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Abstract

Whereas the average error capacity region Ra for the MAC W : X ×Y → Z
is known for a long time (Ahlswede 71), very little is known about the capacity
region Rm for the maximal error concept (as predicted also by Ahlswede in 71).

Inspite of great efforts during the past three decades even for some special
examples of deterministic MAC, for which the maximal error concept coincides
with the concept of unique decodability, the progress has been slow.

It is known that the permission of list codes can be of great help, even if
list sizes are of negligible rates (c.f. AVC and especially Shannon’s zero–error
capacity problem for the one–way channels).

Therefore it is theoretically appealing to look at their regions Rm,ℓ for the
MAC. For a nice class of deterministic MAC, which we call “semi–noisy”, we
completely characterized Rm,ℓ. For these channels the Y–input is determined
uniquely by the output. Dueck’s example with Ra 6= Rm and Vanroose’s “Noise-
less binary switching MAC” with Ra = Rm fall into this class.

Finally, for this class the capacity region Rm,f , which concerns complete
feedback, equals Rm,ℓ.

Keywords: Multiple access channel, listcodes, feedback, average, maximal and zero
error probabilities
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1 Introduction

After Shannon laid the foundations of a theory of transmission in the presence of noise
for one-way channels in [14] he made subsequently significant extensions of his model
in [15] and [16]. Actually, in [15] we find two additional issues: the performance of
channels under the zero-error criterion and in the presence of feedback. In [16] Shannon
introduces models of channels with several senders and receivers. Quite remarkably
the so called two-way channel, which is discussed there as the only channel in greater
detail, envolves also feedback. It must be emphasized that both papers lead to hard
mathematical problems, on which until today the progress has been relatively small.
Incidentally, the first author came on independent paths to the MAC, as a channel
without feedback, and the DMC with complete feedback and obtained two striking
results: a complete characterisation of the capacity region of the MAC [1] (and thus
the first result of this kind for a channel with several senders and receivers) and a
constructive coding scheme for the DMC with complete feedback achieving capacity
[2].

The first result was largely responsible for a period of stormy developments in multi-user
channel and source coding theory concerning existence theorems, but which got stuck
for instance already for the interference channel and the general broadcast channel (see
[7], [8]). It also gave the start for code constructions for special MAC (like the adder
channel etc.) under the maximal error criterion (that is, equivalently, for uniquely
decodable or zero-error codes in case of deterministic channels).

Already in [1] it was mentioned that maximal error capacity regions are in general
smaller than those for average error and that its determination, if it ever should be
achieved, must be very difficult and requires new methods. Example 1 in Section
2 is Dueck’s [9] MAC with different regions. On the feedback side the scheme of
[2] mentioned also gave fruits in connection with the MAC. Since here the feedback
creates “correlated knowledge” for the senders it obviously enlarges the capacity region
of the MAC, which is based on independent input assignments and no general capacity
formula in case of feedback is known even today. However, a series of partial results
have been obtained. N.T. Gaarder and J.K. Wolf [12] set up a simple example of a
MAC for which feedback enlarges the capacity region for average probability of errors.

Then T.M. Cover and C.S.K. Leung [6] obtained inner bounds of capacity regions of
the discrete memoryless and the white Gaussian noise MAC with feedback and average
probability of errors. Actually, in the second case the true bound was determined by
L. Ozarow. It is strictly larger than the inner bound in [6]. F.M.J. Willems [18] proved
that the inner bound for discrete memoryless MAC in [6] is tight in the case the MAC
satisfies the condition

(∗): There is (at least) one input alphabet whose letters are a function of the other
input and output letters.

By our knowledge (besides this paper) the only paper concerning the capacity regions
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of MAC with feedback and maximal or zero probability of error is [10]. There G.
Dueck determined the zero-error capacity region with feedback of the class of discrete
memoryless MAC satisfying the condition

(∗∗): Each input letter is a function of the other input and output letters.

In another direction the coding scheme of [2] led to the solution of the capacity problem
for AVC with complete feedback in [3], under a constraint, and recently to the full
solution in [5]. It also led to the idea of binning in [4] and to a capacity formula of
AVC for list codes (introduced by Elias [11]) of negligible list rates. In this context the
main observations are that

(a) list codes are especially connected to feedback coding problems.

(b) list codes are mathematically a more natural concept than ordinary codes (for
instance for zero-error problems and more generally for AVC).

Returning to the foundations of 1970 the aim of this paper is to start a systematic
exploration of these observations for the MAC. What are here the connections between
ordinary codes, list codes and feedback codes while the criteria change from zero errors
over maximal errors to average errors.

The contribution of this paper is the discovery of another subclass of deterministic
MAC satisfying (∗), which we call semi-noisy deterministic channels, and for which we
obtain conclusive results on capacity regions.

2 Basic definitions: channels, codes and capacity

regions

Let us consider a memoryless multiple access channel (MAC) W with input alphabets
X and Y and output alphabet Z i. e., when xn = (x1, x2, . . . , xn) ∈ X n and yn =
(y1, y2, . . . , yn) ∈ Yn are input sequences, zn = (z1, z2, . . . , zn) ∈ Zn is output sequence
with probability

W n(zn|xn, yn) =
n

∏

t=1

W (zt|xt, yt).

We say an MAC is deterministic (or a d-MAC) if there is a function φ : X × Y −→ Z
such that for all x ∈ X , y ∈ Y , and z ∈ Z,

W (z|x, y) =

{

1 if z = φ(x, y)
0 else .

A d-MAC is semi-noisy, or sd-MAC (for X ), if there is a function ψ : Z −→ Y such that
ψ(z) = y whenever there is an x ∈ X with W (z|x, y) > 0. In other words, a d-MAC is
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an MAC whose output is determined by the inputs uniquely with probability one and
an sd-MAC for X is a d-MAC whose Y-input is determined by the output uniquely.

The class of sd-MAC’s includes as members examples 1 and 2 below, which are used by
Dueck [9] resp. Vanrose [17] to contribute to an understanding of the relation between
the capacity regions of codes with maximal error (or zero error) and average error.

