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1 Introduction

The set of the positive integers and positive square–free integers are denoted by N and
N∗, respectively, and we write N(n) = N ∩ [1, n], N∗(n) = N∗ ∩ [1, n], where [1, n] =
{1, 2, . . . , n}. The set of primes is denoted by P . The smallest and greatest prime
factors of the positive integer n are denoted by p(n) and P (n), respectively. ω(n)
denotes the number of distinct prime factors of n, while Ω(n) denotes the number of
prime factors of n counted with multiplicity:

ω(n) =
∑

p|n

1, Ω(n) =
∑

pα‖n

α.

µ(n) denotes the Möbius function.

The counting function of a set A ⊂ N, denoted by A(x), is defined by

A(x) = |A ∩ [1, x]|.

The upper density d(A) and the lower density d(A) of the infinite set A ⊂ N are
defined by

d(A) = lim sup
x→∞

A(x)

x

and

d(A) = lim inf
x→∞

A(x)

x
,

respectively, and if d(A) = d(A), then the density d(A) of A is defined as

d(A) = d(A) = d(A).

The upper logarithmic density δ(A) of the infinite set A ⊂ N is defined by

δ(A) = lim sup
x→∞

1

log x

∑

a∈A
a≤x

1

a
,

and the definitions of the lower logarithmic density δ(A) and logarithmic density δ(A)
are similar.

For A ⊂ N, s > 1 write

fA(s) =
∑

a∈A

a−s.

Then the lower and upper Dirichlet densities of A are defined by

D(A) = lim inf
s→1+

(s − 1)fA(s)

and
D(A) = lim sup

s→1+

(s − 1)fA(s),
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respectively. If D(A) = D(A), then the Dirichlet density D(A) of A is defined as

D(A) = D(A) = D(A).

It is known that for every A ⊂ N we have

δ(A) = D(A), δ(A) = D(A)

and
0 ≤ d(A) ≤ δ(A) ≤ δ(A) ≤ d(A) ≤ 1.

We will study mostly sets of square–free integers. It is well–known that

d(N∗) =
6

π2
. (1.1)

We will compare the density of a set A ⊂ N∗ with the density of N∗, and the density
obtained in this way will be denoted by an asterisque. Thus, e.g., for A ⊂ N∗ we write

d∗(A) =
d(A)

d(N∗)
=

π2

6
d(A),

δ∗(A) =
δ(A)

δ(N∗)
=

π2

6
δ(A),

etc.

A set A ⊂ N is said to be primitive if there are no a, a′ with a ∈ A, a′ ∈ A, a 6= a′

and a|a′. Let F (n) denote the cardinality of the greatest primitive set selected from
{1, 2, . . . , n}. Then it is easy to see [9] that

F (n) =
⌈n

2

⌉

(

=

(

1

2
+ o(1)

)

n

)

. (1.2)

By the results of Besicovitch [3] and Erdös [6], for all ε > 0

there is an infinite primitive set A ⊂ N with d(A) >
1

2
− ε. (1.3)

Behrend [4] proved that if A ⊂ {1, 2, . . . , N} and A is primitive then we have

∑

a∈A

1

a
< c1

log N

(log log N)1/2
(1.4)

(so that an infinite primitive set must have zero logarithmic density) and Erdös [5]
proved that if A ⊂ N is a (finite or infinite) primitive set then

∑

a∈A

1

a log a
< c2. (1.5)
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These results have been extended in various directions; surveys of this field are given
in [2], [8], [9], [10].

Next we will introduce two notions of information theoretical background. If a, b are
positive square–free integers with the property that a|b and p(b/a) > P (a), i.e., they are
of the form a = p1 . . . pr, b = p1 . . . prpr+1 . . . pt where p1 < · · · < pr < pr+1 < · · · < pt

are distinct primes (with t > r), then we say that a is prefix of b and we write a|pb.
If A ⊂ N∗ is a set such that there are no a ∈ A, b ∈ A with a|pb, then A is said
to be prefix–free. Similarly, if a|b and P (b/a) < p(a), then a is called suffix of b and
we write a|sb. If A ⊂ N∗ is a set such that there are no a ∈ A, b ∈ A with a|sb,
then A is said to be suffix–free. (Both notions, prefix and suffix, could be extended
to the non–squarefree case as well, however, to simplify the discussion here we restrict
ourselves to the square–free case.)

