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Abstract

Whereas Stanley, Proctor and others studied Sperner properties of the poset L(k; m) we consider
shadows of left-compressed sets and derive asymptotic bounds on their sizes. ? 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Fix two positive integers k and m. Draw a k×m grid of squares on “tilt”. Now shade
in some of the squares so that there are no unshaded squares below shaded squares –
i.e., so that if the shaded squares were blocks in a rectangular frame, none would slide
down. Call such a shading a proper shading. There is a natural partial ordering of the
various proper shadings of a k ×m grid: Order the proper shadings “by containment”.
Given a proper shading let a1 be the number of squares shaded in its top right row,
a2 the number shaded in the next row, : : : ; and am the number shaded in the bottom
left row. Note that 06a16a26 · · ·6am−16am6k. Let the m-tuple a = (a1; : : : ; am)
denote this shading. It is easy to see that there is a 1 : 1 correspondence between the
collection of all such m-tuples and the set of all proper shadings of a k×m grid. Now
the poset L(k; m) of proper shadings can be described:

a6b

if and only if
a16b1; a26b2; : : : ; ak6bk :

Equivalently, one can match a= (a1; a2; : : : ; ak) with a1¡a2 + 1¡a3 + 2¡ · · ·¡ak
+ k − 1 and in turn match this with x = (x1; : : : ; xn) ∈

(
[n]
k

)
, where

xat+t−1 =
{
1 for t = 1; 2; : : : ; k
0 otherwise

and n= m+ k − 1:
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This way one gets an isomorphic poset with partial order as de�ned in Section 2 be-
low. It is the object of our investigation. For an excellent survey on L(k; m) and related
posets see [5].
Stanley [9,10] proved the (strong) Sperner property. He noticed that bases for the

cohomology rings of certain projective varieties (the Grassmannians for L(k; m)) can be
labeled in a natural way with elements of L(k; m). His proof uses the hard Lefschetz
theorem, a major theorem of algebraic geometry. It was shown in [7] that one can
replace here the algebraic geometry with representations of Lie algebras. There are
also connections to Dynkin-like diagrams [2] and earlier work in invariant theory by
Cayley [1] and Sylvester [11]. L(k; m) was proved by [6] to be rank unimodal. For
two other proofs in the context of classical invariant theory see [3,8]. For other proofs
using symmetric groups see [12,13,10].
Here we are not concerned with antichains but with another basic combinatorial

object, namely shadows, and derive asymptotic bounds on the size. Its consequences
for the mathematical areas mentioned remain to be explored.

2. Basic concepts and two of their properties

We consider the k-element subsets of an n-set, that is,
(
[n]
k

)
, or in sequence notation

Tnk = {x ∈ Xn: w(x) = k}, where X= {0; 1} and w is the weight function counting the
ones.
We are interested in the range k = �n; �¿ 0. Since we are estimating the sizes of

subsets of Tnk , we can assume n = m
2 for some integer m, because we can always

extend the elements of Tnk by adding zeros at the right end.
We recall �rst the de�nition of a partial order of Tnk , which was introduced in [4].

Then we present related concepts.

De�nition 1 (Left-pushing order). For x; y ∈ Tnk we say x ≺ y i� for all j, 16j6n,
j∑
i=1

xi¿
j∑
i=1

yi; where x = (x1; : : : ; xn) and y = (y1; : : : ; yn):

We call the partial order “≺” the left-pushing order.

De�nition 2 (Left-compressed sets). Any subset A of Tnk is called a left-compressed
set i� x ∈ A; y ≺ x implies y ∈ A.

De�nition 3 (Shadow). For x ∈ Tnk we de�ne the shadow
Snk (x) = {y ∈ Tnk : y 4 x}:

Note that

Snk (x)⊃ Snk (z) if z ≺ x: (2.1)
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De�nition 4 (Distance). For x; y ∈ Tnk de�ne

D(x; y) = max
16‘6k

|j‘(x)− j‘(y); where j‘(x) = min

{
j:

j∑
i=1

xi = ‘

}
:

We present now the �rst of two estimates for shadows.

Lemma 1. For x; y ∈ Tnk with D(x; y)6d
|log2|Snk (x)| − log2|Snk (y)||6d log2(k + 1):

Proof. Let x∼(d)=(0; : : : ; 0; x) ∈ T
n+d
k and ỹ(d)=(y; 0; : : : ; 0) ∈ Tn+dk . (Here “˜” stands

for “right” and “∼” for “left”.)