Recall that an (n,M1,M2, λ) code with maximal (resp. average) probability of er-
ror, or briefly an (n,M1,M2, λ) m-code (resp. a-code), is a system {ui, vj,Di,j : i =
1, . . . ,M1 and j = 1, . . . ,M2}, such that ui ∈ X n for i = 1, . . . ,M1, vj ∈ Yn for j =
1, . . . ,M2, Di,j ⊂ Zn with Di,j ∩Di′,j′ = ∅ for i, i′ = 1, . . . ,M1, j, j

′ = 1, . . . ,M2, (i, j) 6=
(i′j′) and W n(Di,j|ui, vj) > 1 − λ for all i, j (resp. 1

M1

1
M2

∑M1
i=1

∑M2
j=1 W n(Di,j|ui, vj) >

1 − λ).

We speak of codes with feedback when there are noiseless channels to connect the
outputs and the encoders so that both encoders (senders) are able to choose the next
input letters according to the previous outputs. Thus an (n,M1,M2, λ) code with
(noiseless) feedback and the criterion of maximal probability of error , or an (m,f)-
code, is a system {fn

i , gn
j ,Di,j : i = 1, . . . ,M1, and j = 1, . . . ,M2} such that fn

i ’s are
functions from Zn to X n such that for all i = 1, . . . ,M1 and zn ∈ Zn,

fn
i (zn) = (f

(1)
i , f

(2)
i (z1), . . . , f

(t)
i (zt−1), . . . , f

(n)
i (zn−1)), (1)

and gn
j ’s are functions from Zn to Yn such that all j = 1, . . . ,M2 and zn ∈ Zn,

gn
j (zn) = (g

(1)
j , g

(2)
j (z1), . . . g

(t)
j (zt−1), . . . g

(n)
j (zn−1)), (2)

where f
(1)
i , f

(2)
i (z1), . . . , f

(n)
i (zn−1) ∈ X , g

(1)
j , g

(2)
j (z1), . . . , g

(n)
j (zn−1) ∈ Y , and z(t−1) =

(z1, . . . , zt−1), and for alli, j,W n(Di,j|f
n
i , gn

j ) > 1 − λ.

Obviously, for any λ < 1 an (n,M1,M2, λ) m-code for a d-MAC is an (n,M1,M2, 0)
m-code for the same channel, which is also called a zero-error, error-free or uniquely
decodable code. The capacity regions for m-codes, a-codes, and (m, f)-codes are defined
in the standard way and we denote them by Rm,Ra and Rm,f respectively. Ra was
determined for all MAC by R. Ahlswede [1].

Finally , we define an (n,M1,M2, λ, L) list code with maximal probability of error
(an (m, l)-code) as a system {ui, vj,Di,j : i = 1, . . . ,M1 and j = 1, . . . ,M2} such that
ui ∈ X n, vj ∈ Yn,Di,j ⊂ Zn,W n(Di,j|ui, vj) > 1−λ and for all zn ∈ Zn, for the list size
|L(zn)| := |{(i, j) : zn ∈ Di,j}| ≤ L. We speak of (m, l)-codes and the capacity region
Rm,l for (m, l)-codes is the set of real pairs (r1, r2) such that for all ǫ, δ, λ > 0 there is
an (n,M1,M2, λ, L) (m, l)-code with 1

n
log Mk > rk − ǫ for k = 1, 2 and 1

n
log L < δ. It

is also clear that for any λ < 1 and any d-MAC, an (n,M1,M2, λ, L) (m,l) code is an
error-free list code.

Analogously, one can also define (a, f)- and (a, l)- codes if the average probability of
error criterion is used, but we shall not discuss them here.
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By their definitions, we immediately have that for all MAC Rm ⊂ Ra and Rm ⊂ Rm,l.
Moreover we observe that the proof to the converse coding theorem for a-codes of
an MAC [1] can be modified to yield a converse result for list codes and therefore
Rm,l ⊂ Ra. It is easy to see that Rm,l ⊂ Rm,f , if Rm,f has a pair of positive rates
by using the following scheme. The two encoders first employ an (m, l)-code with
sufficiently small list size (for all outputs) to send their messages. Due to the feedback,
both of them learn the output zn and therefore L(zn). Thus they can inform the
receiver which pair of messages on the list is correct by an (m, f)-code with sufficiently
small rate (depending on the list size of the previous code). Summarizing the above
facts, we have the chains of containments

Rm ⊂ Rm,l ⊂ Ra (3)

and if Rm,f contains a pair of positive rates (c.f. Lemma 6.1)

Rm ⊂ Rm,l ⊂ Rm,f . (4)

In general, there is no containment relation for MAC between Rm,f and Ra.

Example 1 (G. Dueck [9]): Let X = {A,B, a, b},Y = {0, 1}, and Z = {A,B,C, a, b, c}.
The channel W is defined such that for y = 0,W (z|x, y) = 1 iff x = z = A or B, or
x = a or b, and z = c ; and for y = 1, W (z|x, y) = 1 iff x = A, or B, and z = C or
x = z = a or b. Notice that A,B, or c is output iff y = 0 ∈ Y is input and so it is an
sd-MAC. Dueck proved that for this channel Rm,Rm,l and Rm,f are strictly smaller
than Ra.

Example 2 The “Noiseless Binary Switching MAC” (P. Vanroose [17]): Let X =
Y = {0, 1} and Z = {0, 1,∞}. Define the channel W such that for y = 0 and all
x ∈ X , W (∞|x, y) = 1 and for y = 1, W (z|x, y) = 1 iff z = y. Obviously this is an
sd-MAC. Vanroose showed that Rm = Ra and this gave an example of a nontrivial
channel with this property.

It is interesting that these two extremal examples of MAC’s fall into our class of sd-
MAC.

3 Incomplete (one sided) feedback is sufficient

Usually in the MAC coding theory feedback plays two roles.

