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Abstract

We derive an isoperimetric theorem for sequences genenerated by feed-

back and consider block codes for the binary broadcast channel with two

receivers and noiseless feedback. We get an outer bound by applying the

isoperimetric theorem on the achievable rates for special cases of these

codes with unequal error protection. We get a lower bound with a gener-

alized Varshamov-Gilbert construction.

1 Introduction

In this paper we derive a new isoperimetric theorem. We consider the sequences
generated as output sequences by a family of feedback-encoding functions and
show that these sets fulfill an isoperimetric theorem. We get this theorem by
generalizing the Eckhoff-Wegner inequality [7]. With this theorem we get an
outer bound for the following broadcast channel. We consider a communication
system with one sender (or encoder) E and two receivers (or decoders) D1 and
D2 with noiseless feedback and unequal error protection. The sender E wants
to send a message i ∈ M1 to D1 (decoder 1) and a message j ∈ M2 to D2

(decoder 2) simultaneously and he encodes each pair (i, j) of messages into a
binary sequence of length n.
This sequence is sent to the two receivers via two independent channels. Because
of the noise in the channels the output sequences received by the two receivers
may have errors at most of t1 = nτ1 and t2 = nτ2 positions respectively. Moreover
we assume that there is noiseless feedback. That means, the sender is allowed
to choose the m-th position of input according to the first (m − 1) positions of
both output sequences. An encoding function is of the form: fn

i,j

(

yn−1
1 , yn−1

2

)

=
(

f
(1)
i,j , . . . , f

(k)
i,j

(

yk−1
1 , yk−1

2

)

, . . . , f
(n)
i,j

(

yn−1
1 , yn−1

2

)

)

, where f
(k)
i,j : Yk−1

1 ×Yk−1
2 → X

is a function for the k-th coordinate, which depends on the (k − 1) positions
which have been received by decoder 1 and 2, where X = Y = {0, 1}. We call a
family of encoding functions {fn

i,j : i ∈ M1, j ∈ M2} a binary (n,M1,M2, (t1, t2))
feedback code (or briefly an fb-code) for the broadcast channel where |Mk| = Mk

for k = 1, 2.
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The first paper about the broadcast channel [6] was published by T. M. Cover
in 1972. Boyarinov [5] introduced codes with unequal error protection. The best
known upper and lower bounds for the code rate without feedback can be found
in [2]. In [9] the authors obtained lower bounds by using linear codes. It is shown
in [3] that these constructions gave no better results than in [2]. We consider
here the model with feedback. It can also be viewed as an extension of the model
which was introduced by E. R. Berlekamp [4]. He considered the model with one
sender and one receiver with feedback. We consider (n,M1,M2, (0, t)) feedback
codes. In this model, the feedback increases the rate already by time-sharing.

2 An isoperimetric theorem

We will present an isoperimetric theorem, therefore we need an isoperi-
metric inequality. For a subset A ⊂ {0, 1}n, let Γt(A) = {xn :
there exists an an ∈ A such that dH(xn, an) ≤ t} for 1 ≤ t ≤ n. Then
the isoperimetric problem for binary Hamming space asks which sets achieve
minA:|A|=u |Γ

t(A)|. This problem was solved by Harper [8]. Later Katona [10]
gave another proof. It is shown that the initial segments of the following order
are always optimal for the minimization. Let xn and yn be two binary sequences
with the same Hamming weight. Then we say that xn precedes yn in the squashed
order if yi = 1 at the largest component i where xi 6= yi. A binary sequence xn

precedes a binary sequence yn in Harper-order, briefly H-order, if the Hamming
weight of xn is less than the Hamming weight of yn or they have the same Ham-
ming weight and 1n − xn precedes 1n − yn in the squashed order. In the binary
Hamming space of n dimensions the uth initial segment in H-order is denoted by
Sn,u. Clearly

Γt(Sn,u) ⊂ Γt(Sn,v) (2.1)

for all n, t if u < v. We present the outer bound in terms of the function G which
can be found in [10]. For given n any non-negative integer u can be uniquely
represented as

u =

(

n

n

)

+ . . . +

(

n

k + 1

)

+

(

αk

k

)

+ . . . +

(

αt

t

)

(2.2)

with n > αk > . . . > αt ≥ t ≥ 1. We define the function G as

G(n, u) =

(

n

n

)

