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1 Introduction

In Information Theory we know two types of channel models for communication: the
probabilistic description of transmission of letters and the combinatorial description
based on counting erroneous transmission of letters.

The standard probabilistic channel is that of a discrete memoryless channel, abbre-
viated as DMC, which is characterized by a stochastic matrix W : X → Y , where
X ,Y are the input and output alphabets, resp. Shannon [13] found its capacity C(W ),
that is the largest rate R achievable for arbitrary long codes for any prescribed error
probability λ. Shannon [14] generalized also his 1 sender – 1 receiver channel model to
certain cases of channels with several senders and receivers. Seemingly the next most
important contribution in this direction is Ahlswede’s [1] characterization of the capac-
ity region for so called multiple access channels (MAC) — the first “coding theorem”
for multi–user channels. This work was continued in [2].

On the combinatorial side it is assumed that for a given positive integer t at most
t errors may occur when a codeword is send over the channel. An error correcting
(detecting) code must be able to correct (detect) the errors. Since often algebraic tools
are used in the construction of codes the subject Combinatorial Coding Theory is often
called Algebraic Coding Theory ([8], [12]).

Whereas in the probabilistic setting there is a formidable area called Multi–user In-
formation Theory (c.f. [3], [4], [10], [9]), little is done in the analog combinatorial
setting.

An exception here is the adder channel, one of the simplest MAC (c.f. [11] for a survey),
which has been studied for error correcting and also for error–free (λ = 0) codes.

In contrast, for 1 sender – 1 receiver channels even other code concepts like error
detecting or error correcting codes with i.e. localized errors [6], [5], or feedback [7]
have been considered.

In this paper we introduce a new code concept for a multi-user channel with a special
error control mechanism. Let us take a look at the parallel port of a computer divice.
The message from the computer to the device is transmitted in parallel over a set of
lines. A magnetic influence from outside produces errors during the transmission. But
the time instances of which errors occur in the different lines are related. When an
error occurs in a line at time T , with a relatively high “probability” an error also occurs
in its neighbour lines. Thus one can assume that the conditional probability for that
an error occurs in the j-th line under the condition that an error occurs in the i-th line
is a non-decreasing function of the distance between the i-th line and the j-th line. We
regard the m lines connecting a computer and a user of the computer as m senders
who intend to send the data from the computer to the user. Then it is modeled as a
coding problem for an MAC. Its capacity region has already been determined in [1].
So we turn now to the error correcting codes.

For the simplicity of the model, we assume that an error occurs in a line iff errors occur
in the other lines at the same time. (There is a certain relation to bursts insofar as
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errors are linked. But this is for the senders and not in time.) As usual we assume
that at most t errors occur in each line. Thus our problem is modelled as follows. The
m senders encode their messages to the codewords of the same length over the same
alphabet X = GF (q), say cj(j = 1, 2, . . . , m) and send the codewords via channels.
When the codewords cj(j = 1, 2, . . . , m), are sent, then due to noise, the receiver may
receive the vectors cj + e, (j = 1, 2, . . . , m), for any (error) e with Hamming weight
not larger than t. A parallel t error correcting code must be able to correct all errors of
this type. When the m lines carry messages from the same source, the size of the code,
that is the number of vectors (c1, c2, . . . , cm), must not be smaller than the number of
messages. So for a fixed t and the length n of the code we want the size of the code
as large as possible. In this case we present a very simple construction based on a
standard error correcting code and show that it is optimal if so is the error correcting
code.

The code has to be a cartesian product, when the messages carried by the m senders
are from m independent sources. So instead of the maximum size of a code we speak
of the region of achievable rates. In this case we present a construction by which
one could obtain linear codes with rates in the achievable region if one would know
the line codes with all possible dimensions. This reduces constructing a linear code
to constructing a (classsical) error correcting code. For optimal non-linear codes and
independent messages the problem is still open.

All results in this paper are for arbtrary m senders but in order to keep the notation
short for the convenience of the readers we only present the proofs for two senders.
The same proofs extend to general m.

The parallel codes are formally defined in the next section. The results for two senders
are stated and proved in Section 3. The results for the general case are prensented in
Section 4.

2 Basic definitions

In this section, we define our codes for two senders i.e., for m = 2, they will be
generalized to m senders, for arbitrary m in Section 4. As usual for MAC, we use
X and Y to stand for input alphabets for the two senders. Since we mainly consider
linear codes over a finite field, we choose for a prime power q = ps, X n = Yn = GF n(q)
throughout this and the next section.