-Reducing list size: The idea was started by Shannon in his pioneering work [15] on
zero-error capacities of memoryless channels and led to the List Reduction Lemma for
maximal error probabilities in [2] and its extension in [3]. According to the initial
part (z1, . . . , zt−1) of the output sequence, which he has received at time t − 1, the
receiver lists all possible messages (corresponding to (z1, . . . , zt−1)). The encoders learn
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(z1, . . . , zt−1) from the feedback at the same time and therefore the list. So they are
able to cooperate to work on the list instead of the whole sets of the messages. Thus
the encoders choose the next input symbols according to the previous outputs to reduce
the list sizes step by step until the size of the list reaches one so that the receiver learns
the messages sent by the encoders.

-Shifting the private messages to the common messages: The idea was used to show that
feedback enlarges the capacity region of MAC in [12] and [6] and also for determining
the zero-error capacity regions for a fairly large class of MAC in [10]. A difficulty
for the encoders of an MAC (without feedback) to cooperate is that their (private)
messages are independent. When feedback is present, an encoder can obtain certain
information about the message sent by the other encoder via his own inputs and the
previous outputs which he got via the feedback. Thus he can shift the information from
the private messages (of the other encoder) to “common messages” and cooperate with
the other encoder to send them. Notice that their “information” must be “unknown”
to the receiver because otherwise it is not necessary to send it. On the other hand
it is possible for the encoder to learn more than the receiver because he knows more,
namely his own inputs.

Let us turn to sd-MAC for X and take a look at the roles of feedback at the Y-
encoder. The channel is “noiseless” for the inputs yn ∈ Yn. So the receiver knows
the input yn with probability one and therefore after the transmission the list size on
the “component” of the message from the second encoder is automatically one even
when the feedback is absent. Thus reducing the list size seems to be not necessary
for the second, the Y-encoder. On the other hand the Y-encoder does not know more
than the receiver even if he knows the output. So the above second role seems not
to be well played by the feedback at Y . We expect that the feedback at Y is not
necessary if the feedback is present at X . So we define the code with incomplete
feedback (for maximal probability of error), the (m,f-)-code, as a system {fn

i , vj,Di,j :
i = 1, . . . ,M1 and j = 1, . . . ,M2}. Here we replace the encoding functions in (2) by
the codewords, the sequences vj’s in Yn. Since a code for a d-MAC with maximal
probability of error λ, for any λ < 1, is a zero-error code for this channel, the following
theorem only concerns the zero-error codes. It confirms our intuition.

Theorem 3.1 For given n,M1,M2, there exists an (n,M1,M2, 0) (m, f-)-code for an
sd-MAC if there exists an (n,M1,M2, 0) (m, f)-code for the same channel.

Proof: We employ induction on the length n of codes. For n = 1 the statement is
trivially true since in this case the feedback has no room to play its role. Assume
that the statement is true for n-1 and we are given an (n,M1,M2, 0) (m, f)-code for
an sd-MAC W , say {fn

i , gn
j ,Di,j}, where fn

i ’s and gn
j ’s have the forms in (1) and (2),

respectively. Denote by Mk = {1, 2, . . . ,Mk}, k = 1, 2, the sets of the messages for

the two encoders. Let M1(x) = {i ∈ M1 : f
(1)
i = x} for x ∈ X , M2(y) = {j ∈ M2 :

g
(1)
j = y} for y ∈ Y , and M1(A) =

⋃

x∈A M1(x) for A ⊂ X , where f
(1)
i is the first

component of fn
i in (1) and g

(1)
j is the first component of gn

j in (2).
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By the definition of an sd-MAC there are functions φ : X ×Y −→ Z and ψ : Z −→ Y
such that W (z|x, y) = 1 if z = φ(x, y) and ψ(z) = y if there is an x ∈ X with
z = φ(x, y). Denote by Z(y) = ψ−1(y) = {z ∈ Z : ψ(z) = y} for all y ∈ Y and
Xy(z) = {x ∈ X : φ(x, y) = z} for y ∈ Y and z ∈ Z(y). Then {Z(y) : y ∈ Y} is a
partition of Z and for a given y ∈ Y , {Xy(z) : z ∈ Z(y)} is a partition of X .

For given z ∈ Z, y = ψ(z), i ∈ M1(Xy(z)), j ∈ M2(y), we define fn−1
(y,z),i as

fn−1
(y,z),i(z2, . . . , zn) = (f

(2)
i (z), f

(3)
i (z, z2), . . . , f

(n)
i (z, z2, . . . , zn)), (5)

and gn−1
(y,z),j as

gn−1
(y,z),j(z2, . . . , zn) = (g

(2)
j (z), g

(3)
j (z, z2), . . . , g

(n)
j (z, z2, . . . , zn)), (6)

for all (z2, . . . , zn) ∈ Zn−1, and

Di,j(y, z) = {(z2, . . . , zn) : (z, z2, . . . , zn) ∈ Di,j}. (7)

Namely, for all z ∈ Z, i ∈ M1(Xψ(z)(z)), and j ∈ M2(ψ(z)), the communica-
tors, the two encoders and the receiver, cooperate to simulate the encoding-decoding
procedure of code {fn

i , gn
j ,Di,j : i = 1, . . . ,M1 and j = 1, . . . ,M2} under the as-

sumption that z has been received by them. Thus {fn−1
(y,z),i, g

n−1
(y,z),j,Di,j(y, z) : i ∈

M1(Xy(z)), j ∈ M2(y)} for y = ψ(z) is an (error-free) (m, f)-code for the sd-
MAC W since {fn

i , gn
j ,Di,j : i = 1, . . . ,M1 and j = 1, . . . ,M2} is an (error-free) (m,

f)-code for the same channel. Moreover for y ∈ Y let z(y) be the letter in Z(y)
achieving maxz∈Z(y) |M1(Xy(z))| and αz be any injection from M1(Xy(z)), z ∈ Z, to
M1(Xy(z(y)) if z 6= z(y). αz is the identity mapping if z = z(y). αz is well de-
fined because y = ψ(z) and therefore z(y)(= z(ψ(z)) are uniquely determined by z.
Denote by α−1

z (i) the unique i′ with α(i′) = i if it exists. Since we have an (m, f)-
code of length n − 1 with the sets M1(X†(‡(†))), M∈(†) of messages for all y ∈ Y ,
by the induction hypothesis there is an (m, f-)-code of length n − 1 with the (same)
sets M1(X†(‡(†))), M∈(†) of messages for each y ∈ Y , say {f ∗n−1

y,i , u∗
y,j,D

∗
i,j(y) : i ∈

M1(X†(‡(†))) and | ∈ M∈(†)}.