+

(

n

n − 1

)

+ . . . +

(

n

k

)

+

(

αk

k − 1

)

+ . . . +

(

αt

t − 1

)

. (2.3)

Moreover we rewrite G as G◦1 and define G◦t(n, ·) = G(n,G◦t−1(n, ·)) recursively.
The Isoperimetric Theorem ([8], [10]) says that

min
A:|A|=u

|Γt(A)| = |Γt(Sn,u)| = G◦t(n, u). (2.4)
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Eckhoff and Wegner [7] proved that if 0 ≤ u1 ≤ u0 and u = u0 + u1,

G(n, u) ≤ max[u0, G(n − 1, u1)] + G(n − 1, u0). (2.5)

To obtain our outer bound we need its generalization.

Lemma 1 Let u0 and u1 be non-negative integers and u = u0 + u1, then

G◦t(n, u) ≤ max[G◦t(n−1, u0), G
◦t−1(n−1, u1)]+max[G◦t−1(n−1, u0), G

◦t(n−1, u1)]
(2.6)

for all n and 0 ≤ t ≤ n.

Proof: Let us assume to the contrary that for some n, t and u = u0 + u1

G◦t(n, u) > max[G◦t(n − 1, u0), G◦t−1(n − 1, u1)]

+ max[G◦t−1(n − 1, u0), G◦t(n − 1, u1)]. (2.7)

Let A0 = {(an−1, 0) : an−1 ∈ Sn−1,u0
}, A1 = {(an−1, 1) : an−1 ∈ Sn−1,u1

}, and
A = A0 ∪ A1. For k = 0, 1 the elements in the subset Ak ⊂ {0, 1}n are obtained
by adding a letter k after a sequence of length n − 1 in the ukth initial segment
in the H-order in n − 1 dimensional binary Hamming space. Then A0 ∩ A1 = ∅,
|A0| = u0, |A1| = u1 and |A| = u = u0 + u1. Note that Γt(A) consists of two
disjoint parts according to whether the last components of their members are 0
or 1. The former is

{(bn−1, 0) : bn−1 ∈ Γt(Sn−1,u0
)} ∪ {(bn−1, 0) : bn−1 ∈ Γt−1(Sn−1,u1

)}

and the latter is

{(bn−1, 1) : bn−1 ∈ Γt−1(Sn−1,u0
)} ∪ {(bn−1, 1) : bn−1 ∈ Γt(Sn−1,u1

)}.

Thus by (2.1) and (2.4) we have

|Γt(A)| = max[G◦t(n−1, u0), G
◦t−1(n−1, u1)]+max[G◦t−1(n−1, u0), G

◦t(n−1, u1)],

which with (2.7) yields Γt(A) < G◦t(n, u). A contradiction to (2.4).

Let us now turn to our problem of binary error correcting codes with feed-
back. We will obtain the theorem by counting the number of possible output
sequences. Consider a family of encoding functions of a binary feedback code
fn

m : {0, 1}n−1 −→ {0, 1}n, m ∈ M,

fn
m(yn−1) = (f (1)

m , f (2)
m (y1), f

(3)
m (y1, y2), . . . , f

(n)
m (y1, y2, . . . , yn−1)). (2.8)

When they are input to a channel (of one receiver) with noiseless feedback, the
output yn = (y1, . . . , yn) with
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y1 = f (1)
m + e1 and yt = f (t)

m (y1, y2, . . . yt−1) + et for t = 2,3, . . . , n (2.9)

is uniquely determined by the encoding function fn
m and the binary error pattern

en = (e1, e2, . . . , en) occurring in the transmission and so can be regarded as their
function Φ(fn

m, en). For a family of encoding functions {fn
m : m ∈ M} and a set

E of error patterns we write

Φ(fM, E) = {yn : there exist m ∈ M and en ∈ E such that yn = Φ(fn
m, en)}.