Definition 1. A code C ⊂ X n × Yn is an (n, t, |C|) parallel error correcting code or
in short an (n, t, |C|) P-code over GF n(q), if there are not codewords c = (u,v), c′ =
(u′,v′) ∈ C where u,u′ ∈ X n,v,v′ ∈ Yn and errors e, e′ ∈ GF n(q) with Hamming
weights wH(e), wH(e′) ≤ t such that

c + (e, e) = c′ + (e′, e′). (2.1)
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Definition2. A P-code C is called independent, or an IP-code, if it is a cartesian
product, i.e. there are U ⊂ X n,V ⊂ Yn such that C = U × V.

An (n, t, |C|) IP-code is linear, or an (n, t, k, l) LIP-code if U ,V are linear subspaces
with dim(U) = k and dim(V) = l.

We also speak of P-codes, IP-codes and LIP-codes correcting t errors when the other
parameters are clear from the context. In the context of multi–user Information Theory
an IP-code is used in multiple access channel (MAC), a channel with two (or more)
independent senders and one receiver, whereas a non–independent P-code is used in a
parallel channel connecting one sender and one receiver.

Throughout this paper, A(n, t) is the maximal cardinality of an ordinary t error cor-
recting code of block-length n and L(n, t) is the maximal dimension of the ordinary
linear t error correcting code of block-length n. Let Kn(β) = {(α, α+β) : α ∈ GF n(q)}
for β ∈ GF n(q), then Kn = {Kn(β) : β ∈ GF n(q)} is a partition of X n × Yn.

For C ⊂ X n × Yn we write C(β) = C ∩ Kn(β), β ∈ GF n(q). That is (u,v) ∈ C(β),
iff (u,v) ∈ C and v − u = β. Let Q(C, β) = {α : (α, α + β) ∈ C(β)}. Thus C(β) is
determined by a subset Q(C, β) ∈ GF n(q) as follows

C(β) = {(α, α + β) : α ∈ Q(C, β)}.

Clearly, C(β) and thus also Q(C, β) may be empty.

3 The two sender model

Lemma 1. C ⊂ X n × Yn is an (n, t, |C|) P-code iff for all β ∈ GF n(q), Q(C, β) is a t

error correcting code.

Proof: Suppose that Q(C, β) is not a t error correcting code. Then there exist α, α′ ∈
Q(C, β) (i.e., (α, α + β), (α′, α′ + β) ∈ C) e, e′ ∈ GF n(q) with wH(e), wH(e′) ≤ t with
α+e = α′ +e′. This implies that α+β +e = α′ +β +e′ and hence (α+e, α+β +e) =
(α′ + e′, α′ + β + e′), i.e. (2.1) holds. This means that C is not an (n, t, |C|) code.

Conversely, if Q(C, β) are t error correcting for all β ∈ GF n(q), but there exist c =
(u,v), c′ = (u′,v′) ∈ C and e, e′ ∈ GF n(q) with Hamming weights wH(e), wH(e′) ≤ t

such that c 6= c′ and (2.1) holds i.e.,

(u + e,v + e) = (u′ + e′,v′ + e′).

Write v = u + β,v′ = u′ + β ′ and observe that

(u + e,u + β + e) = (u′ + e′,u′ + β ′ + e′)

implies u + e = u′ + e′ and u + β + e = u′ + β ′ + e′ and thus β = β ′. In other words
u,u′ ∈ Q(C, β) and u+e = u′ +e′, wH(e), wH(e′) ≤ t contradict that Q(C, β) is t error
correcting since c 6= c′, v = u + β, v′ = u′ + β ′ and β = β ′ imply that u 6= u′.

Theorem 1. The following two statements hold:
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(i) For an (n, t, M) P-code

M ≤ A(n, t)qn. (3.1)

(ii) For M = A(n, t)qn exists an (n, t, M) P-code.

Proof: (i) is an immediate consequence of Lemma 1.

We derive (ii) by the following

Construction I: Choose any t error correcting code of size A(n, t), say C0 and set
C = C0 × GF n(q). It is clearly |C| = A(n, t)qn. For c = (u,v) 6= c′ = (u′,v′) in C

(u + e,v + e) = (u′ + e′,v′ + e′)

is impossible, because for u 6= u′ u + e 6= u′ + e′ since C0 is a t error correcting code
and u = u′ yields that v = v′ + (e′ − e) = v′ + (u − u′) = v′ i.e., c = c′.

3.1 LIP-codes

In Theorem 1 we have obtained an optimal P-code in the sense of total rate. However,
since the sources accessed by the two senders are assumed to be independent, we are
concerned as usual for MAC about their achievable pairs of rates instead about their
sums. The following theorem completely characterizes LIP-codes.

Theorem 2. For two linear subspaces U and V of GF n(q), C = U ×V is an LIP-code
correcting t errors iff U ∩ V is a linear t error correcting code.