Next to complete our proof we define an (m f-)-code of length n with the sets M1, M2

of messages based on the above (m, f-)-codes of length n − 1. For an i ∈ M1 we

let f
∗(1)
i = x if i ∈ M1(x) (or in other words f

(1)
i = x). For t ≥ 2 and zt−1 =

(z1, . . . , zt−1) ∈ Z t−1 we let

f
∗(t)
i (zt−1) =

{

f
∗(t−1)
ψ(z1),αz1 (i)(z2, . . . , zt−1) if i ∈ M1(Xψ(z1)(z1))

any fixed letter x ∈ X else,

where f
∗(t−1)
y,i′ is the (t − 1)th components of f ∗n−1

y,i′ and

f ∗n
i (zn) = (f

∗(1)
i , f

∗(2)
i (z1), . . . , f

∗(n)
i (zn−1)).
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For j ∈ M2 we let u∗
j(1) = y and u∗

j = (u∗
j(1), u∗

y,j) if j ∈ M2(y). Moreover for
i ∈ M1(x) ⊂ M1, j ∈ M2(y) ⊂ M2, we define D∗

i,j = {zn : z1 = φ(x, y), (z2, . . . , zn) ∈
D∗

αz1 (i),j(ψ(z1))}. That is, the communicators simulate the encoding-decoding proce-

dure of {{f ∗n−1
y,i , u∗

y,j,D
∗
i,j(y) : i ∈ M1(z(y)) and j ∈ M2(y)}, y ∈ Y} as follows.

Let us assume that the first encoder wants to send i ∈ M1 and the second encoder wants
to send j ∈ M2. Abbreviate the code {f ∗,n−1

y,i , u∗
y,j,D

∗
i,j(y) : i ∈ M1(X1(z(y))) and j ∈

M2(y)} as C(y).

– The first encoder first sends x1 = x if i ∈ M1(x). Having received z1, the first
encoder figures out the first symbols y = y1 by calculating Ψ(z1) = y. Then he
simulates the encoding procedure of C(y) under-the assumption that he wants
to send αz1(i).

– If j ∈ M2(y), the second encoder first sends y1 = y and then simulates the
encoding procedure of C(y) under the assumption that he wants to send the
same j.

– After receiving the first symbol z1 of the output, the receiver obtains y1 = y

via y = ψ(z1) and then simulates the decoding procedure of C(y) to obtain an
i′ = αz1 i and j. Finally he recovers i = α−1

z1
(i′).

Since both, the first encoder and the receiver, are able to learn y1 (with probability
one), the communicators work in the same C(y) after z1 is output. Thus the code
which, we construct, is an error-free (m f-)-code.

4 An outer bound to the capacity region Rm,f

In this section we present an outer bound to the capacity region Rm,f for the (m. f)-
codes. In the next section we shall show that it is also the inner bound to the capacity
region Rm,l. Thus by (4) we have that it actually is the capacity region for both codes.
Intuitively the results are not as obvious as the result in the last section. In fact they
are surprising.

Let us fix an sd-MAC W with input alphabets X and Y and output alphabet Z. Let
P(X ) and P(Y) be the sets of the probability distributions over X and Y , respectively.
For a triple (X,Y, Z) of random variables, we denote its joint distribution by PXY Z

and analogously their marginal and conditional distributions by PX , PY , PY |X , PX|Y Z

and so on. For P ∈ P(X ) and Q ∈ P(Y), we define Q(P,Q) as the set of triples
(X,Y, Z) of random variables satisfying the following conditions: For all x ∈ X , y ∈ Y ,
and z ∈ Z,

PXY Z(x, y, z) = PXY (x, y)W (z|x, y), (8)
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PX(x) =
∑

y∈Y

PXY (x, y) = P (x), and PY (y) =
∑

x∈X

PXY (x, y) = Q(y). (9)

In other words (X,Y ) is the pair of input random variables with marginal distributions
P and Q and Z is the output random variable of the sd-MAC W when (X,Y ) is input.
With this notation, we define a subset R(P,Q) of the real plane for P ∈ P(X ), Q ∈
P(Y) as

R(P,Q) = {(R1, R2) : 0 ≤ R1 ≤ H(P )− max
(X,Y,Z)∈Q(P,Q)

H(X|Y Z) and 0 ≤ R2 ≤ H(Q)}.

(10)

Notice that for an sd-MAC we always have

H(X|Y Z) = H(X|Z) (11)

in (10), since by the definition of an sd-MAC Y is a function of Z with probability one.
Finally let

R∗ = conv





⋃

P∈P(X ) Q∈P(Y)

R(P,Q)



 , (12)

where conv(A) is the closed convex hull of the set A. Recalling that for our sd-MAC
a code with maximal probability of error λ < 1 is an error-free code, it is sufficient to
bound the capacity region for λ = 0.

Theorem 4.1 For an (n,M1,M2, 0) (m, f)-code for the sd-MAC

(
1

n
log M1,

1

n
log M2) ∈ R∗. (13)

Therefore

Rm,f ⊂ R∗. (14)

Proof: We prove the theorem by induction on the length n of the code. For n = 1
the statement trivially holds and there is actually no room in the case that the code
length is one for the feedback to play its role.

