SPLITTING PROPERTIES IN PARTIALLY ORDERED SETS AND SET SYSTEMS

Rudolf Ahlswede and Levon H. Khachatrian

Universität Bielefeld, Fakultät für Mathematik

Postfach 100131, 33501 Bielefeld, Germany

Abstract

It was shown in [1] that in any "dense" finite poset $\mathcal{P}=(P,<)$ (e.g. in the Boolean lattice) every maximal antichain S may be partitioned into disjoint subsets S_{1} and S_{2}, such that the union of the upset of S_{1} with the downset of S_{2} yields the entire poset: $U\left(S_{1}\right) \cup D\left(S_{2}\right)=P$. Under suitable denseness assumptions we establish splitting properties in great generality for infinite posets, directed graphs and set systems. We show also that for countable posets the conjecture (4.4) of [1] is not true. The poset of squarefree integers serves as an example. It seems also to be of interest that already for the finite Boolean lattice there are antichains which splitt cardinalitywise only in an extremely unbalanced way. Finally we introduce new notions of splitting, called Y-splitting, λ-splitting and X-splitting. For instance in a Y-splitting $\left\{S_{1}, S_{2}\right\}$ in addition to the property above we have also that $U\left(S_{1}\right) \cup D\left(S_{1}\right) \cup S_{2}=P$. We establish first results in a challenging new area.

BASIC DEFINITIONS FOR POSETS

Downsets, upsets, generators, antichains
Let $\mathcal{P}=(P,<)$ be a partially ordered set (poset) and let H be a subset of P. The downset $D(H)$ of the subset H is

$$
\begin{equation*}
D(H)=\{x \in P: \exists s \in H(x \leq s)\} . \tag{1.1}
\end{equation*}
$$

The upset $U(H)$ of H is

$$
\begin{equation*}
U(H)=\{x \in P: \exists s \in H(s \leq x)\} . \tag{1.2}
\end{equation*}
$$

We introduce also the sets

$$
\begin{equation*}
D^{*}(H)=\{x \in P: \exists s \in H(x<s)\} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
U^{*}(H)=\{x \in P: \exists s \in H(s<x)\} . \tag{1.4}
\end{equation*}
$$

A subset $G \subset P$ is called a generator of \mathcal{P}, if

$$
\begin{equation*}
U(G) \cup D(G)=P \tag{1.5}
\end{equation*}
$$

A generator G of \mathcal{P} is called minimal, if no proper subset of G is a generator of \mathcal{P}.
A subset $S \subset P$ is called antichain or Sperner system, if no two elements of S are comparable. An antichain S is maximal (or saturated) if for every antichain $S^{\prime} \subset P, S \subset S^{\prime}$ implies $S=S^{\prime}$. It is easy to see that an antichain S is maximal iff it is a generator of \mathcal{P}. We also remark that a minimal generator of \mathcal{P} is not necessary an antichain.

A splitting property and notions of denseness
We say that $H \subset P$ has the splitting property, if there exists an $H_{1} \subset H$ with

$$
\begin{equation*}
U\left(H_{1}\right) \cup D\left(H \backslash H_{1}\right)=P . \tag{1.6}
\end{equation*}
$$

Of course, for H to have the splitting property it is necessary that H is a generator of \mathcal{P}. We say that \mathcal{P} has the splitting property, if every maximal antichain has the splitting property.
Now we introduce notions of denseness in \mathcal{P} for $H \subset P$.
If for every open interval $<x, y>=\{z \in P: x<z<y\}$ with endpoints $x, y \in P \backslash H:$
$\left(d_{1}\right) \quad\langle x, y\rangle \cap H \neq \phi \Rightarrow|\langle x, y\rangle \cap P| \geq 2$,
then we call $H d_{1}$-dense in \mathcal{P},
$\left(d_{2}\right) \quad\langle x, y\rangle \cap H \neq \phi \Rightarrow|\langle x, y\rangle \cap H| \geq 2$,
then we call $H d_{2}$-dense in \mathcal{P}.
Furthermore, if for every open interval $\langle x, y\rangle$ with endpoints $x, y \in P$:
$\left(d_{2}^{*}\right) \quad\langle x, y\rangle \cap H \neq \phi \Rightarrow|\langle x, y\rangle \cap H| \geq 2$,
then we call $H d_{2}^{*}$-dense in \mathcal{P}.
Clearly, a d_{2}^{*}-dense set is also d_{2}-dense and a d_{2}-dense set is also d_{1}-dense.

Remarks:

- In the special case $H=P$ in [1] for d_{2}^{*}-denseness the term " \mathcal{P} is weakly dense" is used. Also, \mathcal{P} is strongly dense, if for any non-empty interval $\langle x, y\rangle$ and any $z \in\langle x, y\rangle$ there is a $z^{\prime} \in\langle x, y\rangle$ incomparable with z. For finite P the notions coincide. Then \mathcal{P} is said to be dense.
- If H is an antichain, then d_{2}-dense coinsides with d_{2}^{*}-dee and they are the same as "the antichain H is dense in \mathcal{P} ".

Finally it is convenient to have the following notation:
For $H, G \subset P$ we write $H>\mid<G$ iff for all $h \in H$ and all $g \in G$ elements h and g are incomparable. For $s, s^{\prime} \in P$ and $G \subset P$ we also write $s>\mid<s^{\prime}$ instead of $\{s\}>\mid<\left\{s^{\prime}\right\}$ and $s>\mid<G$ instead of $\{s\}>\mid<G$.
Similarly, we write

$$
\begin{equation*}
U(s)=U(\{s\}), U^{*}(s)=U^{*}(\{s\}), D(s)=D(\{s\}), D^{*}(s)=D^{*}(\{s\}) \tag{1.7}
\end{equation*}
$$

REDUCTION OF GENERATORS TO ANTICHAINS

We begin with an auxiliary result.
Lemma 1 For any poset \mathcal{P} let $C \subset P$ be a set such that every element $c \in C$ is comparable with at least one other element c^{\prime} of C. Then
(i) there exists a $C_{1} \subset C$ such that for $C_{2}=C \backslash C$, we have the properties: $\forall a \in C_{1} \exists b \in C_{2}$ such that $a>b, \forall b \in C_{2} \exists a \in C_{1}$ such that $b<a$.
(ii) there exists a $C_{1} \subset C$ with $D(C) \cup U(C)=D\left(C_{1}\right) \cup U\left(C_{2}\right)$.