(2.10)
We believe that the following theorem is independently interesting in Combina-
torics because it can be considered as an isoperimetric theorem for the sequences
generated by feedback. By choosing as the set of error patterns E = E(n, t), the
set of binary sequences of length n whose Hamming weight is not exceeding t, we
have

Theorem 1 For any family {fn
m : m ∈ M} of encoding functions,

|Φ(fn
M, E(n, t))| ≥ G◦t(n, |M|). (2.11)

Proof (Induction on n): It is trivial when n = 1. Suppose that we have shown
that the theorem is true for n − 1 and we are given a family {fn

m : m ∈ M}
of encoding feedback functions. We first partition M into two parts M(0) and

M(1), according to the first components of fn
m’s, f

(1)
m = 0 or 1. According to

the first components of the output sequences, 4 families of encoding functions of
length n − 1 are further generated by the original encoding functions as follows.

f ∗n−1
m (y2, . . . , yn) = (f (2)

m (0), f (3)
m (0, y2), . . . , f

(n)
m (0, y2, . . . , yn)) for m ∈ M(0),

(2.12)

f ∗n−1
m (y2, . . . , yn) = (f (2)

m (1), f (3)
m (1, y2), . . . , f

(n)
m (1, y2, . . . , yn)) for m ∈ M(0),

(2.13)

f ∗n−1
m (y2, . . . , yn) = (f (2)

m (0), f (3)
m (0, y2), . . . , f

(n)
m (0, y2, . . . , yn)) for m ∈ M(1),

(2.14)
and

f ∗n−1
m (y2, . . . , yn) = (f (2)

m (1), f (3)
m (1, y2), . . . , f

(n)
m (1, y2, . . . , yn)) for m ∈ M(1).

(2.15)
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We set the index sets M∗(k, l), for k, l = 0, 1 and label the members of the
above 4 families of encoding functions by the elements in the index sets M∗(0, 0),
M∗(0, 1), M∗(1, 0) and M∗(1, 1). Then

|M∗(0, 0)| = |M∗(0, 1)| = |M(0)| and |M∗(1, 0)| = |M∗(1, 1)| = |M(1)|
(2.16)

and
|M| = |M(0)| + |M(1)|. (2.17)

We note that any output sequence yn = (y1, . . . , yn) ∈ Φ(fn
M, E(n, t)) with

y1 = 0 can be obtained by adding a “0” in front of a sequence (y2, . . . , yn) in
Φ(f ∗n−1

M∗(0,0), E(n − 1, t)) or in Φ(f ∗n−1
M∗(1,0), E(n − 1, t − 1)) whereas any sequence

yn = (y1, . . . , yn) ∈ Φ(fn
M, E(n, t)) with y1 = 1 can be obtained by adding

a “1” in front of a sequence (y2, . . . , yn) in Φ(f ∗n−1
M∗(0,1), E(n − 1, t − 1)) or in

Φ(f ∗n−1
M∗(1,1), E(n − 1, t)). Thus by the previous lemma, (2.12)-(2.17), and the in-

duction hypothesis, we have that

|Φ(fn
M, E(n, t))| = |Φ(f ∗n−1

M∗(0,0), E(n − 1, t)) ∪ Φ(f ∗n−1
M∗(1,0), E(n − 1, t − 1))|

+ |Φ(f ∗n−1
M∗(0,1), E(n − 1, t − 1)) ∪ Φ(f ∗n−1

M∗(1,1), E(n − 1, t)|

≥ max[|Φ(f ∗n−1
M∗(0,0), E(n − 1, t))|, |Φ(f ∗n−1

M∗(1,0), E(n − 1, t − 1))|]

+ max[|Φ(f ∗n−1
M∗(0,1), E(n − 1, t − 1))|, |Φ(f ∗n−1

M∗(1,1), E(n − 1, t))|]

≥ max[G◦t(n − 1, |M∗(0, 0)|), G◦t−1(n − 1, |M∗(1, 0)|)]

+ max[G◦t−1(n − 1, |M∗(0, 1)|), G◦t(n − 1, |M∗(1, 1)|)]

≥ G◦t(n, |M|), (2.18)

where the first inequality follows from the induction hypothesis and the last
inequality follows from (2.6), (2.16), and (2.17).

3 Hamming-type bounds

Berlekamp proved the following Hamming bound for binary t error correcting
codes with feedback [4].

Proposition 1 (The Hamming bound) Let N, t ∈ N, then for every binary t

error correcting codes with feedback we have N ≤ 2n

Pt
j=0 (n

j)
, where N is the cardi-

nality of the message-set.

