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Erdo� s has shown that for a primitive set A/N �a # A 1�(a log a)<const.
This implies that A(x)<x�(log log x log log log x) for infinitely many x. We prove
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1. INTRODUCTION AND RESULTS

We explain first our terminology for our study of primitive sets.
The set of the positive integers and positive square-free integers are

denoted by N and N*, respectively, and we write N(n)=N & [1, n],
N*(n)=N* & [1, n]. The smallest and greatest prime factors of the
positive integer n are denoted by p(n) and P(n), respectively. |(n) denotes
the number of distinct prime factors of n, while 0(n) denotes the number
of prime factors of n counted with multiplicity,

|(n)= :
p | n

1, 0(n)= :
p: & n

:.

+(n) denotes the Mo� bius function.
The counting function of a set A/N, denoted by A(x), is defined by

A(x)=|A & [1, x]|.
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The upper density d� (A) and the lower density d
�
(A) of the infinite set

A/N are defined by

d� (A)=lim sup
x � �

A(x)
x

and

d
�
(A)=lim inf

x � �

A(x)
x

,

respectively, and if d� (A)=d
�
(A) then the density d(A) of A is defined as

d(A)=d� (A)=d
�
(A).

The upper logarithmic density $� (A) of the infinite set A/N is defined by

$� (A)=lim sup
x � �

1
log x

:

a�x
a # A

1
a

,

and the definitions of the lower logarithmic density $
�
(A) and logarithmic

density $(A) are similar.
For A/N, s>1 write

fA (s)= :
a # A

a&s.

Then the lower and upper Dirichlet densities of A are defined by

D
�

(A)=lim inf
s � 1+

(s&1) fA (s)

and

D� (A)=lim sup
s � 1+

(s&1) fA (s),

respectively. If D� (A)=D
�

(A), then the Dirichlet density D(A) of A is
defined as

D(A)=D� (A)=D
�

(A).

It is known that for every A/N we have

$� (A)=D� (A), $
�
(A)=D

�
(A)
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and

0�d
�
(A)�$

�
(A)�$� (A)�d� (A)�1.

A set A/N is said to be primitive if there are no a, a$ with a # A, a$ # A,
a{a$ and a | a$. Let F(n) denote the cardinality of the greatest primitive set
selected from [1, 2, ..., n]. Then it is easy to see [8] that

F(n)=n&[n�2](=( 1
2+o(1)) n). (1.1)

By the results of Besicovitch [2] and Erdo� s [5], for all =>0

there is an infinite primitive set A/N with d� (A)> 1
2&=. (1.2)

Behrend [3] proved that if A/[1, 2, ..., N] and A is primitive then we
have

:
a # A

1
a

<c1

log N
(log log N)1�2 (1.3)

(so that an infinite primitive set must have O logarithmic density) and
Erdo� s [4] proved that if A/N is a (finite or infinite) primitive set then

:
a # A

1
a log a

<c2 . (1.4)

This easily implies (proving by contradiction and using partial summation)
that

Corollary. If A/N is primitive then we have

A(x)<
x

log log x log log log x
(1.5)

for an unbounded sequence of values x.

One might like to know how far the upper bound in (1.5) is from the
best possible. This is closely related to one of the favourite problems of
Erdo� s. In [7] this problem is formulated in the following way (and he
mentioned it in numerous problem papers as well): ``The following problem
seems difficult: Let b1< } } } be an infinite sequence of integers. What is the
necessary and sufficient condition that there should exist a primitive
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sequence a1< } } } satisfying an<cbn for every n? From (1.4) ... we obtain
that we must have

:
�

i=1

1
bi log b i

<� } } } . (1.6)

We know that (1.6) is not sufficient��it is not clear whether a simple
necessary and sufficient condition exists.''

This is followed by a lengthy discussion of the problem how large
one can make �a�x 1�a uniformly in x for a primitive set a1< } } } (see
also [6]).