A further motivation for introducing and studying these concepts is that there is a
close connection between prefix–freeness and primitivity: clearly,

if a set A ⊂ N is primitive, then it is prefix–free. (1.6)

Since prefix–freeness appears in connection with primitivity (see the proof of Theorem
3 below), one might like to study how close these concepts are.

Based on these considerations, in this paper our goal is to study density related prop-
erties of prefix–free and suffix–free sets.

2 The problems and results

Our first goal is to study the “prefix–free analog” of (1.2). Let G(n) denote the car-
dinality of the greatest prefix–free set selected from N∗(n), and let P+(a) denote the
smallest prime greater than P (a).

Theorem 1. Write
B(n) =

{

b : b ∈ N∗(n), bP+(b) > n
}

. (2.1)

Then B(n) is prefix–free and
G(n) = |B(n)|.

Note that it follows from the prime number theorem that, if 1 > ε > 0 and n > n1(ε),
then for all b ∈ N∗(n), b > (1 + ε) n

log n
we have

P (b) >
(

1 −
ε

2

)

log n

so that
bP+(b) > bP (b) > (1 + ε)

(

1 −
ε

2

)

log n > log n
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and thus b ∈ B(n). It follows that

G(n) >

(

1 −
1 + ε

log n

)

N∗(n)

so that

lim
n→∞

G(n)

N∗(n)
= 1; (2.2)

compare this with (1.2).

A combination of (2.2) with result of Erdös [6] gives

Corollary 1. For all ε > 0 there is an infinite prefix–free set A ⊂ N∗ with

d
∗
(A) > 1 − ε.

Since this can be derived trivially from (2.2) by using ideas of [6], we will not present
the details here.

The “prefix–free analog” of Behrend’s theorem (1.4) reflects an interesting difference
between primitive sets and prefix–free sets. Indeed, consider now instead of G(n)

E(n) = max
prefix–free A⊂N∗(n)

∑

a∈A

1

a
. (2.3)

Theorem 2. For every ε > 0 and n > n2(ε), suitable,

0, 2689 − ε <
E(n)
∑

b∈N∗(n)

1
b

< 0, 7311 + ε.

Actually, we know for every n ∈ N the unique optimal prefix–free A ⊂ N∗(n) for which
E(n) in (2.3) is assumed, but the value, and particularly also lim

n→∞
E(n), which we

conjecture to exist, is hard to estimate.

We shall show that the proofs of both, Theorem 1 and Theorem 2, can be given by the
same approach via the Basic Lemma 1 in Section 3 involving multiplicative functions.
Actually, this lemma seems to be useful also for other cases.

For instance it shades a new light on a well–known conjecture of Erdös concerning
(finite or infinite) primitive sets, which says that for every primitive set A ⊂ N

∑

a∈A

1

a log a
≤

∑

p∈P

1

p log p
.

Consider now for any positive, multiplicative function f

Lf (∞) = max
prefix–free A⊂N∗

∑

a∈A

f(a) (2.4)

5



then we have the

Proposition 1. Let f be a multiplicative function such that

∑

p≥3,p∈P

f(p) < 1,

then Lf (∞) is assumed at the set of primes. In particular, if f(m) = mα, then for
every α ≤ α0, where α0 ∈ R and

∑

p≥3

pα0 = 1, the primes are the optimal set.

Next we will extend Erdös’s theorem (1.5) to prefix–free sets:

Theorem 3. There is an absolute constant c3 such that if A ⊂ N∗ is a (finite or
infinite) prefix–free set, then

∑

a∈A

1

a log a
< c3.

Indeed, in Erdös’s proof [5] only the prefix property of primitive sequences is used (that
they possess by (1.6)) so that it also gives the more general result Theorem 3. To see
that indeed it is so, for the sake of completeness we will sketch the proof in Section 5
(leaving some technical details to the reader).

It follows easily from Theorem 3 (proving by contradiction and using partial summa-
tion) that

Corollary 2. If A ⊂ N∗ is an infinite prefix–free set then we have

A(x) <
x

log log x log log log x
(2.5)

for infinitely many x (and, by (1.5), if A ⊂ N is primitive then (2.5) also holds infinitely
often).