Proof: (i) Let $A \subset C$ be a maximal antichain in C. Its existence is guaranteed by Zorn's Lemma. By the maximality of the antichain A

$$
C \subset D^{*}(A) \cup U^{*}(A) \cup A
$$

We write A in the form

$$
A=A_{\max } \cup A_{\min } \cup A_{0}
$$

where

$$
\begin{gathered}
A_{\max }=\{a \in A: \nexists c \in C \text { with } c>a\}, A_{\min }=\{a \in A: \nexists c \in C \text { with } c<a\}, \\
A_{0}=A \backslash\left(A_{\max } \cup A_{\min }\right) .
\end{gathered}
$$

By our assumption on $C A_{\max } \cap A_{\text {min }}=\phi$ and also one of the sets $D^{*}(A)$ and $U^{*}(A)$ is not empty. W.l.o.g. we can assume that $D^{*}(A) \neq \phi$ and consider the sets

$$
\begin{gather*}
C_{1}=\left(A_{\max } \cup U^{*}(A) \cup A_{0}\right) \cap C, \tag{2.1}\\
C_{2}=\left(A_{\min } \cup D^{*}(A)\right) \cap C, \tag{2.2}
\end{gather*}
$$

which clearly satisfy $C_{2}=C \backslash C_{1}$.
One also readily verifies that they can serve as sets whose existence is claimed in (i) and (ii).
Let now $G \subset P$ be a generator of \mathcal{P}. Partition it into $G=G_{1} \cup \dot{\cup} G_{2}$, where

$$
\begin{equation*}
G_{1}=\left\{g \in G: \exists g^{\prime} \in G, g^{\prime} \neq g \text { and } g>\mid<g^{\prime}\right\} \tag{2.3}
\end{equation*}
$$

and $G_{2}=G \backslash G_{1}$. Obviously G_{2} is an antichain in \mathcal{P}.
We consider the poset $\mathcal{P}^{\prime}=\left(P^{\prime},<\right)$, where

$$
\begin{equation*}
P^{\prime}=P \backslash\left(D\left(G_{1}\right) \cup U\left(G_{1}\right)\right) . \tag{2.4}
\end{equation*}
$$

Since G is a generator of \mathcal{P}, G_{2} is a generator and hence maximal antichain in \mathcal{P}^{\prime}. This and Lemma 1 yield the following result on reduction.
Proposition 1. Let $G \subset P$ be a generator of \mathcal{P} and let G_{1}, G_{2} be defined as above, $G_{1} \dot{\cup} G_{2}=G$. Now G has the splitting property in \mathcal{P} iff the maximal antichain G_{2} in \mathcal{P}^{\prime} has the splitting property in \mathcal{P}^{\prime}.
The next and last result on reduction is readily verified.
Proposition 2. Let G be any d_{1}-dense (resp. d_{2}-dense) subset of P (not necessarily a generator) and define G_{1}, G_{2} and \mathcal{P}^{\prime} as in (2.3) and (2.4). Then G_{2} is d_{1}-dense (resp. d_{2}-dense) in the poset \mathcal{P}^{\prime}.

SPLITTING OF D_{1}-DENSE ANTICHAINS

Under the weakest of our density assumptions and further regularity conditions we present next a splitting result for not necessarily finite posets.

Theorem 1 Let \mathcal{P} be a poset and let $S \subset P$ be a maximal antichain, which is d_{1}-dense.
Additionally, we assume that
(i) in $D^{*}(S)$ exists an antichain \underline{S} with $D(\underline{S})=D^{*}(S)$
(ii) in $U^{*}(S)$ exists an antichain \bar{S} with $U(\bar{S})=U^{*}(S)$
(iii) S carries a well-ordering μ with the property: for all $u \in \bar{S}$ the set $A(u)=\{s \in S: s<u\}$ has a maximal element according to μ.

Then S has the splitting property.
Proof: For every $d \in \underline{S}$ we consider the set

$$
\begin{equation*}
B(d)=\{s \in S: d<s\} . \tag{3.1}
\end{equation*}
$$

Let $f(d)$ be its minimal element according to μ. We consider $S_{1}=\bigcup_{d \in \underline{S}}\{f(d)\}$ and prove that it gives the desired splitting. Since S is a maximal antichain, of course

$$
D(S) \cup U(S)=P
$$

From condition (i) and the construction of S_{1} we get

$$
D\left(S_{1}\right)=D(S) \backslash\left(S \backslash S_{1}\right)
$$

It remains to prove that

$$
U\left(S \backslash S_{1}\right)=U(S) \backslash S_{1} .
$$

By condition (ii) for this it suffices to show that

$$
\bar{S} \subset U\left(S \backslash S_{1}\right)
$$

Suppose then, to the opposite, that for some $u \in \bar{S}$ we have $u \notin U\left(S \backslash S_{1}\right)$. We consider the set

$$
\begin{equation*}
A(u)=\{s \in S: s<u\} \tag{3.2}
\end{equation*}
$$

Since $u \notin U\left(S \backslash S_{1}\right)$, necessarily $A(u) \subset S_{1}$. Let $s_{0} \in A(u)$ be according to μ the maximal element of $A(u)$, which exists by (iii). From the construction of S_{1} it follows that $s_{0}=f\left(d_{0}\right)$ for some $d_{0} \in \underline{S}$.
We consider now the open interval $\left\langle d_{0}, u\right\rangle$, which contains $s_{0} \in S$. Since S is d_{1}-dense there is a $t \in P$ with $t \neq s_{0}$ and $d_{0}<t<u$.
Furthermore, since $d_{0} \in \underline{S}$ and by (i) \underline{S} is antichain with $D(\underline{S})=D^{*}(S)$, we know that $t \notin D^{*}(S)$. Symmetrically, by (ii), $t \notin U^{*}(S)$, and hence $t \in S$. Now we have $t \in A(u)$, since $t<u$, and $t \in B\left(d_{0}\right)$, since $d_{0}<t$. However, s_{0} is the maximal element of $A(u)$ in the well-ordering μ. Hence, s_{0} is not the minimal element in $B\left(d_{0}\right)$ according to μ. Therefore, $s_{0} \neq f\left(d_{0}\right)$, which is a contradiction.
Corollary 1 Let S be a maximal antichain in a finite poset \mathcal{P}. If S is d_{1}-dense in \mathcal{P}, then S has the splitting property.
Remark 3: Theorem 2.1 of [1] is a special case of this Corollary and also Theorem 3.1 of [1] easily follows. Actually in case of finite posets the proof above closely resembles the second proof of [1].
An instructive infinite poset is $\mathcal{Z}=(Z,<)$, where Z is the set of $0-1$-sequences and for two sequences $a=\left(a_{1}, a_{2}, \ldots\right), b=\left(b_{1}, b_{2}, \ldots\right) \in Z a \leq b$ exactly if $a_{i} \leq b_{i}$ for all $i=1,2, \ldots$. Clearly, any subset $H \subset Z$ is d_{1}-dense.
Corollary 2 Let $S \subset Z$ be a maximal antichain, whose members have at most k ones. Then S has the splitting property.
Proof: The maximal elements in $D^{*}(\underline{S})$ form an antichain \underline{S} and the minimal elements in $U^{*}(S)$ form an antichain \bar{S}. They guarantee (i) and (ii). Since for $u \in \bar{S} A(u)$ is finite, also (iii) holds.