By counting output sequences, one can obtain a very simple proof to it. Let
{fn

i : i = 1, . . . ,M} be the set of encoding functions of such a code. Then for
(i, en) 6= (i′, e′n), in terminology from above, Φ(fn

i , en) 6= Φ(fn
i′ , e

′n) because (1)

5



the decoder is able to distinguish the messages i and i′ if i 6= i′ and (2) the tth
position of Φ(fn

i , en) and Φ(fn
i′ e

′n) must be different if i = i′, en 6= e′n, and the
tth position is the first position where en and e′n are different. So M |E(n, t)| =
M

∑t

k=0

(

n

k

)

≤ 2n.

Corollary 1 Let n → ∞, τ = t(n)
n

, then for t error correcting codes with feedback
holds R ≤ 1 − h(τ).

We also get an outer bound for an (n,M1,M2, (0, t)) feedback code.

Theorem 2 If there exists an (n,M1,M2, (0, t)) binary fb-codes for broadcast
channels, then

M2 ≤
2n

G◦t(n,M1)
. (3.1)

Proof: Let {fn
i,j : i = 1, . . . ,M1 and j = 1, . . . ,M2} be the set of encoding

functions of a given (n,M1,M2, (0, t)) fb-code. Denote by M′
j = {(i, j) : i =

1, . . . ,M1} and partition the set of encoding functions into

{fn
i,j : (i, j) ∈ M′

j}, j = 1, . . . ,M2.

Then by Lemma 2 we have that

Φ(fn
M′

j
, E(n, t)) ≥ G◦t(n,M1) (3.2)

for all j, since |M′
j| = M1. On the other hand, for j 6= j′, Φ(fM′

j ,E(n, t)) and

Φ(fM′

j′
,E(n, t)) must be disjoint because the decoder is able to distinguish the

messages j and j′. Thus it follows from (3.2) that

M2 G◦t(M1) ≤ 2n, (3.3)

because the whole output space contains 2n binary sequences. Therefore (3.1)
holds.

Corollary 2 Let n → ∞, τ = t(n)
n

and p be chosen such that R1 = h(p), then
R2 ≤ 1 − h(p + τ).

The asymptotic version of Berlekamp’s Hamming-Bound (Corollary 1) is tight,
if R ≤ R0 = 0.29650. For bigger rates Berlekamp proved that a tangent to the
Hamming bound through the point R0 is tight. We conjecture that we will have
a similar behaviour in the present case, this means, that our outer bound is tight
for small rates.
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4 A code construction

We present a binary (n,M1,M2, (0, t)) feedback code, which gives some better
rates than the best known code-construction without feedback. We send the data
just in two rounds. In the first round the sender sends the first k = ⌈log M2⌉
positions according to the message in M2 for D2, then by receiving the feedback
of the output of the first round and the message of D1, he sends the remaining
positions in the second round. The idea is to transmit i ∈ M1 to D1 and j ∈ M2

to D2 in the following way. Let Mi = {0, . . . ,Mi − 1}, the sender transmits
in the first k positions the binary representation of the message j. After this
transmission the sender knows the error pattern of D2 (Ek = {

(

[k]
l

)

: 0 ≤ l ≤ t}).
In the remaining n − k positions the sender encodes the message i ∈ M1 for D1

and the error pattern ek ∈ Ek for D2. We assume that |M1| = M1 =
∑r

l=0

(

n−k

l

)

and M2 = 2k. Let f be the number of errors which occurred in the first k

positions (w(ek) = f). For xn ∈ {0, 1}n we denote by Bn,r(x
n) = {yn ∈ {0, 1}n :

dH(xn, yn) ≤ r} the ball of radius r. The sender knows that at most t− f errors
can occur in the remaining n − k positions. For each ek ∈ Ek we construct a
Hamming ball with the radius r with the center x(ek) ∈ {0, 1}n−k. If the error-
pattern ek occurred the sender sends a sequence in the corresponding Hamming
ball, depending on the message for D1. If for all error patterns ek

1, e
k
2 ∈ Ek

(ek
1 6= ek

2) holds dH(Bn−k,r(x(ek
1)), Bn−k,r(x(ek

2))) = min{dH(xn−k, yn−k) : xn−k ∈
Bn−k,r(x(ek

1)), y
n−k ∈ Bn−k,r(x(ek

2))} ≥ 2t − w(ek
1) + w(ek

2), D1 can decode his
message and D2 can decode the error pattern. We will give a formal construction
of the code and calculate its rate. The idea of this construction is given in [2].
For the construction we will use the fact that for two sets V,W ⊂ {0, 1}n holds

minxn∈{0,1}n |(xn + V ) ∩ W |

|V |
≤

|W |

2n
. (4.1)