By our de�nitions x∼(d) � ỹ(d) and therefore

Sn+dk (x∼(d))⊃ S
n+d
k (ỹ(d)): (2.2)

Since

|Sn+dk (ỹ(d))|= |Snk (y)|; (2.3)

we obtain

|Sn+dk (x∼(d))|¿|Snk (y)|: (2.4)

Now, clearly,

Sn+1k (x∼(1))6(k + 1)|S
n
k (x)|

and by iteration

Sn+dk (x∼(d))6(k + 1)
d|Snk (x)|: (2.5)

The claimed inequality follows now from (2.4) and (2.5).
Now comes a new idea. We partition the interval [1; n] into m intervals, each of

length m and set

iX =
(i+1)m∏
t=im+1

Xt : (2.6)

For x = (x1; : : : ; xn) we write

ix = (xim+1; : : : ; x(i+1)m) ∈ iX: (2.7)

Obviously, we can write x in the isomorphic way

x = (1x; : : : ;m x): (2.8)

De�nition 5. An element x ∈ Tnk is called piecewise maximal, if for all i, 16i6m,
ix = (0; : : : ; 0; 1; : : : ; 1):
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De�nition 6 (Weight vector).

V (x) = (w(1x); w(2x); : : : ; w(mx)); x ∈ Tnk ;
is called the weight vector of x.

Of course V (x) ∈ {0; 1; : : : ; m}m.

De�nition 7 (Order of weight vector). Let V = (V1; : : : ; Vm) and V ′ = (V ′
1 ; : : : ; V

′
m) be

two weight vectors. We write

V ≺ V ′ i�
j∑
i=1

Vi¿
j∑
i=1

V ′
i

for all j; 16j6m.

As a consequence of Lemma 1 we have

Lemma 2. If for x; y ∈ Tnk V (x) = V (y); then
D(x; y)¡m and |Snk (x)|6|Snk (y)|(k + 1)m:

De�nition 8 (Product set). Let V be a weight vector with
∑m

i=1 Vi = k; then

Tnk (V ), {x ∈ Tnk : w(ix) = Vi}:
It has size

|Tnk (V )|=
m∏
i=1

(
m
Vi

)
: (2.9)

3. A lower bound in terms of the size of a left-compressed set

We give asymptotic results. They are very good for instance for sets A⊂Tnk , where
k = �n and |A|= e�n (exponential growth in n).

Theorem 1. For every left-compressed set A⊂Tnk there is an x ∈ M(A); the set of
maximal elements of A in the left-pushing order; such that

|Snk (x)|¿|A|e−O(
√
n log n):

Proof. De�ne for A⊂Tnk
A∼
(‘) = {x∼(‘): x ∈ A} (3.1)

and consider the shadow

Sn+‘k (A∼
(‘)) =

⋃
x∈A
Sn+‘k (x∼(‘)): (3.2)
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Since we can assume that n= m2, we choose ‘ = 2m+ 1 so that

n+ ‘ = (m+ 1)2: (3.3)

Partition the interval [1; n+ ‘] into m+ 1 intervals of length m+ 1 each.
Write x∼(‘) = (0; : : : ; 0; x) as

x
∼(‘) = (1

x
∼(‘); 2

x
∼(‘); : : : ; m+1

x
∼(‘)) – a concatenation

of m+ 1 vectors with m+ 1 components.
Next, de�ne

x∗ = (1x∗; 2x∗; : : : ; m+1x∗); (3.4)

where

ix∗ = (0; 0; : : : ; 0; 1; 1; 1; 1) (3.5)

and

!(ix∗) = w(i+1x∼(‘)) for i = 1; : : : ; m and !(m+1x∗) = 0: (3.6)

Since, by (2.3), w(1x(‘)) = 0, we have

w(x∗) = k:

We know, since x∼(‘) is maximal in A∼
(‘) if and only if x is maximal in A, that

Sn+‘k (A∼
(‘)) =

⋃
x∈M(A)

Sn+‘k (x∼(‘)): (3.7)

De�ne now

A∗(‘) = {x∗: x ∈ A} (3.8)

and conclude that

Sn+‘k (A∗(‘)) =
⋃

x∈M(A)

Sn+‘k (x∗): (3.9)