THE LATTICE OF SQUARE-FREE NUMBERS DOES NOT HAVE THE SPLITTING PROPERTY

Let $Z^{*} \subset Z=\{0,1\}^{\infty}$ be the set of all $0-1$-sequences with finitely many ones. Those sequences can be identified with the sequences of exponents in the prime number representation of square-free numbers \mathbb{N}^{*}. The order relation in Z, and thus in Z^{*} says in terms of \mathbb{N}^{*} : for $a, b \in \mathbb{N}^{*} a \leq b$ iff $a \mid b$ (a divides b). According to this relation the upset of $H \subset \mathbb{N}^{*}$ is the set of multiples of H

$$
\begin{equation*}
M(H)=\left\{n \in \mathbb{N}^{*}: \ell \mid n \text { for some } \ell \in H\right\} \tag{4.1}
\end{equation*}
$$

and the downset is the set of divisors of H

$$
\begin{equation*}
D(H)=\left\{n \in \mathbb{N} N^{*}: n \mid \ell \text { for some } \ell \in H\right\} . \tag{4.2}
\end{equation*}
$$

Theorem 2 The poset of square-free numbers does not have the splitting property.
Remark 4: \mathbb{N}^{*} is a countable and strongly dense poset. Therefore Theorem 2 refutes Conjecture 4.4 of [1].
Proof of Theorem 2: We construct a maximal antichain S without the splitting property as follows:
We choose an arbitrary $T_{1} \in \mathbb{N}$ and consider the set

$$
A_{1}=\left\{n \in \mathbb{N}^{*}: T_{1}<n \leq 2 T_{1}\right\}
$$

Next we choosse any $T_{2}, T_{2}>8 T_{1}^{2}$, and define the set

$$
A_{2}=\left\{n \in \mathbb{N}^{*}: n \in\left(T_{2}, 2 T_{2}\right] \backslash M\left(A_{1}\right)\right\} .
$$

Inductively, for every $k>1$ we choose $T_{k}, T_{k}>8 T_{k-1}^{2}$, and define the set

$$
A_{k}=\left\{n \in \mathbb{N}^{*}: n \in\left(T_{k}, 2 T_{k}\right] \backslash M\left(\bigcup_{i=1}^{k-1} A_{i}\right)\right\}
$$

Finally we define

$$
\begin{equation*}
S=\bigcup_{i=1}^{\infty} A_{i} \tag{4.3}
\end{equation*}
$$

- Clearly, numbers in A_{i} are incomparable and $a \in A_{i}, b \in A_{j}(i<j)$ are incomparable, because we have excluded the multiples of A_{i} in the definition of A_{j} and $b>a$. Thus S is an antichain (also called primitive sequence in Number Theory).
- We show next that S is maximal, that is, $\mathbb{N}^{*}=M(S) \cup D(S)$. If this is not the case, then an $\alpha \in \mathbb{N}^{*}$ with $\alpha \notin M(S) \cup D(S)$ and, particularly, $\alpha \notin\left(T_{i}, 2 T_{i}\right]$ for $i=1,2, \ldots$ exists. Hence $2 T_{k}<\alpha \leq T_{k+1}$ for some $k \in I N$ or $2 \leq \alpha \leq T_{1}$. It follows from Bertrand's postulate that there exists a prime $p \in \mathbb{P}$ (the set of all primes) such that

$$
\frac{T_{k+2}}{\alpha}<p \leq 2 \frac{T_{k+2}}{\alpha} \text { or, equivalently, } T_{k+2}<\alpha \cdot p \leq 2 \cdot T_{k+2}
$$

Since $T_{k+2}>8 T_{k+1}^{2}$ and $2 T_{k}<\alpha \leq T_{k+1}$, we conclude that

$$
2 T_{k+1}<p<T_{k+2}
$$

Hence $p>\alpha$ and $\alpha \cdot p \in \mathbb{N}^{*}$.

Now, if $\alpha \cdot p \in M(S)$ or (equivalently) $\alpha^{\prime} \mid \alpha \cdot p$ for some $\alpha^{\prime} \in S\left(\alpha^{\prime} \leq\right.$ $2 T_{k+1}$), then, since $p \in \mathbb{P}$ and $p>2 T_{k+1}$ we have $\alpha^{\prime} \mid \alpha$ and hence $\alpha \in M(S)$, a contradiction.
On the other hand, if $\alpha p \notin M(S) \backslash S$ then the conditions $T_{k+2}<$ $\alpha p \leq 2 T_{k+2}, \alpha p \in \mathbb{N}^{*}$ yield $\alpha p \in S$. But then $\alpha \in D(S)$, again a contradiction.

- Finally we show that the maximal antichain S does not have the splitting property.
Let us assume to the opposite that for some $S_{1} \subset S$

$$
D\left(S_{1}\right) \cup M\left(S \backslash S_{1}\right)=\mathbb{N ^ { * }}
$$

Necessarily $S_{1} \neq \phi$, because for example all squarefree integers from $\left[1, T_{1}\right)$ and all primes from $\left(2 T_{k}, T_{k+1}\right], k \in \mathbb{N}$, are not in $M(S)$.
Let then $\beta \in S_{1}$ and $T_{k}<\beta \leq 2 T_{k}$ for some $k \in \mathbb{N}$. From Bertrand's postulate we know that there is a prime q with $2 T_{k}<q \leq 4 T_{k}$. Consider the integer $\beta \cdot q$. Obviously $\beta \cdot q \in \mathbb{N}^{*}$ and since $T_{k+1}>8 T_{k}^{2}$ we have

$$
2 T_{k}<\beta \cdot q<T_{k+1}
$$

Clearly, $\beta \cdot q \notin D(S)$, because S is an antichain and $\beta \in S$.
On the other hand $\beta \cdot q \in M\left(S \backslash S_{1}\right)$ would imply $\beta^{\prime} \mid \beta q$ for some $\beta^{\prime} \in S \backslash S_{1}$ and then $\beta^{\prime} \leq 2 T_{k}$, because $\beta \cdot q<T_{k+1}$, and hence $\beta^{\prime} \mid \beta$, because $2 T_{k}<q$. But then β^{\prime}, β are in the antichain S and at the same time comparable. This contradiction implies that for the integer $\beta \cdot q \in \mathbb{N}^{*}$

$$
\beta q \notin D\left(S_{1}\right) \cup M\left(S \backslash S_{1}\right)
$$

ON THE SPLITTING RATIO OF MAXIMAL ANTICHAINS IN THE BOOLEAN POSET $\mathcal{L}^{N}=\{0,1\}^{N}$

To fix ideas, let us consider the maximal antichain $S=\binom{[n]}{\ell}$ in \mathcal{L}^{n}. For a splitting $S=S_{1} \cup S_{2}$ necessarily $D\left(S_{1}\right) \supset\binom{[n]}{\ell-1}$ and $U\left(S_{2}\right) \supset\binom{[n]}{\ell+1}, 1 \leq \ell \leq$ $n-1$, and therefore