It seems to be a more natural (although more difficult) problem to
replace here the sum �a�x 1�a by the counting function A(x), i.e., to study
the problem how large one can make A(x) uniformly in x for a primitive
set A. We will provide a quite satisfactory answer by proving that (1.5) is
best possible apart from a factor (log log log x)=:

Theorem. For all =>0 there is an infinite primitive set A/N such that
for x>x0 (=) we have

A(x)>
x

log log x(log log log x)1+= .

Our recent interest in primitive sets arose while we investigated the two
related new concepts ``prefix-free sets'' and ``suffix-free sets'' (see [13]). The
present result and the results of [13] were obtained in parallel with mutual
influences of ideas.

2. PROOF OF THE THEOREM

It is well known that �p�x1�p=log log x+c3+o(1) and therefore we
may split the set P of the primes into two parts so that

P=Q _ R, Q & R=<,

:

p�x
p # Q

1
p

=
1
2

log log x+c4+o(1), :

p�x
p # R

1
p

=
1
2

log log x+c4+o(1) (2.1)

with some absolute constant c4 .
Set

Q$={q: q # Q, q>
5
===[q1 , q2 , ...]
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(with q1<q2<...). Define j1 by

1
q1

+ } } } +
1

q j1

<
=
5

�
1

q1

+ } } } +
1

qj1

+
1

qj1+1

,

let Q1=[q+1, ..., qj], and if qj1
, Q1 , ..., qjk&1

, Qk&1 have been defined already,
then define jk by

:
jk

i=1

1
qi

<
=
5

:
k

i=1

1
i
� :

jk+1

i=1

1
qi

(2.2)

and let Qk=[qjk&1+1 , ..., qjk
] so that clearly

:
q # Qk

1
q

=(1+o(1))
=

5k
(as k � �), (2.3)

and it follows from (2.1) and (2.3) that for large k we have

Qk /[1, ek=�2
]. (2.4)

For k # N set Rk=[r: r # R, r>100 } 2k]=[r1 , r2 , ...] (with r1<r2< } } } ).
Define j1= j1 (k) by

:
j1

l=1

1
rl

<
1

100 } 2k� :
j1+1

l=1

1
rl

and let R (1)
k =[r1 , r2 , ..., rj1

]. If j1 , R (1)
k , ..., ji&1R (i&1)

k (with 1�i�3 } 2k)
have been defined already, then define ji by

:
ji

l=1

1
rl

<
i

100 } 2k� :
ji+1

l=1

1
rl

and let R (i)
k =[rji&1+1 , ..., rji

] so that, as is easy to see,

1
200 } 2k< :

r # Rk
(i)

1
r

= :
ji

l= ji&1+1

1
rl

<
1

50 } 2k (2.5)

and whence

:
3 } 2k

i=1

:
r # Rk

(i)

1
r

<3 } 2k }
1

50 } 2k<
1

10
. (2.6)

Thus, by (2.1), for large k we have

.
3 } 2k

i=1

R (i)
k /(100 } 2k, 22k]. (2.7)
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For k # N, i=0, 1, 2, ..., 3 } 2k, write x (i)
k =ee22k+ i } 2k

, Qk=>p # �
k
j=1

Qj
p, and

Rk=>p # �i=1
3 } 2k

Rk
(i) p, and for k # N, i=1, 2, ..., 3 } 2k let A (i)

k denote the set of
the integers of the form

a=qrt with q # Qk , r # R (i)
k , (t, QkPk)=1,

0(t)=[log log x(i&1)
k ],

write B (i)
k =A (i)

k & (x (i&1)
k , x (i)

k ], and let A=�+�
k=1 �3 } 2k

i=1 B (i)
k . We will

show that this set A has the desired properties.
We have to show two facts:

A is primitive (2.8)

and

A(x)>
x

log log x(log log log x)1+= for x>x0 . (2.9)

To prove (2.8), we have to show that if a, a$ # A, a<a$, then a |% a$. We
have to distinguish three cases.

Case 1. Assume that a # A (i)
k , a$ # A (i $)

k$ with k{k$; then by a<a$ we
have k<k$. By the construction of A there is a prime q such that q # Qk ,
q | a and q |% a$, and thus a |% a$.