One might like to know how far the upper bound in (2.5) is from the best possible.
This is closely related to one of the favourite problems of Erdös. In [8] this problem is
formulated in the following way (and Erdös mentioned it in numerous problem papers
as well):

“The following problem seems difficult: Let b1 < b2 . . . be an infinite sequence of
integers. What is a necessary and sufficient condition that there should exist a primitive
sequence a1 < a2 . . . satisfying an < cbn for every n?

From (1.5) ... we obtain that we must have

∞
∑

i=1

1

bi log bi

< ∞ ... (2.6)

We know that (2.6) is not sufficient — it is not clear whether a simple necessary and
sufficient condition exists.”
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This is followed by a lengthy discussion of the problem how large one can make
∑

a≤x

1
a

uniformly in x for a primitive set a1 < . . . (see also [7]).

It seems to be a more natural (although more difficult) problem to replace here the
sum

∑

a≤x

1
a

by the counting function A(x), i.e. to study the problem how large one can

make A(x) uniformly in x for a primitive set A — and this is the question asked by
us also for prefix–free sets. In [1] we gave a quite satisfactory answer by proving that
(2.5) is best possible apart from a factor (log log log x)ε:

Theorem 4. [1] For all ε > 0 there is an infinite primitive (and therefore also prefix–
free) set A ⊂ N such that for a > x0(ε) we have

A(x) >
x

log log x(log log log x)1+ε
.

By a standard argument it can be shown that here A ⊂ N can be replaced by A∗ ⊂ N
(and the same lower bound holds), and by (1.6), this A∗ also is prefix–free. Thus
the behaviour of primitive and prefix–free sets is similar as far as the maximal rate of
growth of the counting function is concerned: in both cases the estimates (2.5) and the
one in Theorem 4 can be given.

Problem 1. Is it true that if A ⊂ N∗ is an infinite set with

δ
∗
(A) > 0, (2.7)

then A contains an infinite “prefix chain”, i.e., there is an infinite subset {ai1 , ai2 , . . . }
of A with ai1 |pai2 |pai3 . . . ?

Note that by a theorem of Davenport and Erdös [11], (2.7) implies that A contains an
infinite divisibility chain ai1 |ai2 |ai3 . . . .

The finite analog of Problem 1 is easier. Indeed, we will prove in Section 6

Theorem 5.

(i) If n > n3,
A = {a1, . . . , at} ⊂ N∗(n) (2.8)

and

E(A)
def
=

∑

a∈A

1

a log a
> c3 (2.9)

(where c3 is the constant defined in Theorem 3), then, writing

k =

[

E(A)

c3

]

+ 1, (2.10)

A contains a prefix chain of length k, i.e., there is a subset {ai1 , ai2 , . . . , aik} of
A with ai1 |pai2|p . . . aik .
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(ii) There are numbers c4 and n4 with the following properties: there is an infinite
set A ⊂ N∗ such that

d∗(A) = 1 (2.11)

and, writing

E(A, n) =
∑

a∈A,a≤n

1

a log a
,

for n > n4 the set A∩N∗(n) does not contain a prefix chain longer than c4E(A, n).

(So that (i) is best possible apart from a constant factor in the length of the maximal
chain.)

While the behaviour of prefix–free and primitive sets is similar as far as the maximal
rate of growth of the counting function is concerned, the behaviour of the suffix–free
sets is very much different and, indeed, they can be much “denser”.

We consider now the cardinality and the asymptotic density of suffix–free sets.

Let H(n) denote the cardinality of the largest suffix–free set selected from N∗(n).

Theorem 6. The set

C(n) =
{

c ∈ N∗(n) : 2|c
}

∪
{

N∗(n) ∩
(n

2
, n

]}

is suffix–free and |C(n)| = H(n).

Corollary 3.

lim
n→∞

H(n)

|N∗(n)|
=

2

3
.

Using ideas of Besicovitch [3] and Erdös [5, 6] one can easily get the following result,
whose proof is not presented in this paper.

Corollary 4. For every ε > 0 there exists an infinite suffix–free set C such that

d∗C >
2

3
− ε.

Finally we discuss logarithmic densities of sufix–free sets. Let

K(n) = max
suffix–free A∈N∗

∑

a∈A

1

a
.