$$
\begin{aligned}
\frac{\ell}{\ell+1}\binom{n}{\ell} & \geq\left|S_{1}\right| \geq \frac{1}{\ell}\binom{n}{\ell-1}=\frac{1}{n-\ell+1}\binom{n}{\ell}, \\
\frac{n-\ell}{n-\ell+1}\binom{n}{\ell} & \geq\left|S_{2}\right| \geq \frac{1}{n-\ell}\binom{n}{\ell+1}=\frac{1}{\ell+1}\binom{n}{\ell} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\ell \geq \frac{\left|S_{1}\right|}{\left|S_{2}\right|} \geq \frac{1}{n-\ell} \tag{5.1}
\end{equation*}
$$

or $\max \left(\frac{\left|S_{1}\right|}{\left|S_{2}\right|}, \frac{\left|S_{2}\right|}{\left|S_{1}\right|}\right) \leq \max (\ell, n-\ell) \leq n$.
So the ratio of the cardinalities is at most linear in n. However, we construct antichains whose splitting ratios $\rho(n)=\min \left\{\frac{\left|S_{2}\right|}{\left|S_{1}\right|}:\left\{S_{1}, S_{2}\right\}\right.$ is a splitting of $\left.\mathcal{L}^{n}\right\}$ satisfy for large n

$$
\begin{equation*}
\rho(n) \geq 2^{\varepsilon n} \text { for some constant } \varepsilon . \tag{5.2}
\end{equation*}
$$

Construction: For a $k \in I N, 2 \mid k$, let $L=L_{k} \subset\binom{[k]}{\frac{k}{2}}$ be a code with minimal Hamming distance ≥ 4 and with a maximal number of codewords. We consider the poset $\mathcal{P}_{k}=\{0,1\}^{k} \backslash U(L)$ and define $E=E_{k}$ as the set of all maximal elements in \mathcal{P}_{k}. Every element of E has at least $\frac{k}{2}$ ones.
For $n=k \cdot r \in I N$ partition $[n]$ into r blocks $R_{1}, R_{2}, \ldots, R_{r}$ each of cardinality k.
We denote by $I_{t}, 1 \leq t \leq r$, the $0-1$-sequence of length n, which has ones exactly in the positions from block R_{t}. For any $\ell \in L, e \in E$ and $t, 1 \leq t \leq r$, we denote by ℓ_{t} and q_{t} the $0-1$-sequences of length n, which have zeros in the blocks $R_{i}, i \neq t$, and ℓ resp. e in the block R_{t}.
Define $L_{t}^{*}=\left\{\ell_{t}: \ell \in L\right\}$ and $E_{t}^{*}=\left\{e_{t}: e \in E\right\}$. We consider now $S=A \cup B \subset$ $\{0,1\}^{n}$, where

$$
A=\left\{a \in\{0,1\}^{n}: a \wedge I_{t} \in L_{t}^{*} \text { for all } 1 \leq t \leq r\right\}
$$

and
$B=\left\{b \in\{0,1\}^{n}: \exists t \in\{1, \ldots, r\}\right.$ with $b \wedge I_{t} \in E_{t}^{*}$ and $b \wedge T_{t^{\prime}}=I_{t^{\prime}}$ for $\left.t^{\prime} \neq t\right\}$.
One can verify that S is a maximal antichain and by Corollary 2 possesses the splitting property.
We observe that $A \subset\binom{[n]}{\frac{n}{2}}$ and consider the set

$$
X=U(A) \cap\binom{[n]}{\frac{n}{2}+1}
$$

It satisfies $X \cap D(B)=\phi$, because S is antichain and for any $x \in X$ there exists exactly one $a \in A$ with $a<x$, since $a_{1}, a_{2} \in A$ implies $d_{H}\left(a_{1}, a_{2}\right) \geq 4$. Hence, for every splitting $S=S_{1} \cup S_{2}, D\left(S_{1}\right) \cup U\left(S_{2}\right)=\{0,1\}^{n}$ we always have $A \subset S_{2}$.
Therefore, using a familiar lower bound on $|L|$,

$$
\left|S_{2}\right| \geq|A|=|L|^{\frac{n}{k}}>\left(\frac{c\binom{k}{\frac{k}{2}}}{k^{2}}\right)^{\frac{n}{k}}
$$

and

$$
\left|S_{1}\right| \leq|B|=\frac{n}{k} \cdot|E|<\frac{n}{k} \cdot 2^{k} .
$$

Now $\frac{\left|S_{2}\right|}{\left|S_{1}\right|} \geq 2^{\varepsilon(c) n}$ for large n, if we choose $k \sim \sqrt{n}$.

the set-theoretical formulation of the SPLITTING PROPERTY, D_{2}-DENSENESS

Let \mathcal{P} be a poset and let $S \subset P$ be a maximal antichain in \mathcal{P}. Consider the families of sets $\mathcal{A}, \mathcal{B} \subset 2^{S}$ defined by

$$
\begin{equation*}
\mathcal{A}=\left\{A(u): u \in \mathcal{U}^{*}(S)\right\}, \mathcal{B}=\left\{B(d): d \in D^{*}(S)\right\} \tag{6.1}
\end{equation*}
$$

Here we use again the definitions (3.1) and (3.2) for $A(u)$ and $B(d)$. The splitting property of S can equivalently be written in the set-theoretic formulation: There exists a partition of $S ; S=S_{1} \cup S_{2}$; such that

$$
\begin{equation*}
S_{1} \cap A \neq \phi \text { for all } A \in \mathcal{A} \text { and } S_{2} \cap B \neq \phi \text { for all } B \in \mathcal{B} \tag{6.2}
\end{equation*}
$$

We can forget now how \mathcal{A}, \mathcal{B} originated in (6.1) from (\mathcal{P}, S) and can consider abstractly any set S and two families \mathcal{A}, \mathcal{B} of subsets of S and ask whether they have the splitting property (6.2).
Of course any abstract system $(S, \mathcal{A}, \mathcal{B})$ can be viewed as coming via (6.1) from a suitable poset. The new language creates new associations. For instance in [2] for any set system $\mathcal{M} \subset 2^{S}$ a so called B-property was introduced, which means that S has a partition $S=S_{1} \dot{\cup} S_{2}$ with

$$
\begin{equation*}
H \cap S_{1} \neq \phi \text { and } H \cap S_{2} \neq \phi \text { for all } H \in \mathcal{M} \tag{6.3}
\end{equation*}
$$

Obviously, if $\mathcal{M}=\mathcal{A} \cup \mathcal{B}$ has the B-property, then S possesses the splitting property with respect to \mathcal{A}, \mathcal{B}, but the converse is not always true. In the following special situation it is easy to establish the B-property.
Proposition 3. Let S be an infinite set and let $\mathcal{M} \subset 2^{S}$ be countable, $\mathcal{M}=$ $\left\{H_{1}, H_{2}, \ldots,\right\}$; and let every $H_{i} \in \mathcal{M}$ be infinite. Then \mathcal{M} has the B-property. Proof: Since $\left|H_{i}\right|=\infty$ for $i=1,2, \ldots$, we can sequentially choose two different elements $h_{i}, g_{i} \in H_{i}$ for $i=1,2, \ldots$ such that $h_{i} \neq h_{j}, h_{i} \neq g_{j}, g_{i} \neq g_{j}(i \neq j)$. Now we define

$$
S_{1}=\left\{h_{1}, h_{2}, \ldots\right\} \text { and } S_{2}=S \backslash S_{1}
$$