Assume that the statement is true for n − 1 and we are given an sd-MAC W and
an (n,M1,M2, 0) (m, f)-code {fn

i , gn
j ,Di,j : i = 1, . . . ,M1, and j = 1, . . . ,M2} for it.
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Let us use the same notation as in the proof of Theorem 3.1. That is, denote by
Mk = {1, . . . ,Mk} for k = 1, 2, M1(x) = {i : f

(1)
i = x} for x ∈ X , M2(y) = {j :

g
(1)
j = y} for y ∈ Y , and M1(A) =

⋃

x∈A M1(x) for A ⊂ X . Moreover recalling
from the proof of Theorem 3.1 that for the sd-MAC the function ψ partitions Z into
the subsets Z(y) = {z ∈ Z : ψ(z) = y}, y ∈ Y , and the function φ partitions X
into subsets Xy(z) = {x ∈ X : φ(x, y) = z}, z ∈ Z(y), for all y ∈ Y . Let r1(z) =

1
n−1

log |M1(Xy(z))| for y = ψ(z), if M1(Xy(z)) 6= ∅, and let r2(y) = 1
n−1

log |M2(y)|, if

M2(y) 6= ∅. Since the code {fn−1
(y,z),i, g

n−1
(y,z),j,Di,j(y, z) : i ∈ M1(Xy(z)), and j ∈ M2(y)}

for y = ψ(z) defined by (5), (6), and (7) is an (n − 1), |M1(Xy(z))|, |M2(y)|, 0) (m,
f)-code, by the induction hypothesis, we have that, when M1(Xy(z)) and M2(y) are
not empty,

(r1(z), r2(y)) ∈ R∗ for all y = ψ(z). (15)

Let for x ∈ X

P (x) =
|M1(x)|

M1

(16)

and for y ∈ Y

Q(y) =
|M2(y)|

M2

. (17)

Then obviously P is a probability distribution on X and Q is a probability distribution
on Y . Let R1 = 1

n
log M1 and R2 = 1

n
log M2. It follows from the definition of r2(y)

and (17) that

R2 =
1

n
log M2 =

1

n
[log |M2(y)| − log Q(y)] =

n − 1

n
r2(y) −

1

n
log Q(y), (18)

if Q(y) > 0. Similarly, by the definition of r1(z) with y = ψ(z)

R1 =
1

n
log M1

=
1

n
[log |M1(Xy(z))| − log

|M1(Xy(z))|

M1

=
n − 1

n
r1(z) −

1

n
log

|M1(Xy(z))|

M1

, (19)

if M1(Xy(z)) 6= ∅. Moreover, since by (16) and the definition of M1(A)

|M1(Xy(z))|

M1

=
∑

x∈Xy(z)

M1(x)

M1

=
∑

x∈Xy(z)

P (x) (20)
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(19) can be re-written as

R1 =
n − 1

n
r1(z) −

1

n
log

∑

x∈Xy(z)

P (x) for all z ∈ Z and y = ψ(z) , (21)

if M1(Xy(z)) 6= ∅ or equivalently
∑

x∈Xy(z) P (x) > 0.

We shall show that there is an R′
1 ≥ R1 such that (R′

1, R2) can be expressed as a linear
combination of the points in R∗ and therefore by the convexity of R∗, (R′

1, R2) ∈ R∗.
This implies (R1, R2) ∈ R∗, because R∗ is also closed under projections, i.e., (13).
To this end, we need the positivity of conditional informational divergence (see for
example, [8]). Let X and Y , be finite set, P be a probability distribution on X ,
and let W 1 and W 2 be two stochastic matrices from X to Y . Then the conditional
informational divergence is

D(W 1 ‖ W 2|P ) =
∑

x∈X

P (x)
∑

y∈Y

W 1(y|x) log
W 1(y|x)

W 2(y|x)

and

D(W 1 ‖ W 2|P ) ≥ 0. (22)

Let the triple (X,Y, Z) ∈ Q(P,Q) of random variables achieve max(X,Y,Z)∈Q(P,Q) H(X|Y Z).
Then for all x ∈ X , y ∈ Y , and z ∈ Z (8) holds,

PX = P and PY = Q, (23)

H(X|Y Z) = max(X,Y,Z)∈Q(P,Q) H(X|Y Z), and by the definition of R(P,Q) in (10),

(H(P ) − H(X|Y Z), H(Q))) ∈ R(P,Q) ⊂ R∗ (24)

Since by the definitions of the function ψ and the set Xy(z), W (z|x, y) > 0 only if y =
ψ(z) and x ∈ Xy(z), for y ∈ Y and z ∈ Z, PY Z(y, z) =

∑

x∈X PXY (x, y)W (z|x, y) > 0
yields y = ψ(z).

Moreover, by the same reason, for y = ψ(z), PY Z(y, z) =
∑

x∈Xy(z) PXY (x, y)W (z|x, y) ≤
∑

x∈Xy(z) PXY (x, y) ≤
∑

x∈Xy(z) PX(x) =
∑

x∈Xy(z) P (x). Thus,

PY Z(y, z) > 0 implies y = ψ(z) and
∑

x∈Xy(z)

P (x) > 0. (25)

Let

11



V (x|y, z) =















P (x)
∑

x′∈Xy(z)
P (x′)

if PY Z(y, z) > 0 x ∈ Xy(z)

0 if PY Z(y, z) > 0 and x 6∈ Xy(z)
V (x) for any fixed V ∈ P(X ) else.

(26)

Notice that (25) guarantees that the stochastic matrix V : Y×Z −→ X is well defined.
By combining (21) and (26), we obtain that

R1 =
n − 1

n
r1(z)+

1

n
[log V (x|y, z)−log P (x)] for all (y, z) with PY Z(y, z) > 0 and x ∈ Xy(z)

(27)

Notice that by (8) and the definition of Xy(z) PXY Z(x, y, z) > 0 only if x ∈ Xy(z).
We multiply both sides of (27) by PXY Z(x, y, z) for (x, y, z) ∈ X × Y × Z with
PXY Z(x, y, z) > 0, sum up the resulting formulae, and obtain

R1 =
∑

(y,z)∈Y×Z

n − 1

n
PY Z(y, z)r1(z)

+
1

n
[

∑

(y,z)∈Y×Z

PY Z(y, z)
∑

x∈X

PX|Y Z(x|y, z) log V (x|y, z) −
∑

x∈X

PX(x) log P (x)]