In contrast to the case of prefix–free sets, here Basic Lemma 2 of Section 3 gives a very
simple description of the optimal set.
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Theorem 7. Let B be the set from Basic Lemma 2. We have

B = B1

.
∪ B2, where

B1 =
{

2 · a, 3 · a, 5 · a : a ∈ N∗
(

n
5

)

and (a, 30) = 1
}

and

B2 =
{

a ∈ N∗ : n
5

< a ≤ n and (a, 30) = 1
}

.

Simple calculations yield

Corollary 5.

lim
n→∞

K(n)
∑

a∈N∗(n)

1
a

=
31

72
.

Corollary 6.

(i) For any infinite suffix–free set C holds

D∗C = δ∗C ≤
31

72
.

(ii) Define
C =

{

2 · a, 3 · a, 5 · a : a ∈ N∗ and (a, 30) = 1
}

.

Then C is an infinite suffix–free set and

d∗C =
31

72
.

Similarly to Lf (∞) for infinite prefix–free sets define the quantity Sf (∞) for infinite
suffix–free sets, where f is a positive multiplicative function:

Sf (∞) = max
suffix–free A⊂N∗

∑

a∈A

f(a).

Proposition 2. Let f be a multiplicative function such that
∑

p∈P f(p) < 1.

Then Sf (∞) is assumed at the set of primes. In particular, if f(m) = mβ, then for
every β ≤ β0, where β0 ∈ R and

∑

p∈P

pβ0 = 1, the primes are the optimal set.

Remark: We note the difference to Proposition 1, where the summation starts from
p ≥ 3, and hence clearly β0 < α0.
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3 Two basic lemmas

For any positive, multiplicative function f define

Lf (n) = max
prefix-free A∈N∗(n)

∑

a∈A

f(a).

Basic Lemma 1. Write

A =















a ∈ N∗(n) : (i)
∑

P (a)<p≤n
a

f(p) < 1 and

(ii)
∑

P (a′)<p≤ n

a′

f(p) ≥ 1, where a′ = a
P (a)

,















We assume that (i) always holds if P (a) ≥ n
a

or P (a) < n
a
, but there is no prime in the

interval
(

P (a), n
a

]

. We also assume that (ii) always holds if a ∈ P.

Then A is prefix–free and
∑

a∈A

f(a) = Lf (n).

Proof: We show that A is prefix–free. Assume to the opposite that there are a, b ∈ A
such that a|pb, that is b = a · c, p(c) > P (a).

We have from condition (i) for a ∈ A

∑

P (a)<p≤n
a

f(p) < 1 (3.1)

and from condition (ii) for b′ = b
P (b)

≥ a

∑

P (b′)<p≤ n

b′

f(p) ≥ 1. (3.2)

Since P (b′) ≥ P (a), b′ ≥ a and consequently n
a
≥ n

b′
, (3.1) and (3.2) are not compatible.

Hence A is prefix–free.

Now we show that
∑

a∈A

f(a) = Lf (n). (3.3)

Let

Lf (n) =

{

B ⊂ N∗(n) : B is prefix–free and
∑

b∈B

f(b) = Lf (n)

}

.

So, equivalent to (3.3) is A ∈ Lf (n).
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Let B ∈ Lf (n) be a set for which

∑

b∈B

b is maximal among elements of Lf (n). (3.4)

We claim that B = A. For this we have to prove that (i) and (ii) hold for every element
b ∈ B. We show that (i) holds. Assume to the opposite that for an element b ∈ B we
have

∑

P (b)<p≤n
b

f(p) ≥ 1. (3.5)

Define
B′ =

(

B r {b}
)

∪
{

b · p : p > P (b), p ≤
n

b

}

.

Since B is prefix–free necessarily b · p /∈ B for all p(b) < p ≤ n
b
. Clearly B′ ⊂ N∗(n).

It is easy to see that B′ is prefix–free and

∑

b∈B

b <
∑

b∈B′

b. (3.6)

Moreover, since f is a multiplicative function, we have

∑

P (b)<p≤n
b

f(p · b) = f(b) ·
∑

P (b)<p≤n
b

f(p) ≥ f(b) (by assymption (3.5))

and consequently
∑

b∈B

f(b) ≤
∑

b∈B′

f(b). (3.7)

Hence B′ ∈ Lf (n), which is a contradiction (see (3.4) and (3.6)).