Here we consider for the first time the property d_{2}-dense for a maximal antichain $S \subset \mathcal{P}$. We study it right away in the new setting. The set S is d_{2}-dense for the set systems $\mathcal{A}, \mathcal{B} \subset 2^{S}$, if for all $A \in \mathcal{A}$ and all $B \in \mathcal{B}$ necessarily

$$
\begin{equation*}
|A \cap B| \neq 1 \tag{6.4}
\end{equation*}
$$

We also say that \mathcal{A}, \mathcal{B} have property d_{2}.
Theorem 3 Let $\mathcal{A}, \mathcal{B} \subset 2^{S}$ have property d_{2}, let $\phi \notin \mathcal{A} \cup \mathcal{B}$ and let both, \mathcal{A} and \mathcal{B}, be countable. Then S has the splitting property for $(\mathcal{A}, \mathcal{B})$.
Proof: First note that this theorem is not a consequence of Proposition 3, where we require all members of \mathcal{A} and \mathcal{B} to be infinite.

Let now $\mathcal{A}=\left\{A_{1}, A_{2}, \ldots\right\}, \mathcal{B}=\left\{B_{1}, B_{2}, \ldots\right\}$ and by property $d_{2}\left|A_{i} \cap B_{j}\right| \neq 1$ for all $A_{i} \in \mathcal{A}, B_{j} \in \mathcal{B}$. Then we can choose $a_{1} \in A_{1}$ and $b_{1} \in B_{1} ; a_{1} \neq b_{1}$. We remove all sets from \mathcal{A} which contain a_{1} and all sets from \mathcal{B}, which contain b_{1}. We remove also the element a_{1} from every set in \mathcal{B} and the element b_{1} from every set in \mathcal{A}. We denote the remaining sets by \mathcal{A}^{1} and \mathcal{B}^{1}. Now verify that $\phi \notin \mathcal{A}^{1} \cup \mathcal{B}^{1}$ and $\mathcal{A}^{1}, \mathcal{B}^{1}$ have again property d_{2} !
We note also that the set system \mathcal{A}^{1} (as well as \mathcal{B}^{1}) is ordered according to the ordering of \mathcal{A}, i.e. $\mathcal{A}^{1}=\left\{A_{1}^{1}, A_{2}^{1}, \ldots\right\} A_{k}^{1}=A_{m} \backslash\left\{a_{1}\right\}$ is followed by $A_{t}^{1}=A_{\ell} \backslash\left\{a_{1}\right\}$ for $k<t$ iff $m<\ell$.
Now we choose $a_{2} \in A_{1}^{1}, b_{2} \in B_{1}^{1}, a_{2} \neq b_{2}$ and construct set systems $\mathcal{A}^{2}, \mathcal{B}^{2}$, etc. Continuation of this procedure leads to the subsets of $S: S_{1}=\left\{a_{1}, a_{2}, \ldots\right\}$ and $S_{2}=\left\{b_{1}, b_{2}, \ldots,\right\}$. They splitt \mathcal{A}, \mathcal{B}.
Next we show how important it is that in Theorem 3 both, \mathcal{A} and \mathcal{B}, are countable.
Example 2: (S countable, $\mathcal{A}, \mathcal{B} \subset 2^{S}, \phi \notin \mathcal{A} \cup \mathcal{B}, \mathcal{A}, \mathcal{B}$ have property d_{2} (and even a stronger property), \mathcal{A} is countable, \mathcal{B} is non-countable, but S does not have the splitting property.)
$S=\mathbb{N}, \mathcal{A}=\left\{A \subset \mathbb{N}:\left|A^{c}\right|<\infty\right\}$, where A^{c} is the complement of A, $\mathcal{B}=\{B \subset \mathbb{N}:|B|=\infty\}$. Clearly for every $A \in \mathcal{A}$ and $B \in \mathcal{B}$

$$
|A \cap B|=\infty\left(\text { stronger than } d_{2}\right) .
$$

Suppose that $S=S_{1} \dot{\cup} S_{2}$ and that

$$
\begin{equation*}
S_{1} \cap A \neq \phi \quad \forall A \in \mathcal{A} \text { and } \quad S_{2} \cap B \neq \phi \quad \forall B \in \mathcal{B} \tag{6.5}
\end{equation*}
$$

In case $\left|S_{1}\right|<\infty$ we have $S_{1}^{c} \in \mathcal{A}$ and hence $S_{1} \cap S_{1}^{c}=\phi$ violates the first relation in (6.5). In case $\left|S_{1}\right|=\infty$ we have $S_{1} \in \mathcal{B}$ and hence $S_{2} \cap S_{1}=\phi$ violates the second relation.

SPLITTING OF SETS WITH PROPERTY D_{2}, MINIMAL REPRESENTATIVE SETS AND MINIMAL COVERINGS

The results of the last Section gave the motivation for introducing a further concept.
Let S be a set and $\mathcal{M} \subset 2^{S}$. The set $R \subset S$ is a representative set for \mathcal{M}, if

$$
\begin{equation*}
R \cap H \neq \phi \text { for all } H \in \mathcal{M} . \tag{7.1}
\end{equation*}
$$

A representative set for $\mathcal{M} R \subset S$ is minimal, if no proper subset $R^{\prime} \subset R$ is representative set for \mathcal{M}.
Theorem 4 For a set S and $\mathcal{A}, \mathcal{B} \subset 2^{S}$ with property d_{2} and $\phi \notin \mathcal{A} \cup \mathcal{B}$ let also \mathcal{A} (or \mathcal{B}) have a minimal representative set.
Then S has the splitting property.
Proof: We show that we can choose as S_{1} in the partition of S the minimal representative set $R \subset S$ of \mathcal{A}.