=
∑

(y,z)∈Y×Z

n − 1

n
PY Z(y, z)r1(z)

+
1

n
[

∑

(y,z)∈Y×Z

PY Z(y, z)
∑

x∈X

PX|Y Z(x|y, z) log V (x|y, z) + H(P )]

=
∑

(y,z): y=ψ(z)

n − 1

n
PY Z(y, z)r1(z)

+
1

n
[

∑

(y,z)∈Y×Z

PY Z(y, z)
∑

x∈X

PX|Y Z(x|y, z) log V (x|y, z) + H(P )]

=
∑

(y,z): y=ψ(z)

n − 1

n
PY Z(y, z)r1(z)

−
1

n

∑

(y,z)∈Y×Z

PY Z(y, z)
∑

x∈X

PX|Y Z(x|y, z) log
PX|Y Z(x|y, z)

V (x|y, z)

+
1

n

∑

(y,z)∈Y×Z

PY Z(y, z)
∑

x∈X

PX|Y Z(x|y, z) log PX|Y Z(x|y, z) +
1

n
H(P )

=
∑

(y,z): y=ψ(z)

n − 1

n
PY Z(y, z)r1(z)

−
1

n
D(PX|Y Z ‖ V |PY Z) −

1

n
H(X|Y Z) +

1

n
H(P ), (28)

12



where the second equality follows from the first formula in (23) and the third equality
follows from (25). Let

R′
1 =

∑

(y,z): y=ψ(z)

n − 1

n
PY Z(y, z)r1(z) +

1

n
[H(P ) − H(X|Y Z)]. (29)

Then it follows from (22), (28), and (29) that

R1 ≤ R′
1. (30)

Next for (y, z) ∈ Y × Z with PY Z(y, z) > 0, we multiply both sides of (18), then sum
up the resulting formulae, and finally by the second formula in (23) and (25), obtain
that

R2 =
∑

(y,z)∈Y×Z

n − 1

n
PZY (y, z)r2(y) −

1

n

∑

y∈Y

PY log Q(y)

=
∑

(y,z): y=ψ(z)

n − 1

n
PZY (y, z)r2(y) +

1

n
H(Q). (31)

Finally we combine (29) and (31) and obtain that

(R′
1, R2) =

∑

(y,z): y=ψ(z)

n − 1

n
PY Z(y, z)(r1(z), r2(y)) +

1

n
(H(P ) − H(X|Y Z), H(Q))

(32)

Since by (25)
∑

(y,z):y=ψ(z)
n−1

n
PY Z(y, z) + 1

n
= n−1

n
+ 1

n
= 1, (15), (24), (32), and the

convexity of R∗ yield
(R′

1, R2) ∈ R∗,

which with (30) completes our proof i.e., (R1, R2) ∈ R∗ or (13).

5 The outer bound is an inner bound to the capac-

ity region Rm,l of the (m, l)-codes

In this section let us turn to the (m, l)-codes, the list codes with maximal probability
of error, for sd-MAC and show that the region R∗ in (12) is also an inner bound for
their capacity region Rm,l. Consequently R∗ actually equals both, Rm,f and Rm,l. The
main result in this section is the following coding theorem.
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Theorem 5.1 Let R∗ be defined by (8), (9), (10) and (12). For an sd-MAC, any
(R1, R2) ∈ R∗, and any δ, ǫ > 0, there exists an (n,M1,M2, 0, L) (m, l)-code with
1
n

log Mk > Rk − ǫ, k = 1, 2 and 1
n

log L < δ for all sufficiently large n. Consequently,

R∗ ⊂ Rm,l. (33)

Proof : Let us fix an sd-MAC W and an integer n, denote by Pn(X ) and Pn(Y),
the n-types over X and Y (empirical distributions for n-samples), and by T n

P , T n
XY Z ,

and T n
X|Y Z(y, z), the sets of typical sequences with (n-) type P , joint type PXY Z ,

and conditional type PX|Y Z , respectively (see for example [2], [8] or [7]). For fixed
n, P ∈ Pn(X ), Q ∈ Pn(Y), and Q(P,Q) defined by (8) and (9) let Qn(P,Q) =
Q(P,Q) ∩ {(X,Y, Z) : PX,Y,Z ∈ Pn(X × Y × Z) × P(Z). By time sharing and the
fact that the n-types for n taking values in the set of positive integers are dense in
the respective sets of distributions, it is sufficient for us to show that there is an
(n,M1,M2, 0, L) (m, l)-code with 1

n
log Mk > Rk − ǫ k = 1, 2 and 1

n
log L < δ for all

P ∈ Pn(X ), Q ∈ Pn(Y), δ, ǫ > 0 and sufficiently large n.

Suppose that we are given P ∈ Pn(X ) and Q ∈ Pn(Y) for a sufficiently large n,
which will be specified later. We choose M2 = |T n

Q | and label the sequences in T n
Q by

1, 2, . . . ,M2. We choose the jth sequence vj as the codeword for the jth message sent
by the second encoder, (or the Y-encoder), for j = 1, 2, . . . ,M2. Thus for arbitrarily
small ǫ > 0 and sufficiently large n we have

1

n
log M2 > H(Q) − ǫ. (34)

Next we choose the size M1 of the codebook for the first encoder, (or the X -encoder)
such that

H(P )− max
(X,Y,Z)∈Q(P,Q)

H(X|Y Z)− ǫ <
1

n
log M1 < H(P )− max

(X,Y,Z)∈Q(P,Q)
H(X|Y Z)−

1

2
ǫ.