Therefore for all b ∈ B (i) holds.

Now we show that for all b ∈ B (ii) holds. Assume to the opposite that for a b ∈ B we
have

∑

P (b′)<p≤ n

b′

f(p) < 1, where b′ =
b

P (b)
. (3.8)

Among such elements b ∈ B we choose one which has maximal b′.

Let B1(b
′) ⊂ B be the set of all elements of B for which b′ is prefix, that is, b1 ∈ B1(b

′)
implies b1 = b′ · c, p(c) > P (b′).

In particular b ∈ B1(b
′) and b = b′ · P (b). We claim that c ∈ P.

Indeed, assume b1 = b′ · c and c /∈ P. Then

b′1 =
b1

P (b1)
> b′
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and (3.8) also holds for b1 ∈ B and b′1, a contradiction to the maximality of b.

Consider
B2 =

(

B r B1(b
′)
)

∪ {b′}.

We have that B2 is prefix–free and, since f is multiplicative, that

∑

b∈B1(b′)

f(b) ≤ f(b′) ·
∑

P (b′)<p≤ n

b′

f(p) < f(b′) (by assumption (3.8))

and consequently
∑

b∈B2

f(b) >
∑

b∈B

f(b),

a contradiction to B ∈ Lf (n).

Hence B = A ∈ Lf (n).

Define now for any positive, multiplicative function f

Sf (n) = max
suffix–free B⊂N∗(n)

∑

b∈B

f(b).

Basic Lemma 2. Write

B =



















b ∈ N∗(n) : (i)
∑

p<min{n+1

b
,P (b)}

f(p) < 1 and

(ii)
∑

p<min{n+1

b′
,P (b′)}

f(p) ≥ 1, where b′ = b
P (b)



















.

We assume that (i) always holds if min
{

n+1
b

, P (b)
}

≤ 2 and that (ii) holds if b ∈ P.
Then B is suffix–free and

∑

b∈B

f(b) = Sf (n).

Since the proof is almost identical with the one given for Basic Lemma 1, we do not
present it here.

4 Prefix–free sets: proofs of Theorem 1, 2

Proof of Theorem 1: This case concerns maximal cardinalities G(n). Notice that
G(n) = Lf (n), if f is the constant function with value 1. Furthermore, we verify that
the set B in Theorem 1 equals the set A in the Basic Lemma 1, which implies the
result.

Proof of Theorem 2: Now we apply the Basic Lemma 1 to the multiplicative function
f defined by

f(m) =
1

m
for m ∈ N∗(n).
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Then
E(n) = Lf (n)

and the set A has the properties claimed.

Moreover, the uniqueness can be seen from the proof of the Basic Lemma 1 by observing
that we cannot have equality in (3.5) and consequently in (3.7), because

∑

p∈P1

1
p

is never

an integer for any set P1 of primes.

To prove the lower bound we consider the set

A′ =

{

a ∈ N∗(n) : P (a) > n
1

1+e
+ε and

a

P (a)
< n

1

1+e
−ε

}

.

By
∑

p≤x

1

p
= log log x + c5 + O(1)

we have for every a ∈ A′

∑

P (a)<p≤n
a

1

p
<

∑

n
1

1+e
+ε

<p≤n
e

1+e
+ε

1

p
< 1

if n > n5(ε).

Similarly we have for a′ = a
P (a)

∑

P (a′)<p≤ n

a′

1

p
> 1.

Therefore A′ ⊂ A, where A is the set defined in the Basic Lemma 1. Hence A′ is a
prefix–free set.

We have

∑

a∈A′

1

a
=

∑

p>n
1

1+e
+ε

b<n
1

1+e
−ε

p·b≤n
b∈N

∗

1

b · p
=

∑

p>n
1

1+e
+ε

1

p
·

















∑

b<n
1

1+e
−ε

b< n
p

b∈N
∗

1

b

















≥

∑

n
e

1+e
+ε

>p>n
1

1+e
+ε

1

p
·

∑

b<n
1

1+e
−ε

b∈N
∗

1

b
∼

6

π2
log n

1

1+e
−ε ·

∑

n
e

1+e
+ε

>p>n
1

1+e
+ε

1

p
∼

6

π2
log n

1

1+e
−ε.
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Hence
∑

a∈A′

1
a

∑

a∈N∗(n)

1
a

>
1

1 + e
− ε ∼ 0, 2689 − ε

and this proves the lower bound.