Since by definition $R \cap A \neq \phi$ for all $A \in \mathcal{A}$ and it remains to be seen that there does not exist a $B_{0} \in \mathcal{B}$ with $(S \backslash R) \cap B_{0}=\phi$, or equivalently $B_{0} \subset R$. Assume the opposite.
We choose an arbitrary $b \in B_{0}$ and consider the set $R^{\prime}=R \backslash\{b\}$. Since R^{\prime} is not representative for \mathcal{A} there is an $A \in \mathcal{A}$ with $A \cap R \neq \phi$ and $A \cap R^{\prime}=\phi$. Therefore $A \cap R=\{b\}$ and since $b \in B_{0}, B_{0} \subset R$ we have $\left|A \cap B_{0}\right|=1$. This contradicts d_{2}.
Remark 5: The existence of minimal representatives is not necessary for the splitting property.
Example 3: Let $S=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$ be any infinite countable set and $\mathcal{A}=$ $\mathcal{B}=\left\{S, S \backslash\left\{s_{1}\right\}, S \backslash\left\{s_{1}, s_{2}\right\}, \ldots\right\}$.
Since $|A \cap B|=\infty$ for $A \in \mathcal{A}$ and $B \in \mathcal{B}$, we have property d_{2}. Neither \mathcal{A} (nor $\mathcal{B})$ has a minimal representative. However, for every infinite $S_{1} \subset S$, for which $S \backslash S_{1}$ is also infinite, we have a splitting of \mathcal{A} and \mathcal{B}. Moreover, in this case the existence of a splitting follows from Proposition 3.
Minimal representative sets are related to minimal coverings:
The set $\mathcal{M} \subset 2^{X}$ is a covering of the set X, if $\bigcup_{H \in \mathcal{M}}=X$, and it is a minimal covering if no proper subset is a covering of X.
Now, let $S \subset \mathcal{P}$ be a maximal antichain in the poset \mathcal{P}. Recall the definitions of $\mathcal{U}^{*}(s)$ and $D^{*}(s)$ for $s \in S$ in Section 1 and consider the systems of sets

$$
\mathcal{U}=\left\{U^{*}(s): s \in S\right\}, \mathcal{D}=\left\{D^{*}(s): s \in S\right\}
$$

Since $\bigcup_{s \in S} U^{*}(s)=\mathcal{U}^{*}(S)$ and $\bigcup_{s \in S} D^{*}(s)=D^{*}(S)$, the systems \mathcal{U} and \mathcal{D} are coverings of $U^{*}(S)$ and $D^{*}(S)$ resp.
The following statement is immediately proved by inspection.
Proposition 4. Let $S \subset \mathcal{P}$ be a maximal antichain in the poset \mathcal{P} and let \mathcal{A}, \mathcal{B}, \mathcal{U}, and \mathcal{D} be the associated set systems. Thus \mathcal{A} (resp. \mathcal{B}) has a minimal representative set iff \mathcal{U} (resp. \mathcal{D}) contains a minimal covering of $U^{*}(S)$ (resp. $\left.D^{*}(S)\right)$.
From here we get an equivalent formulation of Theorem 4.
Theorem 4' Let $S \subset \mathcal{P}$ be a maximal antichain in the poset \mathcal{P} with property d_{2} and let the associated set system \mathcal{U} (resp. \mathcal{D}) have a minimal covering of $\mathcal{U}^{*}(S)$ (resp. $\mathcal{D}^{*}(S)$). Then S possesses the splitting property.
Klimo [2] has studied minimal coverings and proved the following result.
Theorem [2] Let $\mathcal{M} \subset 2^{X}$ be a covering of X.
(i) Suppose that there is a well-ordering μ of \mathcal{M} with the property: for all $x \in X$ the sets $\{H \in \mathcal{M}: x \in H\}$ have a maximal element according to μ. Then \mathcal{M} contains a minimal covering of X.
(ii) Suppose that for all $H \in \mathcal{M}|H| \leq k$ for some $k \in \mathbb{N}$, then \mathcal{M} contains a minimal covering of X.
Remark 6: As explained in [2], this Theorem implies that a point-finite covering \mathcal{M} of X (i.e. $\forall x \in X|\{H \in \mathcal{M}: x \in H\}|<\infty$) contains a minimal covering of X.

From Theorems 4, 4', [2] and Proposition 4 we obtain
Corollary 3 Let S be a set, $\mathcal{A}, \mathcal{B} \subset 2^{S}, \phi \notin \mathcal{A} \cup \mathcal{B}$ and \mathcal{A}, \mathcal{B} have property d_{2}.
(i) Let μ be a well-ordering of S such that every $A \in \mathcal{A}$ has a maximal element according to μ. Then S has the splitting property.
(ii) Suppose that for some $k \in \mathbb{N}$ every element of S is contained in at most k sets from \mathcal{A}, then S has the splitting property.

Remark 7: An immediate consequence of this Corollary is, that for \mathcal{A}, \mathcal{B} with property d_{2} and all $A \in \mathcal{A}$ finite S has the splitting property.

NEW AND STRONGER SPLITTING PROPERTIES

We say that S, a maximal antichain in the poset \mathcal{P}, has a Y-splitting, if for some partition $S=S_{1} \cup \dot{S} S_{2}$

$$
\begin{equation*}
U^{*}\left(S_{1}\right) \cup D^{*}\left(S_{1}\right)=U^{*}(S) \cup D^{*}(S) \tag{8.1}
\end{equation*}
$$

and

$$
\begin{equation*}
U^{*}\left(S_{2}\right)=U^{*}(S) \tag{8.2}
\end{equation*}
$$

Symmetrically, we say that S has a λ-splitting, if for some partition $S=S_{1} \cup S_{2}$

$$
\begin{equation*}
D^{*}\left(S_{2}\right)=D^{*}(S) \tag{8.3}
\end{equation*}
$$

and (8.1) holds.
Finally, S has an X-splitting, if for some partition $S=S_{1} \dot{\cup} S_{2}$

$$
\begin{equation*}
U^{*}\left(S_{1}\right) \cup D^{*}\left(S_{1}\right)=U^{*}\left(S_{2}\right) \cup D^{*}\left(S_{2}\right)=U^{*}(S) \cup D^{*}(S) \tag{8.4}
\end{equation*}
$$

Clearly, all these properties imply the familiar splitting property.
We begin their exploration with one of the basic posets, namely $\mathcal{Z}=\{0,1\}^{\infty}$. At first we analyse d_{2}-dense antichains S for this poset. For this we look for $b \in S$ at intervalls $\langle c, a\rangle$ with $b \in S \cap\langle c, a\rangle$ and

$$
\begin{array}{rl}
a & =b_{1} b_{2} \ldots b_{i-1} \\
b & 1 b_{i+1} \ldots b_{j-1}
\end{array} 1 b_{j+1} \ldots .
$$

Clearly $c \in D^{*}(S), a \in U^{*}(S)$ and $c<b<a$. Since S is b_{2}-dense, we must have

$$
b^{\prime}=b_{1} b_{2} \ldots b_{i-1} 0 b_{i+1} \ldots b_{j-1} 1 b_{j+1} \ldots \in S
$$

Thus property d_{2} implies the
Exchange property: S is closed under exchanging any two positions in its elements.