Case 2. Assume that a # A (i)
k , a$ # A (i $)

k with i{i $; then by a<a$ we
have i<i $. By the construction of A there is a prime r such that r # R (i)

k ,
r | a and r |% a$, and thus a |% a$.

Case 3. Assume that a # A(i)
k , a$ # A (i)

k . Then 0(a)=0(a$); since a{a$
this implies a |% a$.

To prove (2.9), consider a large x and define k and i (1�i�3 } 2k) by

x (i&1)
k <x�x (i)

k .

(By x (3 } 2k)
k =x (0)

k+1 there is a unique pair (k, i) with this property.) Then we
have

A(x)�B (i)
k (x)+B (i&1)

k (x)

=(A (i)
k (x)&A (i)

k (x (i&1)
k ))+(A (i&1)

k (x (i&1)
k )&A (i&1)

k (x (i&2)
k ))

for i�2 (2.10)
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and

A(x)�B (1)
k (x)+B (3 } 2k&1)

k&1 (x)

=(A (1)
k (x)&A (1)

k (x (0)
k ))+(A (3 } 2k&1)

k&1 (x (3 } 2k&1)
k )

&A(3 } 2k&1)
k&1 (x (3 } 2k&1&1)

k )) for i=1. (2.11)

Since each term in these lower bounds is of the form

A(i)
k (z)&A (i)

k (x (i&1)
k ) (2.12)

for some i, k and for

x (i&1)
k <z�x (i)

k , (2.13)

thus it remains to estimate (2.12) with z satisfying (2.13). This estimate will
be based on the following lemma:

Lemma 1. Assume that x>x0 ,

1
2

<
k

log log x
<

3
2

(2.14)

and
1� y< 1

4 log log x. (2.15)

Write Py=>p� y p and

Sy (x, k)=|[n: n�x, 0(n)=k, (n, Py)=1]|. (2.16)

Then we have

|Sy (x, k)|=\ `
p� y \1&

1
p++O \(log y)2 |k&log log x|+(log y)4

log log x ++
_

x
log x

(log log x)k&1

(k&1)!
.

This lemma will be proved in the next section. First in this section we
will complete the proof of the Theorem by using Lemma 1.

Let y denote the greatest prime in Qk . Then, writing l=[log log x (i&1)
k ],

by the definition of A (i)
k we have

A (i)
k (z)&A (i)

k (x (i&1)
k )

= :
q # Qk

:
r # Rk

(i)
|[t: x (i&1)

k <qrt�z, (t, Qk Rk)=1, 0(t)=l]|. (2.17)
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Using notation (2.16), clearly we have

|[t: x (i&1)
k <qrt�z, (t, QkRk)=1, 0(t)=l]|

�|[t: x (i&1)
k �qr<t�z�qr, (t, Qk)=1, 0(t)=l]|

& :
p | Rk

|[t: x (i&1)
k �qr<t�z�qr, p | t, (t, Qk)=1, 0(t)=l]|

=|[t: x (i&1)
k �qr<t�z�qr, (t, Qk)=1, 0(t)=l]|

& :
p | Rk

|[u: x (i&1)
k �qrp<u�z�qrp, (u, Qk)=1, 0(u)=l&1]|

=(Sy (z�qr, l)&Sy (x (i&1)
k �qr, l))

& :
p | Pk

(Sy (z�qrp, l&1)&Sy (x (i&1)
k �qrp, l&1)) (2.18)

(we substituted t=up). We will estimate each term by Lemma 1. It follows
from (2.13) and the definition of x(i)

k that

log log log z=k log 4+O(1) (2.19)

and

l=[log log x (i&1)
k ]�log log z�log log x (i)

k

�log log x (i&1)
k +(log log x (i&1)

k )1�2

<l+2(log log z)1�2. (2.20)

By (2.4), (2.6), and (2.19) we have

y�exp(k=�2)=exp((log log log z)=�2) (2.21)

and

qr<qrp=exp(O(k=�2)+O(k)+O(k))

=exp(O(k))=(log log z)O(1). (2.22)