(35)
Notice that

max
(X,Y,Z)∈Qn(P,Q)

H(X|Y Z) ≤ max
(X,Y,Z)∈Q(P,Q)

H(X|Y Z) (36)

since Qn(P,Q) ⊂ Q(P,Q). Now we choose the codewords for the first encoder U1, U2, . . . , UM1

randomly independently with uniform distribution over T n
P . We take an output se-

quence zn ∈ Zn in the decoding set Di,j iff zn is received with a positive probability
by the receiver when the first encoder’s ith codeword and the second encoder’s jth
codewords are sent. Thus the error probability is always zero. So by (34) and (35)
we only need to show that with a positive probability one can obtain a deterministic
code from the above random code such that for all output sequences the list sizes are
smaller than 2nδ.
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Since for all j, vj ∈ T n
Q , and the channel is semi-noisy, an output sequence zn is received

with positive probability only if a vj = yn = (y1, . . . , yn) = (ψ(z1), . . . , ψ(zn)) =
ψ(zn) (say) ∈ T n

Q is sent by the second encoder. Moreover for such zn and yn = ψ(zn),
zn is received with positive probability only if a codeword xn such that the joint type of
(xn, yn, zn) is in Qn(P,Q) is sent by the first encoder. For an output sequence zn ∈ Zn

with ψ(zn) = yn = vj ∈ T n
Q we let the random variable K(zn) be the list size of zn and

define the random variables

K(zn, i) =

{

1 if W (zn|Ui, vj) > 0
0 else,

(37)

for i = 1, 2, . . . ,M1. Then K(zn) =
∑M1

i=1 K(zn, i) and for all i the probability

Pr(K(zn, i) = 1) =
∑

(X,Y,Z)∈Qn(P,Q)

|T n
X|Y Z(ψ(zn), zn)|

|T n
P |

≤ (n + 1)|X ||Y||Z| max
(X,Y,Z)∈Qn(P,Q)

|T n
X|Y Z(ψ(zn), zn)|

|T n
P |

≤ 2−n[H(P )−max(X,Y,Z)∈Qn(P,Q) H(X|Y Z)− 1
4
ǫ] (38)

when n is sufficiently large. Thus for all output sequences zn ∈ Zn we have that

Pr(K(zn) > 2nδ) = Pr(
M1
∑

i=1

K(zn, i) > 2nδ)

= Pr(e
∑M1

i=1
K(zn,i)−2nδ

> 1)

≤ e−2nδ

Ee
∑M1

i=1
K(zn,i)

= e−2nδ

E
M1
∏

i=1

eK(zn,i)

= e−2nδ
M1
∏

i=1

EeK(zn,i)

= e−2nδ
M1
∏

i=1

[Pr(K(zn, i) = 0) + Pr(K(zn, i) = 1)e]

= e−2nδ
M1
∏

i=1

[1 + (e − 1)Pr(K(zn, i) = 1)]

≤ expe[−2nδ +
M1
∑

i=1

(e − 1)Pr(K(zn, i) = 1)]

≤ expe{−2nδ + eM12
−n[H(P )−max(X,Y,Z)∈Qn(P,Q) H(X|Y Z)− 1

4
ǫ]}

< expe{−2nδ + 2−n 1
4
ǫ}

≤ e−2nδ+1, (39)
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where E(·) is the expectation of random variables, the fourth equality holds because
the Ui’s are independent, the second inequality follows from the inequality 1 + t ≤ et

for t ≥ 0, the third inequality follows from (38), and the fourth inequality holds by
(35)and (36). Notice that there are totally |Z|n output sequences and on the other
hand the right hand side of (39) is vanishing double exponentially when n is growing
up to infinity. Therefore the probability of the event that there exists a zn ∈ Zn with
list size not smaller than 2nδ is arbitrarily small for sufficiently large n. This completes
our proof.

6 Capacity regions for the codes

It immediately follows from (4), Theorem 4.1 and Theorem 5.1 that Rm,l = Rm,f =
R∗ for all sd-MAC such that Rm,f has considered a pair of positive rates. What
are those capacity regions in the other case? The answer is simple and the proof is
straightforward.

Lemma 6.1 1) There are m-, a-, (m, l)-, (m, f)- (and therefore (m, f-)-) codes with
positive rates R1 for the first encoder iff for some y ∈ Y there exist at least two letters,
say x, x′ ∈ X such that φ(x, y) 6= φ (x′, y).

2) There are m-, a-, (m, l)-, (m, f)- (and therefore (m, f-)-) codes with positive rates
R2 for the second encoder iff |Y| ≥ 2.

Combining Theorem 4.1, Theorem 5.1 and Lemma 6.1 , by (4), we have

Theorem 6.2 For all sd-MAC and R∗ defined by (8), (9), (10), and (12),

Rm,l = Rm,f = R∗. (40)

In the proof of Theorem 3.1 we show that we can always construct an (m, f-)-code
from a given (m, f)-code and keep its parameters length and size. We remark here that
if we only care for asymptotic results, that is the equalities Rm,f− = Rm,f of rates,
then this is an easy consequence of Theorem 6.2, because it is not hard to show that
Rm,l ⊂ Rm,f−.

Thus by (3) and Theorem 6.2 we have that for an sd-MAC

Rm ⊂ Rm,l = Rm,f− = Rm,f = R∗ ⊂ Ra. (41)

We know very little about the first containment relation in (41). The “Noiseless Binary
Switching MAC” ([17]) in Example 2 gives an example of an sd-MAC, for which Rm =
R∗ = Ra. But we do not know whether it is true that Rm = R∗ for general sd-MAC.
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PROBLEM: What is the capacity region Rm for m-codes (or equivalently for error-
free codes) for general sd-MAC? Is it equal to R∗?

On the other hand, the second containment relation in (41) is quite clear. Two extremal
examples, for which R∗ is strictly contained by and equal to Ra, respectively, have been
given in the Examples 1 and 2 in Section 2. More importantly both regions, R∗ and
Ra in [1], are computable in the sense of single letter characterization. Thus one can
at least in principle calculate and therefore compare them. It actually is easy in most
cases because of the simplicity of the structure of sd-MAC. To illustrate this, we present
the following example.