So, if S contains an element $s=\left(s_{1}, s_{2}, \ldots\right)$ with finitely many, say k, ones, then necessarily

$$
\begin{equation*}
S=\binom{I N}{k} \tag{8.5}
\end{equation*}
$$

We know from Remark 7 that this S has the splitting property. Actually we can choose $S_{1}=\left\{s=\left(s_{1}, s_{2}, \ldots\right) \in S: s_{1}=1\right\}$ and $S_{2}=S \backslash S_{1}$.
Next we consider $\mathcal{Z}^{*} \subset \mathcal{Z}$, the poset of all $0-1$-sequences with finitely many ones, $\mathcal{O}^{*} \subset \mathcal{Z}$, the poset of all $0-1$-sequences with finitely many zeros, and

$$
\begin{equation*}
\mathcal{P}_{\infty}=\mathcal{Z} \backslash\left(\mathcal{Z}^{*} \cup \mathcal{O}^{*}\right) \tag{8.6}
\end{equation*}
$$

the poset of all $0-1$-sequences with infinitely many ones and infinitely many zeros.
Proposition 5. Every maximal antichain in \mathcal{P}_{∞} is uncountable.
Proof: Cantor's diagonal argument shows that countability is contradictory.

Theorem 5

(i) In the poset \mathcal{Z}^{*} every maximal d_{2}-dense and non-trivial $\left(S \neq\binom{ N}{0}\right)$ antichain S has a λ-splitting.
(ii) In the poset \mathcal{P}_{∞} every maximal d_{2}-dense antichain S has an X-splitting.

Proof:

(i) We have already demonstrated that for some $k S=\binom{N}{k}$.

Case k even:

We choose $S_{1}=\left\{a=\left(a_{1}, a_{2}, \ldots\right) \in\binom{N}{k}: \sum_{i=1}^{\infty} i a_{i} \equiv 0 \bmod 2\right\}$. and $S_{2}=$ $S \backslash S_{1}$. Verification of the λ-splitting:
For $b=\left(b_{1}, b_{2}, \ldots\right) \in\binom{N}{k+1}$ either $\sum_{i=1}^{\infty} i b_{i} \equiv 1 \bmod 2$ and then $b \in U^{*}\left(S_{1}\right)$, because for some odd $i_{0} b_{i_{0}}=1$ and its replacement by 0 produces an $a \in S_{1}$, or $\sum_{i=1}^{\infty} i b_{i} \equiv 0 \bmod 2$ and then $b \in U^{*}\left(S_{1}\right)$, because $k+1$ being odd enforces $b_{i_{0}}=1$ for some even i_{0} and its replacement by 0 produces an $a \in S_{1}$. Similarly we show that $D^{*}\left(S_{1}\right)=D^{*}\left(S_{2}\right)=D^{*}(S)$.

Case k odd:

Define $\mathbb{N}_{1}=\{n \in \mathbb{N}: 2 \nmid n\}, T=\binom{N}{k}$ and let $T=T_{1} \dot{\cup} T_{2}$ be a splitting (guaranteed by Corollary 2) of \mathcal{Z}_{1}^{*}, the poset of all $0-1$-sequences with finitely many ones in the positions N_{1} and zeros in the positions $\mathbb{N} \backslash N_{1}$.
Now we take

$$
L_{1}=S_{1} \cup T_{1} \text { and } L_{2}=\binom{\mathbb{N}}{k} \backslash L_{1}
$$

and again verify the λ-splitting.
(ii) Let $S \subset \mathcal{P}_{\infty}$ be a maximal and $d_{2}-$ dense antichain. We have to show that there is a partition $S=S^{1} \dot{\cup} S^{2}$ with

$$
\begin{equation*}
U^{*}(S) \cup D^{*}(S)=U^{*}\left(S^{1}\right) \cup D^{*}\left(S^{1}\right)=U^{*}\left(S^{2}\right) \cup D^{*}\left(S^{2}\right) \tag{8.7}
\end{equation*}
$$

By the exchange property S is uniquely partitioned into equivalence classes $\left\{S_{i}\right\}_{i \in I}$ such that every class $S_{i}(i \in I)$ consists of those elements of S which can be obtained from each other by finitely many exchanges.
Clearly, $S_{i}(i \in I)$ is countable and hence by Proposition 5 the set of indices I must be uncountable.
Now we consider the sets

$$
\begin{gathered}
\bar{S}_{i}=\left\{a=\left(a_{1}, a_{2}, \ldots\right) \in \mathcal{P}_{\infty}: \exists s=\left(s_{1}, s_{2}, \ldots\right) \in S_{i} \text { with } s_{\ell}=0, a_{\ell}=1\right. \\
\text { for some } \left.\ell \in \mathbb{N} \text { and } a_{j}=s_{j} \text { for } j \neq \ell\right\}
\end{gathered}
$$

and

$$
\begin{gathered}
\underline{S}_{i}=\left\{a=\left(a_{1}, a_{2}, \ldots\right) \in \mathcal{P}_{\infty}: \exists s=\left(s_{1}, s_{2}, \ldots\right) \in S_{i} \text { with } s_{\ell}=1, a_{\ell}=0\right. \\
\text { for some } \left.\ell \in \mathbb{N} \text { and } a_{j}=s_{j} \text { for } j \neq \ell\right\} .
\end{gathered}
$$

Let \bar{S} and \underline{S} be the "parallel levels" of S, that is, $\bar{S}=\bigcup_{i \in I} \bar{S}_{i}$ and $\underline{S}=\bigcup_{i \in I} \underline{S}_{i}$. It is clear that a partition $S=S^{1} \dot{\cup} S^{2}$ satisfies (8.7) exactly if

$$
\begin{equation*}
\bar{S} \cup \underline{S} \subset U\left(S^{1}\right) \cup D\left(S^{1}\right) \text { and } \bar{S} \cup \underline{S} \subset U\left(S^{2}\right) \cup D\left(S^{2}\right) . \tag{8.8}
\end{equation*}
$$

We observe that \bar{S} and \underline{S} are maximal antichains in \mathcal{P}_{∞} and their equivalence classes are $\left\{\bar{S}_{i}\right\}_{i \in I}$ and $\left\{\underline{S}_{i}\right\}_{i \in I}$ resp.
Moreover, for $u \in \bar{S}_{i}$ and $d \in \underline{S}_{i}$ the sets $A(u)=\{s \in S: s<u\}$ and $B(d)=\{s \in S: s>d\}$ are contained in S_{i}. For every $i \in I$ we consider now the systems of sets

$$
\mathcal{A}_{i}=\left\{A(u): u \in \bar{S}_{i}\right\}, \mathcal{B}_{i}=\left\{B(d): d \in \underline{S}_{i}\right\}, \text { and } \mathcal{M}_{i}=\mathcal{A}_{i} \cup \mathcal{B}_{i} .
$$

We observe that $\mathcal{M}_{i} \subset 2^{S_{i}}, \mathcal{M}_{i}$ is countable and every subset of \mathcal{M}_{i} is infinite. By Proposition $3 \mathcal{M}_{i}$ has property B. This is equivalent to the following: there exists a partition $S_{i}=S_{i}^{1} \cup S_{i}^{2}$ such that $\bar{S}_{i} \cup \underline{S}_{i} \subset U^{*}\left(S_{i}^{1}\right) \cup D^{*}\left(S_{i}^{1}\right)$ and $\bar{S}_{i} \cup \underline{S}_{i} \subset U^{*}\left(S_{i}^{2}\right) \cup D^{*}\left(S_{i}^{2}\right)$. Finally we choose

$$
S^{1}=\bigcup_{i \in I} S_{i}^{1} \text { and } S^{2}=\bigcup_{i \in I} S_{i}^{2}
$$

