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In the forthcoming paper  "Multi-terminal source coding--achievable rates and reliability" 

Haroutunian claims the solution of an outstanding problem in source coding, namely, a character-  
isation of the rate region for discrete memoryless correlated sources with two separate encoders 

and one decoder under two fidelity criteria. 

/X~ y n ~  with generic random variables Such a source model is specified by a sequence t , In=1 
(X, Y)  taking values in X x y and having joint distribution PxY = P* x W* and (sum-type) 
distortion measures with per letter distortions dx : X x /d  -* R + and dy : y x V -* 1R +. 

For a given pair of nonnegative numbers A = (Ax ,  Ay)  and E > 0 denote by T/(E, A) the set of 

nonnegative pairs of numbers (Rx,  Ry)  such that  for all e > 0 and sufficiently large n there exists 
(encoding) fimetions f x  : X n ~ N, f y  : X n ~ N, and a (decoding) function F : N x N ~ 5/~ x V ~ 
with rate ( f x )  <- R x  + e, rate ( fy )  _< R y  + e such tha t  for (U n, V n) ~= F ( f x ( x n ) ,  f y ( y n ) )  

( { - 1  n - l d y ( Y ~ , V ' ~ ) < A y } ) _ <  e x p { - n E } .  1 - Pr  d x ( X  n, yn)  < AX ' n 

Now, the paper  presents an inner bound on 7~(E, A) and an outer bound, called ~ s p ( E ,  A). 

By passing with E to 0 those bounds coincide. Unfortunately the outer bound ~ p ( E ,  A) is 
incorrect. 

We recall first its definition and then we give our counterexample. 
For any E > 0 define 

c ~ ( E ) = { P x W E T ~ ( X x y ) : D ( P x W I I  P* x W * ) < E } .  

Denote by ~ = (~x ,  ~y )  a function which associates pairs of PDs (P, P W )  with pairs of condi- 
tional PDs (Qp, Gpw) ,  i.e., ~(P, P W )  = (~x(P) ,  ~ y ( P W ) )  = (Qp, Gpw) ,  such tha t  

Ep, Qpdx(X, U) a= ~ P(x)Qp(u Ix)dx(x, u) < A x  
X~U 

(1) 
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and 

Epw, dy(Y, V) PW(y)apw(  Iv)dy(y, < Ay. 
y,v 

Here the RVs (X, Y, U, V) have the joint distribution 

P x v v y ( x , y , u , v )  = P(x)W(y  [ x)Qp(u I x ) G p w ( v l y )  

f o r x E 2 " ,  y • y ,  u • / 4 ,  and v • V .  

(2) 

(3) 

To indicate the dependence on qa we write Ip, w,~(X A U [ V) for I ( X  A U [ V), Ip, w,~(X A U [ V) 
for I ( X Y  A UV), and so on. 

Now we are ready to define the outer region in terms of the three inequalities 

(i) Rx  >_ maXpxwea(E) Ip, w,~(X A U [ V), 
(ii) Ry  > maXpxwea(E) Ip, w,~(Y A V ] U), and 

(iii) Rx  + Ry >_ maxpxwe~(E) Ip, w ,v (XY  A UV), 

as follows: 

n~p(E,A) = U n~p(E ,A , : ) ,  (4) 

where 
~sp(E, A, ~) = {(Rx,  Ry) :  Rx  and Ry satisfies (i), (ii), and (iii)} 

and ~(A)  denotes the set of all functions ~, for which (1) and (2) hold. 
This description invokes equation (3), which is equivalent to the Markovity 

(5) 

U e X  ~Y  eV. 

The "proof" for R ( E ,  A) C Rsp(E, A) has a gap; namely, this Markovity does not appear in it. 
Moreover, the gap cannot be closed, because the statement itself is false. 

EXAMPLE. 7"g(Z, A) ~ 7"~sp(E, A). 
Choose 2" = y = / 4  = 1: = {0, 1}, the source distribution P* × W* as P*(0) = P*(1) = 1/2, 

W*(x [ x) = 1 - p  for x e 2'  and anyp  • (0, 1/2), and the distortion measures dec, dy as Hamming 
distance. 

It is easy to see that  for A = (0, 6) with 6 > p and some E6 ~ - 6  l o g p - ( 1 - 5 )  l o g ( 1 - p ) - h ( 6 )  > 
0 

R = (Rx,  Ry)  = (1, 0) • n (E6 ,  A), (6) 

but  
n = (1,0) ¢ 7esp(E , a) .  (7) 

Indeed, to verify (6), consider the code ( fx ,  fy ,  F)  defined by an injective f x ,  a constant f y ,  and 
for a l l x  n • X  n , y n  • y n  

F ( fx  (x n) , f y  (yn)) = (Xn,Xn) . (8) 

Thus, Rx  = rate ( fx )  = 1 and Ry = rate (fy) = O. 
For (Un, V n) ~- F(fx(X'~),  f y ( y n ) )  = (Xn,X,~), clearly 

1 -  Pr (dg(Xn, Un) = O, dH(Y'~, V '~) <_ 5) = Pr (dH(Xn, Y n) >6)---- E (nk )Pk(1-- P)n-k 
k>n6 

= 2 - n ( - 6 1 o g p - - ( 1 - 6 )  log(1-p)-h(6)+o(1))  

(since 6 > p) = 2 -nE'~,  and (6) holds. 

It remains to show equation (7). 
D(P* x W *  I P* x W * )  = 0 < E. 

Obviously, for all E > 0, P* × W* E a (E) ,  because 
For any qa • ~(A) ,  A = (0,5), we have for (Q ,W)  = 
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~ ( P * , P * W * ) ~ x , u P * ( x ) Q ( u  I x)dH(x,u)  = 0 and therefore Q(x I x) = 1 for x c X. This 
implies the first equality in 

Ip*,w*,~p(Y A V I U) = Ip* ,w. ,~(Y  A V I X )  = O, 

and the second equality holds, because Ry = 0 and (ii) should hold. Therefore, we have the 
Markovity 

Y ~ X  ~V. (9) 

This and (3) yield 

P x y v ( x , y , v )  = P*(x)W*(x  I x)G(v l Y) = PxY(x,Y)Pvl:~( v Ix),  for all x , y , v .  (10) 

Since for all x , y  P x y ( x , y )  = P * ( x ) W * ( y ] x )  > 0, the second equality in (10) implies that  

P v l x ( v  Ix)  = G(v l y), for all x ,y .  

This implies in particular tha t  Y and V are independent and that  we can write G(v I Y) as C;(v), 
In this notation 

A y  >_ E P*W*(y)G(y)dH(y,v)  
y,V 

1 1 

2 = 
y , v  

Consequently, for every E > 0, 5 < 1/2, A = (0, 6), and every (7-¢x, 0) necessarily ( ~ x ,  0) 
7¢~p(E, A). In particular for E~, (7) holds. 

REMARKS. 

1. We have chosen the extremal points R = (1, 0), A = (0, 6) only to get a simple example. 
By continuity there are also counterexamples of the form R = (1 - ~1, ~2), A = (T/:~, '14) 
with small ?/1, ~2, and ~3. 

2. Unfortunately it cannot be excluded that  the same kind of mistake has entered other 
papers in this area. 