By (2.19), (2.20), (2.21), and (2.22), Lemma 1 can be applied first with z�qr
and l; with x (i&1)

k �qr and l; with z�qrp and l&1; finally, with x (i&1)
k �qrp

and l&1 in place of x and k, respectively. We obtain from (2.6), (2.18),
(2.20), and (2.21) that
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|[t: x (i&1)
k <qrt�z, (t, Qk Rk)=1, 0(t)=l]|

=\ `
p� y \1&

1
p+

z&x (i&1)
k

qr log z
+O \ z(log log log z)=

qr log z(log log z)1�2++
_

(log log z)l&1

(l&1)!
&\ :

p$ | Rk
\ `

p� y \1&
1
p+

z&x (i&1)
k

p$qr log z

+O \ z(log log log z)=

p$qr log z(log log z)1�2+++ (log log z)l&1

(l&1)!

=\\1& :
p$ | Rk

1
p$+ `

p� y \1&
1
p+

z&x (i&1)
k

qr log z

+O \\1+ :
p$ | Rk

1
p$+

z(log log log z)=

qr log z(log log z)1�2++ (log log z)l&1

(l&1)!

<\ 9
10

`
p� y \1&

1
p+

z&x (i&1)
k

qr log z
+O \ z(log log log z)=

qr log z(log log z)1�2++
_

(log log z)l&1

(l&1)!
. (2.23)

By Merten's formula and (2.21) we have

`
p� y \1&

1
p+>

c4

log y
>

c5

(log log log z)=�2 . (2.24)

Moreover, by using Stirling's formula, it follows from (2.20) that

(log log z)l&1

(l&1)!
>c6 log z(log log z)&1�2. (2.25)

By (2.23), (2.24), and (2.25) we have

|[t: x (i&1)
k <qrt�z, (t, QkRk)=1, 0(t)=l]|

>c7

z&x (i&1)
k

qr(log log log z)=�2 (log log z)1�2+O \z(log log log z)=

qr log log z + (2.26)
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so that, from (2.3), (2.5), (2.13), and (2.26),

A(i)
k (z)&A (i)

k (x (i&1)
k )

>\ :
q # Qk

:
r # Rk

(i)

1
qr+\c7

z&x (i&1)
k

(log log log z)=�2 (log log z)1�2

+O \z(log log log z)=

log log z ++
=\ :

q # Qk

1
q+\ :

r # Rk
(i)

1
r+\c7

z&x (i&1)
k

(log log log z)=�2 (log log z)1�2

+O \z(log log log z)=

log log z ++
>

=
6k

}
1

200 } 2k \c7

z&x (i&1)
k

(log log log z)=�2 (log log z)1�2

+O \z(log log log z)=

log log z ++
>

=
log log log z

}
1

(log log z)1�2 \c8

z&x (i&1)
k

(log log log z)=�2 (log log z)1�2

+O \z(log log log z)=

log log z ++
>

z&x (i&1)
k

log log z(log log log z)1+2=�3

+O \ z
(log log log z)1&= (log log z)3�2+ . (2.27)

Using (2.27) to estimate each of the terms in (2.10) and (2.11), and also
using the fact that

x (i&1)
k =(x (i)

k )o(1),

we obtain in both cases that

A(x)>
x

log log x(log log log x)1+2=�3+O \ x
(log log log x)1&= (log log x)3�2+

>
x

log log x(log log log x)1+= ,

which completes the proof of the Theorem.
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3. PROOF OF LEMMA 1

Write

_k (x)=|[n: n�x, 0(n)=k]|

and

f (s, z)=`
p \1&

z
p+

&1

\1&
1
ps+

z

.

The proof of Lemma 1 will be based on

Lemma 2. For =>0, x � �, k<(2&=) log log x we have

_k (x)=
x

log x

f \1,
k&1

log log x+
1 \1+

k&1
log log x+

(log log x)k&1

(k&1)!

+O= \ x
log x

(log log x)k&1

(k&1)!
k

(log log x)2+
(where the O= notation means that the implied constant may depend on =).

Proof. This is Selberg's theorem [10].

Lemma 3. For =>0, x � �,

k<(2&=) log log x (3.1)

we have

_k (x)=\1+O= \ |k&log log x|+1
log log x ++ x

log x
(log log x)k&1

(k&1)!
.