In conclusion we return to our best friend, the Boolean poset $\{0,1\}^{n}$. Under an exchange property its maximal antichains are of the form $S=\binom{[n]}{k}$.
Theorem 6 If there exists a partition $S=S_{1} \dot{\cup} S_{2}$ for $S=\binom{[n]}{k} \subset\{0,1\}^{n}$ such that

$$
U^{*}\left(S_{1}\right)=U^{*}\left(S_{2}\right)=U^{*}(S),
$$

then S has a Y-splitting.
Proof: We consider the set of partitions

$$
\mathcal{V}(S)=\left\{\left(S_{1}, S_{2}\right): S_{1} \cup \dot{\cup} S_{2}=S, U\left(S_{1}^{*}\right)=U\left(S_{2}^{*}\right)=U^{*}(S)\right\} .
$$

Let $\left(S_{1}^{\prime}, S_{2}^{\prime}\right) \in \mathcal{V}(S)$ be extremal in the sense that $S_{1}^{\prime} \subset S_{1}, S_{1}^{\prime} \neq S_{1}$ implies $\left(S_{1}, S \backslash S_{1}\right) \notin \mathcal{V}(S)$. It suffices to show that $D^{*}\left(S_{1}^{\prime}\right)=D^{*}(S)$.
Suppose, in the opposite, that there exists an $\alpha \in\binom{[n]}{k-1}$ with $\alpha \notin D^{*}\left(S_{1}^{\prime}\right)$.
Hence, the elements $\beta_{1}, \beta_{2}, \ldots, \beta_{n-k+1} \in\binom{[n]}{k}$ with $\beta_{i}>\alpha$ are from the set S_{2}^{\prime}. But then $\left(S_{1}^{\prime} \cup\left\{\beta_{1}\right\}, S_{2}^{\prime} \backslash\left\{\beta_{1}\right\}\right) \in \mathcal{V}(S)$, because $\gamma>\beta_{1}$ implies also $\gamma>\beta_{i}$ for some $i \geq 2$.

SPLITTING PROPERTIES FOR DIRECTED GRAPHS

We consider directed graphs $\mathcal{G}=(V, \mathcal{E})$ with multiple edges, that is, both edges, $\left(v_{1}, v_{2}\right)$ and $\left(v_{2}, v_{1}\right)$ can be in \mathcal{E}.
They can be viewed as generalizations of posets, because with every poset $\mathcal{P}=\left(P,<_{p}\right)$ we can associate a graph $G(\mathcal{P})=\left(P, \mathcal{E}\left(<_{p}\right)\right)$ as follows:

$$
\begin{equation*}
\text { For } v_{1}, v_{2} \in P \quad\left(v_{1}, v_{2}\right) \in \mathcal{E}\left(<_{p}\right) \Leftrightarrow v_{1}<_{p} \quad v_{2} . \tag{9.1}
\end{equation*}
$$

In such a graph there are no directed cycles, so the class of directed graphs is wider than the class of posets.
If S is an antichain in \mathcal{P}, then for $s_{1}, s_{2} \in S$
(a) there is no edge in $G(\mathcal{P})$ between s_{1} and s_{2}
(b) there is no directed path in $G(\mathcal{P})$ from s_{1} to s_{2}.

For $G(\mathcal{P})$ properties (a) and (b) are the same. However, for general graphs they are different. If for a set $S \subset V$ (a) holds, then we call S an antichain, and if (the stronger) (b) holds, we call S a pathwise or (shortly) p-antichain. We extend now the notion of a dense poset in the sense of [1], discussed in Section 1, to graphs. We use abbreviations like $a \rightsquigarrow b$ (resp. $a \nLeftarrow b$), if there is (resp. is not) a directed path from a to b.
We say that $G=(V, \mathcal{E})$ is p-dense, if for every directed path $\left[a_{1}, a_{2}, \ldots, a_{t}\right]$ of length $t-1 \geq 2$ and every $a_{i}(2 \leq i \leq t-1)$ there exists a directed path $a_{t} \rightsquigarrow a_{i}$, a directed path $a_{i} \rightsquigarrow a_{1}$ or there exists a b_{i} on a directed path from a_{1} to a_{t} and p-independent of a_{i}.
All notions of splitting in the previous Section 8 can be extended. However, we consider here only the original concept of [1].
Let S be a maximal p-antichain, then S possesses a p-splitting of \mathcal{G}, if there is a partition $S=S_{1} \dot{\cup} S_{2}$ with

$$
U\left(S_{1}\right) \cup D\left(S_{2}\right)=V
$$

where

$$
\begin{aligned}
& U\left(S_{1}\right)=\{v \in V: \exists s \rightsquigarrow v \text { for some } s \in S\}, \\
& D\left(S_{2}\right)=\{v \in V: \exists v \rightsquigarrow s \text { for some } s \in S\} .
\end{aligned}
$$

Here is our generalization of the main result in [1].

Theorem 7 Let \mathcal{G} be a finite p-dense, directed graph, then every maximal p-antichain S in \mathcal{G} possesses a splitting of \mathcal{G}.

Sketch of proof:

We follow the idea of the first proof of Theorem 3.1 in [1], which is by induction on $|V|$.
If $s \in S$ is needed for "up" to u and for "down" to d, then for the chain $d \rightsquigarrow s \rightsquigarrow u$ by p-denseness either we find a chain $u \rightsquigarrow d$ and we have a contradiction, because d can be attained in $U(S)$ (does not use full strength of (c)!), or by (d) there is a v with $d \rightsquigarrow v \rightsquigarrow u$ and $s \nsim v, v \nsim s$.

In this case independence of s from S would contradict maximality of S, so we have either for some $s_{1} \in S s_{1} \rightsquigarrow v$ or for some $s_{2} \in S v \rightsquigarrow s_{2}$.
Therefore either $s_{1} \rightsquigarrow u$ or $d \rightsquigarrow s_{2}$ and in any case a contradiction to the definition of s.
It remains to discuss the case where some $U(s)$ (or $D(s)$) is removed from the graph. As in [1] we show by inspection that the induced graph on $V \backslash U(s)$ is p-dense.
Remark 8: It is interesting to analyse number-theoretic examples such as $G=(V, \mathcal{E})$, where $V \subset \mathbb{N}$ and for $m, n \in V(m, n) \in \mathcal{E}$ iff g.c.d $\{m, n\}=1$ and $m<n$.
We thank Peter Erdös for proposing the study of splitting properties in infinite posets.

References

[1] R. Ahlswede, P.L. Erdös, and N. Graham, "A splitting property of maximal antichains", Combinatorica 15 (4), 1995, 475-480.
[2] J. Klimó, "On the minimal covering of infinite sets", Discrete Applied Mathematics 45, 1993, 161-168.