This is true, because 2n minxn∈{0,1}n |(xn + V ) ∩ W | ≤
∑

xn∈{0,1}n |(xn + V ) ∩

W | = |V ||W |. For W ⊂ {0, 1}n we denote by Mn,r(W ) =
⋃

x∈W Bn,r(x) the
r-neighborhood of W .
Let 1 < g ≤ g0 = |Ek|, V ⊂ {0, 1}n−k and u1, . . . , ug0

∈ {0, 1}n−k. We set

m(V, n, k, t, j) = Mn−k,2i(uj +V ), where i = min{h ∈ N : j ≤
∑h

l=0

(

k

t−l

)

} and we
define

M(V, n, k, t, u1, . . . , ug) =

g
⋃

j=1

m(V, n, k, t, j).

Now we describe the construction. Let V ⊂ {0, 1}n−k, we construct inductively
the following translations of V : u1 + V ,. . . , ug0

+ V . Let u1 = 0n−k. Assume
u1, . . . , ug−1 have already been chosen, then we take a point ug which satisfies the
inequality

|(ug + V ) ∩M(V, n, k, t, u1, . . . , ug−1)|

|V |
≤

|M(V, n, k, t, u1, . . . , ug−1)|

2n−k
. (4.2)
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Such a point always exists, because of (4.1). If after the procedure we have

|M(V, n, k, t, u1, . . . , ug0
)|

2n−k
≤

1

2
, (4.3)

then by (4.2) and (4.3) we have

|(ug + V ) ∩M(V, n, k, t, u1, . . . , ug−1)|

|V |
≤

1

2

for all g ≤ g0. We set Vi = (ui + V ) \ M(V, n, k, t, u1, . . . , ui−1). Thus

mini=1,...,g0
|Vi| ≥ |V |

2
holds. Thus, if we assume that all neighborhoods are

disjoint and choose V as a Hamming ball, we get |M(V, n, k, t, u1, . . . , ug0
)| =

∑t

i=0[
(

k

t−i

)
∑r+2i

j=0

(

n−k

j

)

]. Now we can use Vi to decode the message of D1. De-

pending on which Vi we use, D2 can decode the error pattern. Let Ri = log Mi(n)
n

for i = 1, 2. In our construction we have 2nR1−1 = |V | and R2 = k
n
. It follows

Proposition 2 For M2, n, t ∈ N, there exists an (n,M1,M2, (0, t)) feedback
code with M1 = 1

2

∑r

j=0

(

n−k

j

)

, if
∑t

i=0[
(

k

t−i

)
∑r+2i

j=0

(

n−k

j

)

] ≤ 2n−k−1, where

k = ⌈log M2⌉.

Definition 1 For 0 ≤ β, ρ < 1 we set

I(β, ρ) = min
0≤γ≤min{β

2
,τ}
{(1 − β)(1 − h(

ρ + 2τ − 2γ

1 − β
)) − βh(

γ

β
)}.

We will bound the region of permissible values (R1, R2, τ), τn = t for all large n.
With our code construction we get the following bound.

Theorem 3 Let 0 ≤ β ≤ 1, 0 ≤ τ ≤ 1
2

and ρ ≤ 1−β

2
− 2τ , then there exists an

N0 ∈ N such that for all n ≥ N0 there exists an (n,M1,M2, (0, t)) feedback code
with the rates:
R1 = (1 − β)h( ρ

1−β
) and R2 = β, if I(β, ρ) ≥ 0.

Proof: There exists an (n,M1,M2, (0, t)) feedback code, if 0 ≤
2n−k−1 − (

∑t

i=0[
(

k

t−i

)
∑r+2i

j=0

(

n−k

j

)

]) (Proposition 2). Let n → ∞ and t
n
→ τ . We

get the statement of the theorem

Acknowledgment: The authors are grateful to L. A. Bassalygo for drawing
their attention to a basic extension of a Varshamov-Gilbert type code in [2],
which leads to the present code construction (improving our original result).
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