Proof. This follows from Lemma 2 since for O�z<2&= we have

f (1, z)= f (1, 1) } O= (exp( |z&1|))=O= (exp( |z&1|))

and

1(1+z)=1(z) O(exp( |z&1|))=O(exp( |z&1|))
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so that

f (1, z)
1(1+z)

=O= (exp( |z&1|))=1+O= ( |z&1|).

Proof of Lemma 1. Write

_k (x, d )=|[n: n�x, 0(n)=k, d | n]|

so that _k (x, 1)=_k (x). Then, by

:
d | n

+(d )={1 if n=1
0 if n>1,

we have

Sy (x, k)=|[n: n�x, 0(n)=k, (n, Py)=1]|

= :

0(n)=k
n�x

:
d | (n, Py)

+(d )= :
d | Py

+(d ) :

0(n)=k
n�x, d | n

1= :
d | Py

+(d ) :

0(dt)=k
dt�x

1

= :
d | Py

+(d ) :

0(t)=k&0(d )
t�x�d

1= :
d | Py

+(d ) _k&0(d ) (x�d ). (3.2)

If d | Py then we have

0(d )=|(d )�?( y) (� y) (3.3)

and, clearly,

d� y|(d ) (3.4)

and

d�Py�exp(c9 y). (3.5)

It follows from (2.14), (2.15), (3.3), and (3.5) that (3.1) holds with 1
5 ,

k&0(d ) and x�d in place of =, k and x, respectively, so that Lemma 3 can
be applied to estimate _k&0(d ) (x�d ). We obtain for all d | Py that

_k&0(d ) (x�d )=\1+O \ |k&log log(x�d )|+1
log log(x�d ) ++

_
x�d

log(x�d )
(log log(x�d ))k&0(d)&1

(k&0(d )&1)!
. (3.6)
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By (2.14), (2.15), and (3.5) we have

1
log(x�d )

=
1

log x \1+O \log d
log x++ , (3.7)

log log(x�d )=log log x+O \log d
log x+ , (3.8)

(log log(x�d ))k&0(d)&1=\log log x+O \log d
log x++

k&0(d )&1

=(log log x)k&0(d )&1 \1+O \log d
log x++ (3.9)

and

(k&1)(k&2) } } } (k&0(d))
(log log x)0(d )

= `
0(d )

i=1
\1+

(k&log log x)&i
log log x +

=exp \0(d )
|k&log log x|+0(d )

log log x +
=1+O \0(d )

|k&log log x|+0(d )
log log x + . (3.10)

It follows from (3.6), (3.7), (3.8), (3.9), and (3.10) that

_k&0(d ) (x�d )=\1+O \log d
log x

+0(d )
|k&log log x|+0(d)

log log x ++
_

x
d log x

(log log x)k&1

(k&1)!

for all d | Py . Thus we obtain from (3.2) that

Sy (x, k)=\ :
d | Py

+(d )
d

+R+ x
log x

(log log x)k&1

(k&1)!

=\ `
p� y \1&

1
p++R+ x

log x
(log log x)k&1

(k&1)!
, (3.11)
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where

R=O \\ :
d | Py

log d
d + 1

log x
+\ :

d | Py

|(d )
d + |k&log log x|

log log x

+ :
d | Py

(|(d ))2

d
1

log log x+ . (3.12)

By |(d )�2|(d ) and (3.4) here we have

:
d | Py

|(d )
d

� :
d | Py

2|(d)

d
= `

p� y \1+
2
p+<c10 (log y)2,

:
d | Py

(|(d ))2

d
� `

p� y \1+
4
p+<c11 (log y)2

and

:
d | Py

log d
d

� :
d | Py

|(d ) log y
d

<c12 (log y)3

so that, from (3.12),

R=O \(log y)3 1
log x

+(log y)2 |k&log log x|
log log x

+(log y)4 1
log log x+

=O \(log y)2 |k&log log x|+(log y)4

log log x + . (3.13)

The conclusion of Lemma 1 follows from (3.11) and (3.13).
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