Proof: Suppose U and V are two linear subspaces such that C0 = U ∩ V is a t error
correcting code.

Assume C is not an LIP-code, namely there exist e, e′ ∈ GF n(q) with wH(e), wH(e′) ≤ t

and c = (u,v), c′ = (u′,v′) such that (2.1) holds. Let α⋆ = e′ − e. Then by (2.1)
u − u′ = v − v′ = α⋆. Thus by linearity α⋆ ∈ U , α⋆ ∈ V and therefore α⋆ ∈ U ∩ V.
However (0, . . . , 0) = 0 ∈ C0 and 0 + e′ = α⋆ + e with wH(e), wH(e′) ≤ t, which is a
contradiction to the assumption, that C0 is a t error correcting code.

Let C = U × V be an LIP-code correcting t errors. We have to show C0 = U ∩ V is a
linear t error correcting code. Indeed, if it is not so i.e., there are α⋆ ∈ C0 = U ∩V and
e, e′ ∈ GF n(q) with wH(e), wH(e′) ≤ t such that 0 + e = α⋆ + e′, then c = (0, 0) and
c′ = (α⋆, α⋆) ∈ C = U × V and (2.1) holds. This is a contradiction. 2

Theorem 3. For given positive integers n, t and non-negative integers k1 and k2, there
exists an (n, t, k1, k2) LIP-code iff k1, k2 ≤ n and

k1 + k2 ≤ L(n, t) + n. (3.2)

Proof: Suppose that we are given an (n, t, k1, k2) LIP-code. Recalling its definition
we have that Kn(0) is a linear subspace of GF 2n(q) and Kn actually is the set of its
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cosets. Notice an LIP-code C is a linear subspace of GF 2n(q). Then for a LIP-code
C, C(0) = C ∩ Kn(0) is a linear subspace of GF 2n(q), C(β), β ∈ GF n(q) are its cosets,
and therefore |C(β)| = |C(0)|. By Lemma 1 Q(C, 0) is a t error correcting code if C(β)
is an LIP-code correcting t errors. Finally Q(C, 0) is obviously a linear space with
|Q(C, 0)| = |C(0)|. Thus we have |C(β)| = |Q(C, 0)| ≤ qL(n,t) for all β ∈ GF n(q).
Therefore |C| ≤ qL(n,t)+n.

Conversely, without loss of generality we can assume

k1 + k2 = L(n, t) + n (3.3)

since we can obtain a new LIP-code from an LIP code C = U×V by replacing U and/or
V with any of their subspaces U ′ and V ′. Under this assumption we have

L(n, t) ≤ k1, k2 ≤ n. (3.4)

Let C0 be a linear t error correcting code of length n and dim(C0) = k. In particular, to
show the “if” part, we choose it as a linear error correcting code achieving dim(C0) =
k = L(n, t). Then the proof follows from the following construction.

Construction II: Let C0 be a k–dimensional t error correcting code of length n and
let u1,u2, . . . ,uk be any basis. We extend the basis to a basis of GF n(q), u1,u2,
uk,v1,v2, . . . ,vn−k, in an arbitrary way and divide {1, 2, . . . , n − k} into two parts I1

and I2 with cardinalities k1 − k and k2 − k respectively (notice k = L(n, t) in (3.3),
hence (k1 − k) + (k2 − k) = n − k). Let U and V be the linear subspaces spanned by
u1,u2, . . . ,uk,vi (i ∈ I1) and u1,u2, . . . ,uk,vj (j ∈ I2) respectively and C = U × V.

Then it is clear that dim(U) = k1, dim(V) = k2 and C0 = U ∩ V. So by Theorem 2
U × V is the desired code.

Remark: Obviously by Theorem 2 all LIP-codes can be constructed by Construction
II.

In this way one would construct all (n, t, k1, k2) LIP-codes if one could find all (n, k1 +
k2, t) linear error correcting codes.

3.2 The decoding algorithms

In this subsection we present decoding algorithms for our LIP-codes. First of all we
notice that it is sufficient for us to find a decoding algorithm for the codes in Construc-
tion II since they cover all LIP-codes. However, because of their simple configuration,
the codes in Construction I can be easily decoded as follows.

Assume C0 is a t error correcting code of length n, C = C0 × GF n(q), (u,v) ∈ C has
been sent and (u′,v′) for u′ = u + e, v′ = v + e, wH(e) ≤ t is received by the decoder.
Then

Decoding Algorithm I:

1. Use a decoding algorithm for code C0 to find u and e from u′.
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2. Let v = v′ − e.

