint distribution

$$
\begin{align*}
& P_{X Y U V}(x, y, u, v)=P(x) W(y \mid x) Q_{P}(u \mid x) G_{P W}(v \mid y) \\
& \quad \text { for } x \in \mathcal{X}, \quad y \in \mathcal{Y}, \quad u \in \mathcal{U}, \quad \text { and } \quad v \in \mathcal{V} . \tag{3}
\end{align*}
$$

To indicate the dependence on φ we write $I_{P, W, \varphi}(X \wedge U \mid V)$ for $I(X \wedge U \mid V), I_{P, W, \varphi}(X \wedge U \mid V)$ for $I(X Y \wedge U V)$, and so on.

Now we are ready to define the outer region in terms of the three inequalities
(i) $R_{\mathcal{X}} \geq \max _{P \times W \in \alpha(E)} I_{P, W, \varphi}(X \wedge U \mid V)$,
(ii) $R_{y} \geq \max _{P \times W \in \alpha(E)} I_{P, W, \varphi}(Y \wedge V \mid U)$, and
(iii) $R_{\mathcal{X}}+R_{\mathcal{Y}} \geq \max _{P \times W \in \alpha(E)} I_{P, W, \varphi}(X Y \wedge U V)$,
as follows:

$$
\begin{equation*}
\mathcal{R}_{s p}(E, \Delta)=\bigcup_{\varphi \in \Phi(\Delta)} \mathcal{R}_{s p}(E, \Delta, \varphi) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{R}_{s p}(E, \Delta, \varphi)=\left\{\left(R_{\mathcal{X}}, R_{\mathcal{Y}}\right): R_{\mathcal{X}} \text { and } R_{\mathcal{Y}} \text { satisfies (i), (ii), and (iii) }\right\} \tag{5}
\end{equation*}
$$

and $\Phi(\Delta)$ denotes the set of all functions φ, for which (1) and (2) hold.
This description invokes equation (3), which is equivalent to the Markovity

$$
U \ominus X \ominus Y \ominus V .
$$

The "proof" for $\mathcal{R}(E, \Delta) \subset R_{s p}(E, \Delta)$ has a gap; namely, this Markovity does not appear in it. Moreover, the gap cannot be closed, because the statement itself is false.
Example. $\mathcal{R}(E, \Delta) \not \subset \mathcal{R}_{s p}(E, \Delta)$.
Choose $\mathcal{X}=\mathcal{Y}=\mathcal{U}=\mathcal{V}=\{0,1\}$, the source distribution $P^{*} \times W^{*}$ as $P^{*}(0)=P^{*}(1)=1 / 2$, $W^{*}(x \mid x)=1-p$ for $x \in \mathcal{X}$ and any $p \in(0,1 / 2)$, and the distortion measures $d_{\mathcal{X}}, d_{\mathcal{Y}}$ as Hamming distance.
It is easy to see that for $\Delta=(0, \delta)$ with $\delta>p$ and some $E_{\delta} \triangleq-\delta \log p-(1-\delta) \log (1-p)-h(\delta)>$ 0

$$
\begin{equation*}
R=\left(R_{\mathcal{X}}, R_{\mathcal{Y}}\right)=(1,0) \in \mathcal{R}\left(E_{\delta}, \Delta\right) \tag{6}
\end{equation*}
$$

but

$$
\begin{equation*}
R=(1,0) \notin \mathcal{R}_{s p}\left(E_{\delta}, \Delta\right) \tag{7}
\end{equation*}
$$

Indeed, to verify (6), consider the code $\left(f_{\mathcal{X}}, f_{\mathcal{Y}}, F\right)$ defined by an injective $f_{\mathcal{X}}$, a constant $f_{\mathcal{Y}}$, and for all $x^{n} \in \mathcal{X}^{n}, y^{n} \in \mathcal{Y}^{n}$

$$
\begin{equation*}
F\left(f_{\mathcal{X}}\left(x^{n}\right), f_{\mathcal{Y}}\left(y^{n}\right)\right)=\left(x^{n}, x^{n}\right) . \tag{8}
\end{equation*}
$$