To show the upper bound we consider the set

A′′ = N∗
(

n
1

1+e
−ε

)

.

For every element a ∈ A′′ we have

∑

P (a)<p≤n
a

1

p
>

∑

n
1

1+e
−ε

<p≤n
e

1+e
+ε

1

p
> 1.

Therefore A′′ ∩ A = ∅, where A is the set defined in Theorem 2.

Since
∑

a∈A′′

1

a
=

∑

a≤n
1

1+e
−ε

1

a
∼

6

π2
log n

1

1+e
−ε

we get
∑

b∈A

1
b

∑

b∈N∗(n)

1
b

=
E(n)
∑

b∈N∗(n)

1
b

<
e

1 + e
+ ε ∼ 0, 7311 + ε.

Remark: We are sure that by more detailed consideration of the set A one can get
much better estimates. However to tighten the gap between upper and lower bounds
to, say 0.1, seems difficult.

A proof of Proposition 1 can be given directly and easily with the Basic Lemma 1.

5 Sketch of the proof of Theorem 3

If A is an infinite prefix–free set and for every finite subset A′ of A we have

∑

a

1

a log a
≤ c, (5.1)

where the summation is extended over all a ∈ A′, then (5.1) also holds if the summation
is extended over all a ∈ A. Thus we may assume that A is finite.
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Let x be large enough in terms of the greatest element of A (and later we will take
x → ∞). Consider the sum

S
def
=

∑

a∈A

∑

q≤x/a
p(q)>a

1

aq
. (5.2)

Since A is prefix–free, thus aq = a′q′, a ∈ A, a′ ∈ A, q ≤ x/q, q′ ≤ x/q′, p(q) > a,
p(q′) > a′ implies that a = a′, q = q′. In other words, the denominators aq in (5.2) are
distinct, each of them is ≤ x, so that for x → ∞ we have

S ≤
∑

n≤x

1

n
=

(

1 + o(1)
)

log x (as x → ∞). (5.3)

On the other hand, we have

S =
∑

a∈A

1

a

∑

q≤x/a
p(q)>a

1

q
. (5.4)

Since by Mertens’ theorem we have

∏

p≤y

(

1 −
1

p

)

∼
c5

log y
, (5.5)

thus by using an elementary sieving process, for x → ∞ we may estimate the inner
sum in (5.4) in the following way:

∑

q≤x/a
p(q)>a

1

q
=

∑

d|
Q

p≤a

p

µ(d)
∑

q≤x/a
d|q

1

q

=
∑

d|
Q

p≤a

p

µ(d)
∑

t≤x/ad

1

dt
=

∑

d|
Q

p≤a

p

µ(d)

d

∑

t≤x/ad

1

t

=
(

1 + o(1)
)

∑

d|
Q

p≤a

p

µ(d)

d
log x

=
(

1 + o(1)
)

log x
∏

p≤a

(

1 −
1

p

)

=
(

1 + o(1)
)

c5
log x

log a
. (5.6)

By (5.4) and (5.6) we have

S =
(

1 + o(1)
)

c5 log x
∑

a∈A

1

a log a
(as x → ∞). (5.7)

Now the desired bound follows from (5.3) and (5.7).

Note that we did not use the fact that the a’s are square–free so that, extending the
notion of prefix to non–squarefree integers, the result could be extended to this more
general case as well.

15



6 Proof of Theorem 5

(i) Let A1 = A, and for j > 1 let Aj denote the set of the integers a such that a ∈ A
and there is a prefix chain of length j in A whose last element is a:

ai1 |pai2 |p . . . |paij−1
|pa, ai1 ∈ A, . . . , aij−1

∈ A.