We now turn to the decoding algorithm for codes in Construction II. Let C = U × V
be such a code, let (u,v) ∈ C be sent and C0 = U ∩ V. Assume (u′,v′) is received
by the decoder with u′ = u + e, v′ = v + e. Let u1,u2, . . . ,uk,v1,v2, . . . ,vn−k, I1

and I2 be as in Construction II and let G0, G1 and G2 be the matrices whose rows are

u1,u2, . . . ,uk; vi (i ∈ I1); and vj (j ∈ I2) respectively. Let G =
(

G0

G1

G2

)

and then G is

a full rank matrix.

Decoding Algorithm II:

1. Calculate y = (y1, y2, . . . , yn−k2+1, . . . , yn) = (v′ − u′)G−1, and let
y = (yn−k2+1, . . . , yn)G2.

2. Find the parity check matrix H0, syndromes of cosets and the leaders ℓi, i =
1, 2, . . . , qn−k − 1 of cosets of code C0.

3. Calculate the syndrome of v′−y (for code C0) and find the leader ℓj of the coset
of C0 in which v′ − y is contained by comparing the resulting syndrome and the
syndromes in step 2.

4. Decoding of (u′,v′) to (û, v̂)= (u′
− ℓj,v

′− ℓj).

Analysis: We have to show û= u and v̂= v for (û,v̂) in the last step, if wH(e) ≤ t.
For this it is sufficient to show ℓj= e for ℓj obtained in step 3. By Construction II
we know that there exist unique vectors (c1, . . . , ck; ai (i ∈ I1)) and (c′1, . . . , c

′
k; bi′ ,

(i′ ∈ I2)) such that u =
k∑

ℓ=1

cℓ uℓ+
∑

i∈I1

aivi and v =
k∑

ℓ′=1

c′ℓ′ uℓ′+
∑

i′∈I2
bi′vi′ (of course

the vectors are unknown by the decoder until the decoding procedure is finished). Then

v−u = v′ −u′ =
k∑

ℓ=1

(c′ℓ − cℓ) uℓ−
∑

i∈I1
aivi +

∑

i′∈I2
bi′vi′ = (c′1 − c1, c

′
2 − c2, . . . , c

′
k −

ck,−ai1 , . . . , ai|I1|
, bi′

1
, . . . , bi′

|I2|
)G, where {i1, . . . , i|I1|} = I1 and {i′1, . . . , i

′
|I2|

} = I2.

By comparing this, y and y, we conclude that (yn−k2+1, . . . , yn) = (bi′
1
, . . . , bi′

|
I2|) and

therefore y =
∑

i′∈I2

bi′vi′ . Hence v′ − y = (v − y) + e =
k∑

ℓ′=1

c′ℓ′ u′

ℓ
+e. Consequently

ℓj= e since
k∑

ℓ′=1

c′ℓ′ uℓ′∈ C0 and C0 is able to correct t errors.

4 A general model

Finally we remark that all results above can be directly extended to the case that there
are more than two senders without changing the proofs. The following are our model
and results.
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For m ≥ 2 define an (n, m, t, |C|) P-code over GF n(q) as a subset

C ⊂ GF n(q) × · · · × GF n(q)
︸ ︷︷ ︸

m times

such that there do not exist c = (c1, . . . , cm), c′ = (c′1, . . . , c
′
m) ∈ C, (where ci, c

′
j ∈

GF n(q)) and e, e′ ∈ GF n(q) with wH(e), wH(e′) ≤ t such that

(c1 + e, . . . , cm + e) = (c′1 + e′, . . . , c′m + e′).

Again such a code is independent or an IP-code if there are Cj ∈ GF n(q), 1 ≤ j ≤ m

such that C =
m∏

j=1

Cj , and an (n, m, t, k1, . . . , km) LIP-code if Cj is a linear subspaces

of GF n(q) with dimension kj for all 1 ≤ j ≤ m. Then our theorems 1–3 can be
immediately extended to

Theorem 4. (i) If there exists an (n, m, t, M) P-code, then

M ≤ A(n, t)q(m−1)n.

(ii) Let M = A(n, t)q(m−1)n, then there exists an (n, m, t, M) P-code.

Theorem 5. Let C1, . . . , Cm be linear subspaces of GF n(q). C =
m∏

j=1

Cj is a LIP-code

correcting t errors iff C0 =
m⋂

j=1

Cj is a linear t error correcting code.

Theorem 6. For given positive integers n, m, t and non-negative integers k1, . . . , km

there exists an (n, m, t, k1, . . . , km) LIP-code iff kj ≤ n for all 1 ≤ j ≤ m and

m∑

j=1

kj ≤ L(n, t) + (m − 1)n.

Moreover, the Decoding Algorithms I and II can be easily extended to m senders. We
leave all these extensions for readers as exercises.
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