Thus, $R_{\mathcal{X}}=\operatorname{rate}\left(f_{\mathcal{X}}\right)=1$ and $R_{\mathcal{Y}}=\operatorname{rate}\left(f_{\mathcal{Y}}\right)=0$.
For $\left(U^{n}, V^{n}\right) \triangleq F\left(f_{\mathcal{X}}\left(X^{n}\right), f_{\mathcal{Y}}\left(Y^{n}\right)\right)=\left(X^{n}, X^{n}\right)$, clearly

$$
\begin{aligned}
1-\operatorname{Pr}\left(d_{H}\left(X^{n}, U^{n}\right)=0, d_{H}\left(Y^{n}, V^{n}\right) \leq \delta\right) & =\operatorname{Pr}\left(d_{H}\left(X^{n}, Y^{n}\right)>\delta\right)=\sum_{k>n \delta}\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =2^{-n(-\delta \log p-(1-\delta) \log (1-p)-h(\delta)+o(1))}
\end{aligned}
$$

(since $\delta>p$) $=2^{-n E_{\delta}}$, and (6) holds.
It remains to show equation (7). Obviously, for all $E>0, P^{*} \times W^{*} \in \alpha(E)$, because $D\left(P^{*} \times W^{*} \mid P^{*} \times W^{*}\right)=0 \leq E$. For any $\varphi \in \Phi(\Delta), \Delta=(0, \delta)$, we have for $(Q, W)=$
$\varphi\left(P^{*}, P^{*} W^{*}\right) \sum_{x, u} P^{*}(x) Q(u \mid x) d_{H}(x, u)=0$ and therefore $Q(x \mid x)=1$ for $x \in \mathcal{X}$. This implies the first equality in

$$
I_{P^{*}, W^{*}, \varphi}(Y \wedge V \mid U)=I_{P^{*}, W^{*}, \varphi}(Y \wedge V \mid X)=0,
$$

and the second equality holds, because $R y=0$ and (ii) should hold. Therefore, we have the Markovity

$$
\begin{equation*}
Y \ominus X \ominus V . \tag{9}
\end{equation*}
$$

This and (3) yield

$$
\begin{equation*}
P_{X Y V}(x, y, v)=P^{*}(x) W^{*}(x \mid x) G(v \mid y)=P_{X Y}(x, y) P_{v \mid x}(v \mid x), \quad \text { for all } x, y, v . \tag{10}
\end{equation*}
$$

Since for all $x, y P_{X Y}(x, y)=P^{*}(x) W^{*}(y \mid x)>0$, the second equality in (10) implies that

$$
P_{V \mid X}(v \mid x)=G(v \mid y), \quad \text { for all } x, y
$$

This implies in particular that Y and V are independent and that we can write $G(v \mid y)$ as $\tilde{G}(v)$. In this notation

$$
\begin{aligned}
\Delta y & \geq \sum_{y, v} P^{*} W^{*}(y) \tilde{G}(y) d_{H}(y, v) \\
& =\frac{1}{2} \sum_{y, v} \tilde{G}(y) d_{H}(y, v)=\frac{1}{2} .
\end{aligned}
$$

Consequently, for every $E>0, \delta<1 / 2, \Delta=(0, \delta)$, and every ($\mathcal{R}_{\mathcal{X}}, 0$) necessarily ($\left.\mathcal{R}_{\mathcal{X}}, 0\right) \notin$ $\mathcal{R}_{s p}(E, \Delta)$. In particular for E_{δ}, (7) holds.
Remarks.

1. We have chosen the extremal points $R=(1,0), \Delta=(0, \delta)$ only to get a simple example. By continuity there are also counterexamples of the form $R=\left(1-\eta_{1}, \eta_{2}\right), \Delta=\left(\eta_{3}, \eta_{1}\right)$ with small η_{1}, η_{2}, and η_{3}.
2. Unfortunately it cannot be excluded that the same kind of mistake has entered other papers in this area.

[^0]: 0893-9659/99/\$ - see front matter. (C) 1999 Elsevier Science Ltd. All rights reserved. Typeset by ANS-TEX PII:S0893-9659(99)00093-2