We will show by induction on j that if (2.8) and (2.9) hold, and 1 ≤ j ≤ k (where
k is defined by (2.10)), then

E(Aj) =
∑

a∈Aj

1

a log a

{

= E(A) − (j − 1)c3 for j = 1

> E(A) − (j − 1)c3 for j > 1.
(6.1)

Indeed, this is trivial for j = 1 since then we have E(A) on both sides of (6.1).
Assume now that (6.1) holds for some j with 1 ≤ j < k. Then we have to show
that it also holds with j + 1 in place of j:

E(Aj+1) =
∑

a∈Aj+1

1

a log a
> E(A) − jc3. (6.2)

We will prove this by contradiction: assume that contrary to (6.2) we have

E(Aj+1) =
∑

a∈Aj+1

1

a log a
≤ E(A) − jc3. (6.3)

Write A∗ = Aj r Aj+1. Then by (6.1) and (6.3) (and since clearly Aj+1 ⊂ Aj)
we have

E(A∗) =
∑

a∈A∗

1

a log a
= E(Aj)−E(Aj+1) ≥

(

E(A)−(j−1)c3

)

−
(

E(A)−jc3

)

= c3.

Thus by Theorem 3 there are a′ ∈ A∗, a′′ ∈ A∗ with a′|pa
′′. Since a′ ∈ A∗ ⊂ Aj,

thus there is a prefix chain of length j in A whose last element is a′ : ai1 |p . . . |pa
′.

Then ai1|p . . . |paij−1
|pa

′|pa
′′ is a prefix chain of length j+1 in A whose last element

is a′′, and thus we have a′′ ∈ Aj+1. This contradicts a′′ ∈ A∗ = Aj r Aj+1 which
proves (6.2), and this completes the proof of (6.1) (with 1 ≤ j ≤ k).

Using (6.1) with k in place of j (so that k ≥ 2 by (2.9)) we obtain

E(Ak) > E(A) − (k − 1)c3 = E(A) −

[

E(A)

c3

]

c3 ≥ O

so that Ak is non–empty, which completes the proof of (i).
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(ii) Let
B =

{

b : b ∈ N, |ω(b) − log log b| < (log log b)3/4
}

and A = B ∩ N∗. Then by a theorem of Hardy and Ramanujan [13] we have
d(B) = 1, which implies (2.11). Moreover, by (1.1) clearly we have

E(A, n) =
∑

a∈A,a≤n

1

a log a
=

(

1 + o(1)
)

∑

a∈N∗(n)

1

a log a
=

(

1 + o(1)
) 6

π2
log log n.

(6.4)

If a ∈ A, a ≤ n and a is the last element of a prefix chain of length k in
A : ai1|p . . . |paik−1

|pa, then by (6.4) and the definition of A we have

k ≤ ω(a) < log log a + (log log a)3/4 ≤ log log n + (log log n)3/4

=
(

1 + o(1)
)

log log n =
(

1 + o(1)
)π2

6
E(A, n),

which completes the proof of (ii) (with c4 = π2

6
+ ε).

7 Proof of Theorem 6

We apply Basic Lemma 2 with respect to the function f(m) = 1, m ∈ N∗. For this
function we have H(n) = Sf (n). It is easy to verify, that C(n) ⊂ B, where C(n) is the
set described in Theorem 6 and B is the set from Basic Lemma 2. Moreover, for every
a ∈ N∗(n) r C(n) we have 2 ∤ a, a ≤ n

2
and hence

min

{

n + 1

a
, P (a)

}

> 2.

Consequently, the condition (i) in Basic Lemma 2 does not hold. Therefore C(n) = B
and C(n) is the optimal set.

8 Proof of Theorem 7

In Basic Lemma 2 consider the set B with respect to the multiplicative function f(m) =
1
m

, m ∈ N∗. Using the inequalities 1
2

+ 1
3

= 5
6

< 1 and 1
2

+ 1
3

+ 1
5

= 31
30

> 1, it is easy to

verify that (B1

.
∪ B2) ⊂ B, where B1,B2 are defined in the Theorem. Moreover, using

the mentioned inequalities one easily gets that every b ∈ N∗(n) r {B1 ∪ B2) violates
one of the conditions (i), (ii) in Basic Lemma 2.

Hence B = B1

.
∪ B2, proving the Theorem.

Corollary 6 and 7 directly follow from Theorem 7 and from the construction.

Finally, Proposition 2 is an immediate consequence of Basic Lemma 2.
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[8 ] P. Erdös, A. Sárközy and E. Szemerédi, On divisibility properties of sequences
of integers, Coll. Math. Soc. J. Bolyai 2 (1970), 35–49.

[9 ] H. Halberstam and K.F. Roth, Sequences, Springer–Verlag, Berlin–Heidelberg–
New York, 1983.
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