We say that an sd-MAC is regular if for all y ∈ Y , z, z′ ∈ Z(y), |Xy(z)| = |Xy(z
′)|,

where Z(y) = {z ∈ Z : ψ(z) = y} and Xy(z) = {x ∈ X : φ(x, y) = z} for z ∈ Z(y)
are defined in the proof of Theorem 3.1. In other words, for a regular sd-MAC, for
all y ∈ Y there are a pair of integers, say β(y) and l(y) such that β(y)l(y) = |X |,
l(y) = |Z(y)|, and for all z ∈ Z(y), |Xy(z)| = β(y). β(·) and l(·) will be used in the
proof in the theorem below. Obviously Vanroose’s channel in Example 2 is regular.
For a regular sd-MAC, we define

Rr(Q) = {(R1, R2) : 0 ≤ R1 ≤
∑

y∈Y

Q(y) log l(y), 0 ≤ R2 ≤ H(Q)} (42)

for all Q ∈ P(Y) and
Rr = conv[

⋃

Q∈P(Y)

Rr(Q)]. (43)

Theorem 6.3 For a regular sd-MAC,

R∗ = Ra = Rr. (44)

Proof: Since we know that R∗ = Rm,f ⊂ Ra, it is sufficient for us to show that

Ra ⊂ Rr ⊂ R∗.

We first show that
Ra ⊂ Rr. (45)

For P ∈ P(X ) and Q ∈ P(Y), let (X,Y, Z) be the triple of random variables with
distribution PXY Z(x, y, z) = P (x)Q(y)W (z|x, y) for all x ∈ X , y ∈ Y and z ∈ Z and

Ra(P,Q) = {(R1, R2) : 0 ≤ R1 ≤ I(X ∧ Z|Y ), 0 ≤ R2 ≤ I(Y ∧ Z|X)
and R1 + R2 ≤ I(XY ∧ Z)}.

Then the capacity region for a-codes (see [1]) is

Ra = conv
⋃

P∈P(X ),Q∈P(Y)

Ra(P,Q).
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Let (R1, R2) ∈ Ra(P,Q) and (X,Y, Z) be the triple of random variables with distribu-
tion PXY Z(x, y, z) = P (x)Q(y)W (z|x, y).
Since for all y ∈ Y , PY Z(y, z) =

∑

x∈X PXY Z(x, y, z) > 0 only if z ∈ Z(y), H(Z|Y ) ≤
∑

y∈Y Q(y) log |Z(y)| =
∑

y∈Y Q(y) log l(y). Therefore, we have that R1 ≤ I(X∧Z|Y ) ≤
H(Z|Y ) ≤

∑

y∈Y Q(y) log l(y). Moreover R2 ≤ I(Y ∧ Z|X) ≤ H(Y |X) = H(Y ) =
H(Q). Thus by (42) and (43) (R1, R2) ∈ Rr(Q) ⊂ Rr and consequently (45) holds.

Next to complete the proof we show that

Rr ⊂ R∗. (46)

For all Q ∈ P(Y) we let P be the uniform distribution over X . assume (X,Y, Z) ∈
Q(P,Q) achieves max(X,Y,Z)∈Q(P,Q)H(X|Y Z). Then H(P ) = log |X |. Moreover, since
for all x ∈ X , y ∈ Y , and z ∈ Z, PXY Z(x, y, z) > 0 only if y = ψ(z) and x ∈ Xy(z), we
have by (25) that max(X,Y,Z)∈Q(P,Q) H(X|Y Z) = H(X|Y Z) ≤

∑

(y,z):y=ψ(z) PY Z(y, z) log
|Xy(z)| =

∑

(y,z):y=ψ(z) PY Z(y, z) log β(y) =
∑

y∈Y PY (y) log β(y) =
∑

y∈Y Q(y) log β(y).
Now for arbitrary Q ∈ P(Y) and (R1, R2) ∈ Rr(Q), by (42) we have that R1 ≤
∑

y∈Y Q(y) log l(y) =
∑

y∈Y Q(y) log |X |
β(y)

= log |X | −
∑

y∈Y PY (y) log β(y) ≤ H(P ) −

max(X,Y,Z)∈Q(P,Q) H(X|Y Z) and R2 ≤ H(Q). Thus by (10) (R1, R2) ∈ R(P,Q), which
with (12) and (43) implies (46).

7 Concluding remarks

Let us denote the sets of MAC’s satisfying the conditions (*), (**), and sd-MAC by
K1,K2 and Ksd respectively. Then obviously

K2 ⊂ K1 and Ksd ⊂ K1. (47)

Moreover
K2 \ Ksd 6= ∅ (48)

since the binary adder channel is contained in K2 but not in Ksd and

Ksd \ K2 6= ∅, (49)

since the channels in the Examples 1 and 2 in the Section 2 are contained by Ksd but
not by K2.

However the zero-error and average-error capacity regions may be very different. We
have seen an example in [9] (i.e. the MAC in Example 1 in Section 2) for which
the zero-error capacity region even with feedback is strictly smaller than the average-
error capacity region even without feedback (and therefore strictly smaller than the
average-error capacity region with feedback). In Information Theory to determine the
zero-error capacities or capacity regions is often much harder than to determine the
average-error capacities or capacity regions.
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Whereas for deterministic MAC zero error and maximal error capacity regions are
equal, for non-deterministic MAC they may be different. By our knowledge, the ca-
pacity regions Rm,f with feedback and maximal probability of errors are known only
for sd-MAC and the d-MAC in the class K2.

Although, as we mentioned the Section 2, Ra,l is trivially equal to Ra, we know very
little about Rm,l except for sd-MAC. It would be an interesting new direction to study
(m,l)-codes for general MAC and this may be easier than to study m-codes.

The readers, who are familiar with list codes, may notice that our definition of rates
of (m, l)-codes is not quite “standard”. For a code with length n and list size L

carrying M messages for a two terminal channel, its rate is traditionally defined as
1
n

log M
L

. Along this line, a list code for MAC “should” have three rates. That is, let
LX = maxzn |{i : zn ∈ Di,j}|, LY = maxzn |{j : zn ∈ Di,j}| and L be defined as in
the Section 2. Then the three “rates” are defined as R′

X = 1
n

log M1

LX
, R′

Y = 1
n

log M1

LY
,

and R′ = 1
n

log M1M2

L
. For simplicity, we use our definition in Section 2. This makes no

difference in the asymptotic sense, as we ask the exponent of the list size asymptotically
to go to zero.
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