De�ne now

Ã(‘) = {x̃(‘): x ∈ A}: (3.10)

Clearly,

Ã(‘)⊂ Sn+‘k (A∗(‘)) (3.11)

and therefore by (3.10) and (3.11)

|A|= |Ã(‘)|6|Sn+‘k (A∗(‘))|: (3.12)

Since there is a total of at most (m + 2)m+1 piecewise maximal elements (see
De�nition 5), there is an x ∈ M(A) such that

|Sn+‘k (x∗)|¿|Sn+‘k (A∗(‘))| (m+ 2)−(m+1) = |Sn+‘k (A∗(‘))| e−O(
√
n log n): (3.13)

Since x∗ ≺ x
∼(‘), we have by (1.1)

|Sn+‘k (x∼(‘))|¿|Sn+‘k (x∗)|
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and by Lemma 1

|Snk (x)|¿|Sn+‘k (x∼(‘))|(k + 1)
−‘;

we conclude with (2.13) that

|Snk (x)|¿|Sn+‘k (A∗(‘))| e−O(
√
n log n) e−O(

√
n log(k+1))

and with (2.12) that

|Snk (x)|¿|A| e−O(
√
n log n):

4. On the shadow of words with zeros in the beginning

Theorem 2. For n = m2; let x = (1x; 2x; : : : ; mx) ∈ Tnk have m zeros in the �rst m
positions; that is; 1x = (0; 0; : : : ; 0); then

|Snk (x)|= max
V≺V (x∗)

|Tnk (V )| eO(
√
n log n);

where x∗ = (1x∗; : : : ; mx∗) is a piecewise maximal element satisfying w(ix∗) =w(i+1x)
for i = 1; : : : ; m− 1 and w(mx∗) = 0.

Proof. Actually, we have

Snk (x
∗) =

⋃
V4V (x∗)

Tnk (V )

and since the number of weight vectors is of the order eO(
√
n log n), we also have

|Snk (x∗)|= max
V4V (x∗)

|Tnk (V )| eO(
√
n log n): (4.1)

Now Lemmas 1 and 2 imply

|Snk (x∗)|= |Snk (x)| eO(
√
n log n)

which together with (3.1) leads to the result.
One readily derives via (1.9) the following formula.

Corollary. For any x ∈ Tnk ; n= m2,

|Snk (x)|= exp
[
max
V4V (x)

m
m∑
i=1

h
(
Vi
m

)
+O(m logm)

]
;

where h is the binary entropy function.

References

[1] A. Cayley, A second Memoir upon Quantics, Coll. Math. Papers, vol. 2, Cambridge University Press,
Cambridge, 1889, pp. 250–275.

[2] E.B. Dynkin, Semisimple subalgebras of semisimple lie algebras, Amer. Math. Soc. Transl. Ser. (2) 6
(1957) 111–244.



R. Ahlswede, Z. Zhang /Discrete Applied Mathematics 95 (1999) 3–9 9

[3] E.B. Elliott, An Introduction to the Algebra of Quantics, Oxford University Press, London, 1913.
[4] P. Erd�os, C. Ko, R. Rado, Intersection theorems for systems of �nite sets, Quart. J. Math. Oxford (2)

12 (1961) 313–320.
[5] R.A. Proctor, Solution of di�cult combinatorical problems with linear algebra, Amer. Math. Monthly

(1982) 721–734.
[6] R.A. Proctor, Representations of sl(2,C) on posets and the Sperner property, SIAM J. Algebraic Discrete

Methods 3 (1982) 275–280.
[7] R.A. Proctor, Bruhat lattices, plane partition generating functions, and minuscule representation, preprint.
[8] T.A. Springer, Invariant Theory, Lecture Notes in Mathematics, vol. 585, Springer, New York, 1977.
[9] R.P. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic

Discrete Methods (1980) 168–184.
[10] R.P. Stanley, Some aspects of groups acting on �nite posets, J. Combin Theory Ser. A 32 (1982)

132–161.
[11] J.J. Sylvester, Proof of the Hitherto Undemonstrated Fundamental Theorem of Invariants, Coll. Math.

Papers, vol. 3, Chelsea, New York, 1973, pp. 117–126.
[12] J. Towber, B. Wagner, A new proof of a theorem in classical invariant theory, preprint.
[13] D.E. White, Monotonicity and unimodality of the pattern inventory, Adv. Math. 38 (1980).


